Software project planning through comparison of Bio-inspired algorithms
Currently many organizations have adopted the development of software projects with agile methodologies, particularly Scrum, which has more than 20 years of development. In these methodologies, software is developed iteratively and delivered to the client in increments called releases. In the releas...
- Autores:
-
Silva, Jesús
Varela Izquierdo, Noel
NEIRA MOLINA, HAROLD ROBERTO
Pineda, Omar
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8036
- Acceso en línea:
- https://hdl.handle.net/11323/8036
https://doi.org/10.1007/978-981-15-6648-6_27
https://repositorio.cuc.edu.co/
- Palabra clave:
- Genetic algorithm
Agile software projects
Multi-target
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_f3e354e8a7a54ad060b3a3cbc81864b2 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8036 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Software project planning through comparison of Bio-inspired algorithms |
title |
Software project planning through comparison of Bio-inspired algorithms |
spellingShingle |
Software project planning through comparison of Bio-inspired algorithms Genetic algorithm Agile software projects Multi-target |
title_short |
Software project planning through comparison of Bio-inspired algorithms |
title_full |
Software project planning through comparison of Bio-inspired algorithms |
title_fullStr |
Software project planning through comparison of Bio-inspired algorithms |
title_full_unstemmed |
Software project planning through comparison of Bio-inspired algorithms |
title_sort |
Software project planning through comparison of Bio-inspired algorithms |
dc.creator.fl_str_mv |
Silva, Jesús Varela Izquierdo, Noel NEIRA MOLINA, HAROLD ROBERTO Pineda, Omar |
dc.contributor.author.spa.fl_str_mv |
Silva, Jesús Varela Izquierdo, Noel NEIRA MOLINA, HAROLD ROBERTO Pineda, Omar |
dc.subject.spa.fl_str_mv |
Genetic algorithm Agile software projects Multi-target |
topic |
Genetic algorithm Agile software projects Multi-target |
description |
Currently many organizations have adopted the development of software projects with agile methodologies, particularly Scrum, which has more than 20 years of development. In these methodologies, software is developed iteratively and delivered to the client in increments called releases. In the releases, the goal is to develop system functionality that quickly adds value to the client’s business. At the beginning of the project, one or more releases are planned. For solving the problem of replanning in the context of releases, a model is proposed considering the characteristics of agile development using Scrum. The results obtained show that the algorithm takes a little less than 7 min for solutions that propose replanning composed by 16 sprints, which is equivalent to 240 days of project. They show that applying a repair operator increases the hypervolume quality |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-07-19 |
dc.date.accessioned.none.fl_str_mv |
2021-03-17T16:17:46Z |
dc.date.available.none.fl_str_mv |
2021-03-17T16:17:46Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
18650929 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8036 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1007/978-981-15-6648-6_27 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
18650929 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8036 https://doi.org/10.1007/978-981-15-6648-6_27 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Semenkina, O.E., Popov, E.A., Ryzhikov, I.S.: Hierarchical scheduling problem in the field of manufacturing operational planning. In: IOP Conference Series: Materials Science and Engineering, vol. 537, no. 3, p. 032001. IOP Publishing (2019) 2. Phanden, R.K., Jain, A., Davim, J.P. (eds.): Integration of Process Planning and Scheduling: Approaches and Algorithms. CRC Press, Boca Raton (2019) 3. Jahr, M.: A hybrid approach to quantitative software project scheduling within agile frameworks. Project Manage. J. 45(3), 35–45 (2014) 4. Roque, L., Araújo, A.A., Dantas, A., Saraiva, R., Souza, J.: Human resource allocation in agile software projects based on task similarities. In: Sarro, F., Deb, K. (eds.) SSBSE 2016. LNCS, vol. 9962, pp. 291–297. