Computational basis of decision-making impairment in multiple sclerosis
Background: Multiple sclerosis (MS) is commonly associated with decision-making, neurocognitive impairments, and mood and motivational symptoms. However, their relationship may be obscured by traditional scoring methods. Objectives: To study the computational basis underlying decision-making impairm...
- Autores:
-
Fernández, Rodrigo S
Crivelli, Lucia
Pedreira, María E
Allegri, Ricardo Francisco
Correale, Jorge
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9394
- Acceso en línea:
- https://hdl.handle.net/11323/9394
https://doi.org/10.1177/13524585211059308
https://repositorio.cuc.edu.co/
- Palabra clave:
- Multiple sclerosis
Computational modeling
Decision-making
Cognitive impairment
- Rights
- openAccess
- License
- © 2022 by SAGE Publications
id |
RCUC2_f3807a0b5a3bd4072af286b1293cdfeb |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9394 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Computational basis of decision-making impairment in multiple sclerosis |
title |
Computational basis of decision-making impairment in multiple sclerosis |
spellingShingle |
Computational basis of decision-making impairment in multiple sclerosis Multiple sclerosis Computational modeling Decision-making Cognitive impairment |
title_short |
Computational basis of decision-making impairment in multiple sclerosis |
title_full |
Computational basis of decision-making impairment in multiple sclerosis |
title_fullStr |
Computational basis of decision-making impairment in multiple sclerosis |
title_full_unstemmed |
Computational basis of decision-making impairment in multiple sclerosis |
title_sort |
Computational basis of decision-making impairment in multiple sclerosis |
dc.creator.fl_str_mv |
Fernández, Rodrigo S Crivelli, Lucia Pedreira, María E Allegri, Ricardo Francisco Correale, Jorge |
dc.contributor.author.spa.fl_str_mv |
Fernández, Rodrigo S Crivelli, Lucia Pedreira, María E Allegri, Ricardo Francisco Correale, Jorge |
dc.subject.proposal.eng.fl_str_mv |
Multiple sclerosis Computational modeling Decision-making Cognitive impairment |
topic |
Multiple sclerosis Computational modeling Decision-making Cognitive impairment |
description |
Background: Multiple sclerosis (MS) is commonly associated with decision-making, neurocognitive impairments, and mood and motivational symptoms. However, their relationship may be obscured by traditional scoring methods. Objectives: To study the computational basis underlying decision-making impairments in MS and their interaction with neurocognitive and neuropsychiatric measures. Methods: Twenty-nine MS patients and 26 matched control subjects completed a computer version of the Iowa Gambling Task (IGT). Participants underwent neurocognitive evaluation using an expanded version of the Brief Repeatable Battery. Hierarchical Bayesian Analysis was used to estimate three established computational models to compare parameters between groups. Results: Patients showed increased learning rate and reduced loss-aversion during decision-making relative to control subjects. These alterations were associated with: (1) reduced net gains in the IGT; (2) processing speed, executive functioning and memory impairments; and (3) higher levels of depression and current apathy. Conclusion: Decision-making deficits in MS patients could be described by the interplay between latent computational processes, neurocognitive impairments, and mood/motivational symptoms. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-12-21 |
dc.date.accessioned.none.fl_str_mv |
2022-07-22T12:49:31Z |
dc.date.available.none.fl_str_mv |
2022-07-22T12:49:31Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Fernández, R. S., Crivelli, L., Pedreira, M. E., Allegri, R. F., & Correale, J. (2022). Computational basis of decision-making impairment in multiple sclerosis. Multiple Sclerosis Journal, 28(8), 1267–1276. https://doi.org/10.1177/13524585211059308 |