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47106-8_25 5. Varas, J.M., et al.: MAXCMAS project: autonomous COLREGs compliant ship navigation. In: Proceedings of the 16th Conference on Computer Applications and Information Technology in the Maritime Industries (COMPIT) 2017, pp. 454–464 (2017) 6. Ge, Y.: Software project rescheduling with genetic algorithms. In: 2009 International Conference on Artificial Intelligence and Computational Intelligence, vol. 1, pp. 439–443. IEEE, Shanghai (2009) 7. Ge, Y., Xu, B.: Dynamic staffing and rescheduling in software project management: a hybrid approach. PLoS ONE 11(6), e0157104 (2016) 8. Shen, X., Minku, L.L., Bahsoon, R., Yao, X.: Dynamic software project scheduling through a proactive-rescheduling method. Trans. Softw. Eng. 42(7), 658–686 (2016) 9. Shen, X.N., Minku, L.L., Marturi, N., Guo, Y.N., Han, Y.: A Q-learning-based memetic algorithm for multi-objective dynamic software project scheduling. Inf. Sci. 428, 1–29 (2018) 10. Song, Y.J., Zhang, Z.S., Song, B.Y., Chen, Y.W.: Improved genetic algorithm with local search for satellite range scheduling system and its application in environmental monitoring. Sustain. Comput. Inf. Syst. 21, 19–27 (2019) 11. Moosavi, S.H.S., Bardsiri, V.K.: Satin bowerbird optimizer: a new optimization algorithm to optimize ANFIS for software development effort estimation. Eng. Appl. Artif. Intell. 60, 1–15 (2017) 12. Zheng, Z., Guo, J., Gill, E.: Swarm satellite mission scheduling & planning using hybrid dynamic mutation genetic algorithm. Acta Astronaut. 137, 243–253 (2017) 13. Viloria, A., Acuña, G.C., Franco, D.J.A., Hernández-Palma, H., Fuentes, J.P., Rambal, E.P.: Integration of data mining techniques to PostgreSQL database manager system. Procedia Comput. Sci. 155, 575–580 (2019) 14. Deng, M., et al.: A two-phase coordinated planning approach for heterogeneous earth-observation resources to monitor area targets. IEEE Trans. Syst. Man Cybern. Syst. (2020) 15. Ghoddousi, P., Ansari, R., Makui, A.: An improved robust buffer allocation method for the project scheduling problem. Eng. Optim. 49(4), 718–731 (2017) 16. Tomori, H., Hiyoshi, K.: Control of pneumatic artificial muscles using local cyclic inputs and genetic algorithm. Actuators 7(3), 36 (2018) 17. Ibraigheeth, M., Fadzli, S.A.: Core factors for software projects success. JOIV Int. J. Inf. Visual. 3(1), 69–74 (2019) 18. da Silva Arantes, J., da Silva Arantes, M., Toledo, C.F.M., Júnior, O.T., Williams, B.C.: An embedded system architecture based on genetic algorithms for mission and safety planning with UAV. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1049–1056 (2017) 19. Perez, R., Vásquez, C., Viloria, A.: An intelligent strategy for faults location in distribution networks with distributed generation. J. Intell. Fuzzy Syst. 36(2), 1627–1637 (2019) 20. Viloria, A., Robayo, P.V.: Virtual network level of application composed IP networks connected with systems-(NETS Peer-to-Peer). Indian J. Sci. Technol. 9, 46 (2016) 21. Plice, L., Lau, B., Pisanich, G., Young, L.A.: Biologically inspired behavioral strategies for autonomous aerial explorers on Mars. In: 2003 IEEE Aerospace Conference Proceedings (Cat. No. 03TH8652), vol. 1, pp. 1–304. IEEE (2003) 22. Barbagallo, D., Di Nitto, E., Dubois, D.J., Mirandola, R.: A bio-inspired algorithm for energy optimization in a self-organizing data center. In: Weyns, D., Malek, S., de Lemos, R., Andersson, J. (eds.) SOAR 2009. LNCS, vol. 6090, pp. 127–151. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14412-7_7 23. Srivastava, P.R., Varshney, A., Nama, P., Yang, X.S.: Software test effort estimation: a model based on cuckoo search. Int. J. Bio Inspired Comput. 4(5), 278–285 (2012) 24. Sheta, A.F., Ayesh, A., Rine, D.: Evaluating software cost estimation models using particle swarm optimisation and fuzzy logic for NASA projects: a comparative study. Int. J. Bio Inspired Comput. 2(6), 365–373 (2010) 25. Tempesti, G.: Architectures and design methodologies for bio-inspired computing machines. In: SNF Professorship Application Research Plan (2003) 26. Chiang, H.S., Sangaiah, A.K., Chen, M.Y., Liu, J.Y.: A novel artificial bee colony optimization algorithm with SVM for bio-inspired software-defined networking. Int. J. Parallel Prog. 1–19 (2018) 27. Camacho, D., et al.: From ephemeral computing to deep bioinspired algorithms: new trends and applications. Future Gener. Comput. Syst. 88, 735–746 (2018) 28. Chis, M.: Introduction: a survey of the evolutionary computation techniques for software engineering. In: Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques, pp. 1–12. IGI Global (2010) 29. Wang, L., Shen, J.: Towards bio-inspired cost minimisation for data-intensive service provision. In: 2012 IEEE First International Conference on Services Economics, pp. 16–23. IEEE (2012) 30. Wang, J., Cao, J., Li, B., Lee, S., Sherratt, R.S.: Bio-inspired ant colony optimization based clustering algorithm with mobile sinks for applications in consumer home automation networks. IEEE Trans. Consum. Electron. 61(4), 438–444 (2015) 31. Chis, M., (ed.) Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques: Applications and Techniques. IGI Global (2010) 32. Sharma, T.K.: Estimating software reliability growth model parameters using opposition-based shuffled frog-leaping algorithm. In: Ray, K., Pant, M., Bandyopadhyay, A. (eds.) Soft Computing Applications, pp. 149–164. Springer, Singapore (2018) 33. Barocio, E., Regalado, J., Cuevas, E., Uribe, F., Zúñiga, P., Torres, P.J.R.: Modified bio-inspired optimisation algorithm with a centroid decision making approach for solving a multi-objective optimal power flow problem. IET Gener. Transm. Distrib. 11(4), 1012–1022 (2017) |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.publisher.program.spa.fl_str_mv |
Retracted |
dc.source.spa.fl_str_mv |
Communications in Computer and Information Science |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-981-15-6648-6_27 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/f0b8f26a-c428-4b94-bca3-e21486304e4e/download https://repositorio.cuc.edu.co/bitstreams/9416e185-39fa-47d8-a9ac-52780b9348be/download https://repositorio.cuc.edu.co/bitstreams/1fefce07-391a-4823-8606-6db580ec1e23/download https://repositorio.cuc.edu.co/bitstreams/85e6fbdc-bc2f-4a0f-acc6-3d7be174de00/download https://repositorio.cuc.edu.co/bitstreams/c06f97a1-b708-4207-b5a3-6d660fa61df1/download https://repositorio.cuc.edu.co/bitstreams/1d9c55bd-058b-44ad-b87f-044ebdf6fc41/download |
bitstream.checksum.fl_str_mv |
42fd4ad1e89814f5e4a476b409eb708c 2210e7312ef5c9e9956e45533fcd86f3 e30e9215131d99561d40d6b0abbe9bad f4f2fe3cc9b584f3990cb2c4af42cde0 f4f2fe3cc9b584f3990cb2c4af42cde0 093de88ae358b3544b18234414ec5914 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760819672711168 |
spelling |
Silva, JesúsVarela Izquierdo, NoelNEIRA MOLINA, HAROLD ROBERTOPineda, Omar2021-03-17T16:17:46Z2021-03-17T16:17:46Z2020-07-1918650929https://hdl.handle.net/11323/8036https://doi.org/10.1007/978-981-15-6648-6_27Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Currently many organizations have adopted the development of software projects with agile methodologies, particularly Scrum, which has more than 20 years of development. In these methodologies, software is developed iteratively and delivered to the client in increments called releases. In the releases, the goal is to develop system functionality that quickly adds value to the client’s business. At the beginning of the project, one or more releases are planned. For solving the problem of replanning in the context of releases, a model is proposed considering the characteristics of agile development using Scrum. The results obtained show that the algorithm takes a little less than 7 min for solutions that propose replanning composed by 16 sprints, which is equivalent to 240 days of project. They show that applying a repair operator increases the hypervolume qualitySilva, JesúsVarela Izquierdo, Noel-will be generated-orcid-0000-0001-7036-4414-600NEIRA MOLINA, HAROLD ROBERTO-will be generated-orcid-0000-0003-3595-8086-600Pineda, Omar-will be generated-orcid-0000-0002-8239-3906-600application/pdfengCorporación Universidad de la CostaRetractedCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Communications