dc.identifier.issn.spa.fl_str_mv |
1352-4585 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9394 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1177/13524585211059308 |
dc.identifier.doi.spa.fl_str_mv |
10.1177/13524585211059308 |
dc.identifier.eissn.spa.fl_str_mv |
1477-0970 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Fernández, R. S., Crivelli, L., Pedreira, M. E., Allegri, R. F., & Correale, J. (2022). Computational basis of decision-making impairment in multiple sclerosis. Multiple Sclerosis Journal, 28(8), 1267–1276. https://doi.org/10.1177/13524585211059308 1352-4585 10.1177/13524585211059308 1477-0970 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9394 https://doi.org/10.1177/13524585211059308 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Multiple Sclerosis Journal |
dc.relation.references.spa.fl_str_mv |
1. Filippi, M, Bar-Or, A, Piehl, F, et al. Multiple sclerosis. Nat Rev Dis Primer 2018; 4(1): 43. 2. Thompson, AJ, Baranzini, SE, Geurts, J, et al. Multiple sclerosis. Lancet 2018; 391(10130): 1622–1636. 3. Dobson, R, Giovannoni, G. Multiple sclerosis—A review. Eur J Neurol 2019; 26(1): 27–40. 4. Sepulcre, J, Vanotti, S, Hernández, R, et al. Cognitive impairment in patients with multiple sclerosis using the Brief Repeatable Battery-Neuropsychology test. Mult Scler 2006; 12(2): 187–195. 5. Duque, B, Sepulcre, J, Bejarano, B, et al. Memory decline evolves independently of disease activity in MS. Mult Scler 2008; 14(7): 947–953. 6. Arnett, PA, Barwick, FH, Beeney, JE. Depression in multiple sclerosis: Review and theoretical proposal. J Int Neuropsychol Soc 2008; 14(5): 691–724. 7. Raimo, S, Spitaleri, D, Trojano, L, et al. Apathy as a herald of cognitive changes in multiple sclerosis: A 2-year follow-up study. Mult Scler 2020; 26(3): 363–371. 8. Macías Islas, MÁ, Ciampi, E. Assessment and impact of cognitive impairment in multiple sclerosis: An overview. Biomedicines 2019; 7(1): 22. 9. Farez, MF, Crivelli, L, Leiguarda, R, et al. Decision-making impairment in patients with multiple sclerosis: A case-control study. BMJ Open 2014; 4(7): e004918. 10. Sepúlveda, M, Fernández-Diez, B, Martínez-Lapiscina, EH, et al. Impairment of decision-making in multiple sclerosis: A neuroeconomic approach. Mult Scler 2017; 23(13): 1762–1771. 11. Neuhaus, M, Calabrese, P, Annoni, J-M. Decision-making in multiple sclerosis patients: A systematic review. Mult Scler Int 2018; 2018: 7835952. 12. Muhlert, N, Sethi, V, Cipolotti, L, et al. The grey matter correlates of impaired decision-making in multiple sclerosis. J Neurol Neurosurg Psychiatry 2015; 86(5): 530–536. 13. Kleeberg, J, Bruggimann, L, Annoni, J-M, et al. Altered decision-making in multiple sclerosis: A sign of impaired emotional reactivity? Ann Neurol 2004; 56(6): 787–795. 14. Bechara, A, Damasio, H, Tranel, D, et al. Dissociation of working memory from decision making within the human prefrontal cortex. J Neurosci 1998; 18(1): 428–437. 15. Steingroever, H, Wetzels, R, Wagenmakers, E-J. Bayes factors for reinforcement-learning models of the Iowa gambling task. Decision 2016; 3(2): 115–131. 16. Simioni, S, Ruffieux, C, Kleeberg, J, et al. Preserved decision making ability in early multiple sclerosis. J Neurol 2008; 255(11): 1762–1769. 17. Azcárraga-Guirola, E, Rodríguez-Agudelo, Y, Velázquez-Cardoso, J, et al. Electrophysiological correlates of decision making impairment in multiple sclerosis. Eur J Neurosci 2017; 45(2): 321–329. Google Scholar | Crossref | Medline 18. Steingroever, H, Wetzels, R, Wagenmakers, E-J. Absolute performance of reinforcement-learning models for the Iowa Gambling Task. Decision 2014; 1(3): 161–183. 19. Ahn, W-Y, Vasilev, G, Lee, S-H, et al. Decision-making in stimulant and opiate addicts in protracted abstinence: Evidence from computational modeling with pure users. Front Psychol 2014; 5: 849. 20. Worthy, DA, Pang, B, Byrne, KA. Decomposing the roles of perseveration and expected value representation in models of the Iowa Gambling Task. Front Psychol 2013; 4: 640. 21. Polman, CH, Reingold, SC, Edan, G, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria.” Ann Neurol 2005; 58(6): 840–846. 22. Rao, SM, Leo, GJ, Bernardin, L, et al. Cognitive dysfunction in multiple sclerosis: I. Frequency, patterns, and prediction. Neurology 1991; 41(5): 685–691. 23. Benedict, RH, Fishman, I, McClellan, MM, et al. Validity of the beck depression inventory-fast screen in multiple sclerosis. Mult Scler 2003; 9(4): 393–396. 24. Chiaravalloti, ND, DeLuca, J. Assessing the behavioral consequences of multiple sclerosis: An application of the Frontal Systems Behavior Scale (FrSBe). Cogn Behav Neurol 2003; 16(1): 54–67. 25. Schönbrodt, FD, Wagenmakers, EJ. Bayes factor design analysis: Planning for compelling evidence. Psychon Bull Rev 2018; 25(1): 128–142. 26. Ahn, W-Y, Haines, N, Zhang, L. Revealing neurocomputational mechanisms of reinforcement learning and decision-making with the hBayesDM package. Comput Psychiatr 2017; 1: 24–57. 27. Lee, MD . How cognitive modeling can benefit from hierarchical Bayesian models. J Math Psychol 2011; 55(1): 1–7. 28. Maia, TV, Frank, MJ. From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci 2011; 14(2): 154–162. 29. Bennett, D, Silverstein, SM, Niv, Y. The two cultures of computational psychiatry. JAMA Psychiatry 2019; 76(6): 563–564. 30. Collins, AG, Ciullo, B, Frank, MJ, et al. Working memory load strengthens reward prediction errors. J Neurosci 2017; 37(16): 4332–4342. 31. Vikbladh, OM, Meager, MR, King, J, et al. Hippocampal contributions to model-based planning and spatial memory. Neuron 2019; 102(3): 683–693. 32. Rmus, M, McDougle, SD, Collins, AG. The role of executive function in shaping reinforcement learning. Curr Opin Behav Sci 2021; 38: 66–73. 33. Laura, DG, Silvia, T, Nikolaos, P, et al. The role of fMRI in the assessment of neuroplasticity in MS: A systematic review. Neural Plast 2018; 2018: 3419871. 34. Weygandt, M, Wakonig, K, Behrens, J, et al. Brain activity, regional gray matter loss, and decision-making in multiple sclerosis. Mult Scler 2018; 24(9): 1163–1173. 35. O’Doherty, JP, Cockburn, J, Pauli, WM. Learning, reward, and decision making. Annu Rev Psychol 2017; 68: 73–100. |
dc.relation.citationissue.spa.fl_str_mv |
8 |
dc.relation.citationvolume.spa.fl_str_mv |
28 |
dc.rights.spa.fl_str_mv |
© 2022 by SAGE Publications Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
© 2022 by SAGE Publications Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1 página |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
SAGE Publications Ltd |
dc.publisher.place.spa.fl_str_mv |
United Kingdom |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://journals.sagepub.com/doi/10.1177/13524585211059308 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/33f931ba-2284-4bd6-bc67-7a34809b1d9b/download https://repositorio.cuc.edu.co/bitstreams/7e80b808-3597-4dda-8623-8c40d23f07e3/download https://repositorio.cuc.edu.co/bitstreams/8b4db432-330e-4f80-ae3a-0bd12ebca452/download https://repositorio.cuc.edu.co/bitstreams/65f90b12-0799-419c-baff-5fc6412910dc/download |
bitstream.checksum.fl_str_mv |
8413dd82bba07a6e6717bdb43200cecc e30e9215131d99561d40d6b0abbe9bad c49ba3183c33be1f0e5eaddbe8e24a97 36c5428c1011ece919d715e0951dc73d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760749310115840 |
spelling |
Fernández, Rodrigo SCrivelli, LuciaPedreira, María EAllegri, Ricardo FranciscoCorreale, Jorge2022-07-22T12:49:31Z2022-07-22T12:49:31Z2021-12-21Fernández, R. S., Crivelli, L., Pedreira, M. E., Allegri, R. F., & Correale, J. (2022). Computational basis of decision-making impairment in multiple sclerosis. Multiple Sclerosis Journal, 28(8), 1267–1276. https://doi.org/10.1177/135245852110593081352-4585https://hdl.handle.net/11323/9394https://doi.org/10.1177/1352458521105930810.1177/135245852110593081477-0970Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Background: Multiple sclerosis (MS) is commonly associated with decision-making, neurocognitive impairments, and mood and motivational symptoms. However, their relationship may be obscured by traditional scoring methods. Objectives: To study the computational basis underlying decision-making impairments in MS and their interaction with neurocognitive and neuropsychiatric measures. Methods: Twenty-nine MS patients and 26 matched control subjects completed a computer version of the Iowa Gambling Task (IGT). Participants underwent neurocognitive evaluation using an expanded version of the Brief Repeatable Battery. Hierarchical Bayesian Analysis was used to estimate three established computational models to compare parameters between groups. Results: Patients showed increased learning rate and reduced loss-aversion during decision-making relative to control subjects. These alterations were associated with: (1) reduced net gains in the IGT; (2) processing speed, executive functioning and memory impairments; and (3) higher levels of depression and current apathy. Conclusion: Decision-making deficits in MS patients could be described by the interplay between latent computational processes, neurocognitive impairments, and mood/motivational symptoms.1 páginaapplication/pdfengSAGE Publications LtdUnited Kingdom© 2022 by SAGE PublicationsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Computational basis of decision-making impairment in multiple sclerosisArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_b1a7d7d4d402bccehttps://journals.sagepub.com/doi/10.1177/13524585211059308Multiple Sclerosis Journal1. Filippi, M, Bar-Or, A, Piehl, F, et al. Multiple sclerosis. Nat Rev Dis Primer 2018; 4(1): 43.2. Thompson, AJ, Baranzini, SE, Geurts, J, et al. Multiple sclerosis. Lancet 2018; 391(10130): 1622–1636.3. Dobson, R, Giovannoni, G. Multiple sclerosis—A review. Eur J Neurol 2019; 26(1): 27–40.4. Sepulcre, J, Vanotti, S, Hernández, R, et al. Cognitive impairment in patients with multiple sclerosis using the Brief Repeatable Battery-Neuropsychology test. Mult Scler 2006; 12(2): 187–195.5. Duque, B, Sepulcre, J, Bejarano, B, et al. Memory decline evolves independently of disease activity in MS. Mult Scler 2008; 14(7): 947–953.6. Arnett, PA, Barwick, FH, Beeney, JE. Depression in multiple sclerosis: Review and theoretical proposal. J Int Neuropsychol Soc 2008; 14(5): 691–724.7. Raimo, S, Spitaleri, D, Trojano, L, et al. Apathy as a herald of cognitive changes in multiple sclerosis: A 2-year follow-up study. Mult Scler 2020; 26(3): 363–371.8. Macías Islas, MÁ, Ciampi, E. Assessment and impact of cognitive impairment in multiple sclerosis: An overview. Biomedicines 2019; 7(1): 22.9. Farez, MF, Crivelli, L, Leiguarda, R, et al. Decision-making impairment in patients with multiple sclerosis: A case-control study. BMJ Open 2014; 4(7): e004918.10. Sepúlveda, M, Fernández-Diez, B, Martínez-Lapiscina, EH, et al. Impairment of decision-making in multiple sclerosis: A neuroeconomic approach. Mult Scler 2017; 23(13): 1762–1771.11. Neuhaus, M, Calabrese, P, Annoni, J-M. Decision-making in multiple sclerosis patients: A systematic review. Mult Scler Int 2018; 2018: 7835952.12. Muhlert, N, Sethi, V, Cipolotti, L, et al. The grey matter correlates of impaired decision-making in multiple sclerosis. J Neurol Neurosurg Psychiatry 2015; 86(5): 530–536.13. Kleeberg, J, Bruggimann, L, Annoni, J-M, et al. Altered decision-making in multiple sclerosis: A sign of impaired emotional reactivity? Ann Neurol 2004; 56(6): 787–795.14. Bechara, A, Damasio, H, Tranel, D, et al. Dissociation of working memory from decision making within the human prefrontal cortex. J Neurosci 1998; 18(1): 428–437.15. Steingroever, H, Wetzels, R, Wagenmakers, E-J. Bayes factors for reinforcement-learning models of the Iowa gambling task. Decision 2016; 3(2): 115–131.16. Simioni, S, Ruffieux, C, Kleeberg, J, et al. Preserved decision making ability in early multiple sclerosis. J Neurol 2008; 255(11): 1762–1769.17. Azcárraga-Guirola, E, Rodríguez-Agudelo, Y, Velázquez-Cardoso, J, et al. Electrophysiological correlates of decision making impairment in multiple sclerosis. Eur J Neurosci 2017; 45(2): 321–329. Google Scholar | Crossref | Medline18. Steingroever, H, Wetzels, R, Wagenmakers, E-J. Absolute performance of reinforcement-learning models for the Iowa Gambling Task. Decision 2014; 1(3): 161–183.19. Ahn, W-Y, Vasilev, G, Lee, S-H, et al. Decision-making in stimulant and opiate addicts in protracted abstinence: Evidence from computational modeling with pure users. Front Psychol 2014; 5: 849.20. Worthy, DA, Pang, B, Byrne, KA. Decomposing the roles of perseveration and expected value representation in models of the Iowa Gambling Task. Front Psychol 2013; 4: 640.21. Polman, CH, Reingold, SC, Edan, G, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria.” Ann Neurol 2005; 58(6): 840–846.22. Rao, SM, Leo, GJ, Bernardin, L, et al. Cognitive dysfunction in multiple sclerosis: I. Frequency, patterns, and prediction. Neurology 1991; 41(5): 685–691.23. Benedict, RH, Fishman, I, McClellan, MM, et al. Validity of the beck depression inventory-fast screen in multiple sclerosis. Mult Scler 2003; 9(4): 393–396.24. Chiaravalloti, ND, DeLuca, J. Assessing the behavioral consequences of multiple sclerosis: An application of the Frontal Systems Behavior Scale (FrSBe). Cogn Behav Neurol 2003; 16(1): 54–67.25. Schönbrodt, FD, Wagenmakers, EJ. Bayes factor design analysis: Planning for compelling evidence. Psychon Bull Rev 2018; 25(1): 128–142.26. Ahn, W-Y, Haines, N, Zhang, L. Revealing neurocomputational mechanisms of reinforcement learning and decision-making with the hBayesDM package. Comput Psychiatr 2017; 1: 24–57.27. Lee, MD . How cognitive modeling can benefit from hierarchical Bayesian models. J Math Psychol 2011; 55(1): 1–7.28. Maia, TV, Frank, MJ. From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci 2011; 14(2): 154–162.29. Bennett, D, Silverstein, SM, Niv, Y. The two cultures of computational psychiatry. JAMA Psychiatry 2019; 76(6): 563–564.30. Collins, AG, Ciullo, B, Frank, MJ, et al. Working memory load strengthens reward prediction errors. J Neurosci 2017; 37(16): 4332–4342.31. Vikbladh, OM, Meager, MR, King, J, et al. Hippocampal contributions to model-based planning and spatial memory. Neuron 2019; 102(3): 683–693.32. Rmus, M, McDougle, SD, Collins, AG. The role of executive function in shaping reinforcement learning. Curr Opin Behav Sci 2021; 38: 66–73.33. Laura, DG, Silvia, T, Nikolaos, P, et al. The role of fMRI in the assessment of neuroplasticity in MS: A systematic review. Neural Plast 2018; 2018: 3419871.34. Weygandt, M, Wakonig, K, Behrens, J, et al. Brain activity, regional gray matter loss, and decision-making in multiple sclerosis. Mult Scler 2018; 24(9): 1163–1173.35. O’Doherty, JP, Cockburn, J, Pauli, WM. Learning, reward, and decision making. Annu Rev Psychol 2017; 68: 73–100.828Multiple sclerosisComputational modelingDecision-makingCognitive impairmentPublicationORIGINALComputational basis of decision-making impairment in multiple sclerosis.pdfComputational basis of decision-making impairment in multiple sclerosis.pdfapplication/pdf55357https://repositorio.cuc.edu.co/bitstreams/33f931ba-2284-4bd6-bc67-7a34809b1d9b/download8413dd82bba07a6e6717bdb43200ceccMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/7e80b808-3597-4dda-8623-8c40d23f07e3/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTComputational basis of decision-making impairment in multiple sclerosis.pdf.txtComputational basis of decision-making impairment in multiple sclerosis.pdf.txttext/plain1561https://repositorio.cuc.edu.co/bitstreams/8b4db432-330e-4f80-ae3a-0bd12ebca452/downloadc49ba3183c33be1f0e5eaddbe8e24a97MD53THUMBNAILComputational basis of decision-making impairment in multiple sclerosis.pdf.jpgComputational basis of decision-making impairment in multiple sclerosis.pdf.jpgimage/jpeg13459https://repositorio.cuc.edu.co/bitstreams/65f90b12-0799-419c-baff-5fc6412910dc/download36c5428c1011