in Computer and Information Sciencehttps://link.springer.com/chapter/10.1007/978-981-15-6648-6_27Genetic algorithmAgile software projectsMulti-targetSoftware project planning through comparison of Bio-inspired algorithmsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Semenkina, O.E., Popov, E.A., Ryzhikov, I.S.: Hierarchical scheduling problem in the field of manufacturing operational planning. In: IOP Conference Series: Materials Science and Engineering, vol. 537, no. 3, p. 032001. IOP Publishing (2019)2. Phanden, R.K., Jain, A., Davim, J.P. (eds.): Integration of Process Planning and Scheduling: Approaches and Algorithms. CRC Press, Boca Raton (2019)3. Jahr, M.: A hybrid approach to quantitative software project scheduling within agile frameworks. Project Manage. J. 45(3), 35–45 (2014)4. Roque, L., Araújo, A.A., Dantas, A., Saraiva, R., Souza, J.: Human resource allocation in agile software projects based on task similarities. In: Sarro, F., Deb, K. (eds.) SSBSE 2016. LNCS, vol. 9962, pp. 291–297. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47106-8_255. Varas, J.M., et al.: MAXCMAS project: autonomous COLREGs compliant ship navigation. In: Proceedings of the 16th Conference on Computer Applications and Information Technology in the Maritime Industries (COMPIT) 2017, pp. 454–464 (2017)6. Ge, Y.: Software project rescheduling with genetic algorithms. In: 2009 International Conference on Artificial Intelligence and Computational Intelligence, vol. 1, pp. 439–443. IEEE, Shanghai (2009)7. Ge, Y., Xu, B.: Dynamic staffing and rescheduling in software project management: a hybrid approach. PLoS ONE 11(6), e0157104 (2016)8. Shen, X., Minku, L.L., Bahsoon, R., Yao, X.: Dynamic software project scheduling through a proactive-rescheduling method. Trans. Softw. Eng. 42(7), 658–686 (2016)9. Shen, X.N., Minku, L.L., Marturi, N., Guo, Y.N., Han, Y.: A Q-learning-based memetic algorithm for multi-objective dynamic software project scheduling. Inf. Sci. 428, 1–29 (2018)10. Song, Y.J., Zhang, Z.S., Song, B.Y., Chen, Y.W.: Improved genetic algorithm with local search for satellite range scheduling system and its application in environmental monitoring. Sustain. Comput. Inf. Syst. 21, 19–27 (2019)11. Moosavi, S.H.S., Bardsiri, V.K.: Satin bowerbird optimizer: a new optimization algorithm to optimize ANFIS for software development effort estimation. Eng. Appl. Artif. Intell. 60, 1–15 (2017)12. Zheng, Z., Guo, J., Gill, E.: Swarm satellite mission scheduling & planning using hybrid dynamic mutation genetic algorithm. Acta Astronaut. 137, 243–253 (2017)13. Viloria, A., Acuña, G.C., Franco, D.J.A., Hernández-Palma, H., Fuentes, J.P., Rambal, E.P.: Integration of data mining techniques to PostgreSQL database manager system. Procedia Comput. Sci. 155, 575–580 (2019)14. Deng, M., et al.: A two-phase coordinated planning approach for heterogeneous earth-observation resources to monitor area targets. IEEE Trans. Syst. Man Cybern. Syst. (2020)15. Ghoddousi, P., Ansari, R., Makui, A.: An improved robust buffer allocation method for the project scheduling problem. Eng. Optim. 49(4), 718–731 (2017)16. Tomori, H., Hiyoshi, K.: Control of pneumatic artificial muscles using local cyclic inputs and genetic algorithm. Actuators 7(3), 36 (2018)17. Ibraigheeth, M., Fadzli, S.A.: Core factors for software projects success. JOIV Int. J. Inf. Visual. 3(1), 69–74 (2019)18. da Silva Arantes, J., da Silva Arantes, M., Toledo, C.F.M., Júnior, O.T., Williams, B.C.: An embedded system architecture based on genetic algorithms for mission and safety planning with UAV. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1049–1056 (2017)19. Perez, R., Vásquez, C., Viloria, A.: An intelligent strategy for faults location in distribution networks with distributed generation. J. Intell. Fuzzy Syst. 36(2), 1627–1637 (2019)20. Viloria, A., Robayo, P.V.: Virtual network level of application composed IP networks connected with systems-(NETS Peer-to-Peer). Indian J. Sci. Technol. 9, 46 (2016)21. Plice, L., Lau, B., Pisanich, G., Young, L.A.: Biologically inspired behavioral strategies for autonomous aerial explorers on Mars. In: 2003 IEEE Aerospace Conference Proceedings (Cat. No. 03TH8652), vol. 1, pp. 1–304. IEEE (2003)22. Barbagallo, D., Di Nitto, E., Dubois, D.J., Mirandola, R.: A bio-inspired algorithm for energy optimization in a self-organizing data center. In: Weyns, D., Malek, S., de Lemos, R., Andersson, J. (eds.) SOAR 2009. LNCS, vol. 6090, pp. 127–151. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14412-7_723. Srivastava, P.R., Varshney, A., Nama, P., Yang, X.S.: Software test effort estimation: a model based on cuckoo search. Int. J. Bio Inspired Comput. 4(5), 278–285 (2012)24. Sheta, A.F., Ayesh, A., Rine, D.: Evaluating software cost estimation models using particle swarm optimisation and fuzzy logic for NASA projects: a comparative study. Int. J. Bio Inspired Comput. 2(6), 365–373 (2010)25. Tempesti, G.: Architectures and design methodologies for bio-inspired computing machines. In: SNF Professorship Application Research Plan (2003)26. Chiang, H.S., Sangaiah, A.K., Chen, M.Y., Liu, J.Y.: A novel artificial bee colony optimization algorithm with SVM for bio-inspired software-defined networking. Int. J. Parallel Prog. 1–19 (2018)27. Camacho, D., et al.: From ephemeral computing to deep bioinspired algorithms: new trends and applications. Future Gener. Comput. Syst. 88, 735–746 (2018)28. Chis, M.: Introduction: a survey of the evolutionary computation techniques for software engineering. In: Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques, pp. 1–12. IGI Global (2010)29. Wang, L., Shen, J.: Towards bio-inspired cost minimisation for data-intensive service provision. In: 2012 IEEE First International Conference on Services Economics, pp. 16–23. IEEE (2012)30. Wang, J., Cao, J., Li, B., Lee, S., Sherratt, R.S.: Bio-inspired ant colony optimization based clustering algorithm with mobile sinks for applications in consumer home automation networks. IEEE Trans. Consum. Electron. 61(4), 438–444 (2015)31. Chis, M., (ed.) Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques: Applications and Techniques. IGI Global (2010)32. Sharma, T.K.: Estimating software reliability growth model parameters using opposition-based shuffled frog-leaping algorithm. In: Ray, K., Pant, M., Bandyopadhyay, A. (eds.) Soft Computing Applications, pp. 149–164. Springer, Singapore (2018)33. Barocio, E., Regalado, J., Cuevas, E., Uribe, F., Zúñiga, P., Torres, P.J.R.: Modified bio-inspired optimisation algorithm with a centroid decision making approach for solving a multi-objective optimal power flow problem. IET Gener. Transm. Distrib. 11(4), 1012–1022 (2017)PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/f0b8f26a-c428-4b94-bca3-e21486304e4e/download42fd4ad1e89814f5e4a476b409eb708cMD52ORIGINALSoftware project planning through comparison of Bio-inspired algorithms.pdfSoftware project planning through comparison of Bio-inspired algorithms.pdfapplication/pdf164453https://repositorio.cuc.edu.co/bitstreams/9416e185-39fa-47d8-a9ac-52780b9348be/download2210e7312ef5c9e9956e45533fcd86f3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/1fefce07-391a-4823-8606-6db580ec1e23/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILSoftware project planning through comparison of Bio-inspired algorithms.pdf.jpgSoftware project planning through comparison of Bio-inspired algorithms.pdf.jpgimage/jpeg37857https://repositorio.cuc.edu.co/bitstreams/85e6fbdc-bc2f-4a0f-acc6-3d7be174de00/downloadf4f2fe3cc9b584f3990cb2c4af42cde0MD54THUMBNAILSoftware project planning through comparison of Bio-inspired algorithms.pdf.jpgSoftware project planning through comparison of Bio-inspired algorithms.pdf.jpgimage/jpeg37857https://repositorio.cuc.edu.co/bitstreams/c06f97a1-b708-4207-b5a3-6d660fa61df1/downloadf4f2fe3cc9b584f3990cb2c4af42cde0MD54TEXTSoftware project planning through comparison of Bio-inspired algorithms.pdf.txtSoftware project planning through comparison of Bio-inspired algorithms.pdf.txttext/plain1179https://repositorio.cuc.edu.co/bitstreams/1d9c55bd-058b-44ad-b87f-044ebdf6fc41/download093de88ae358b3544b18234414ec5914MD5511323/8036oai:repositorio.cuc.edu.co:11323/80362024-09-17 12:50:12.868http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |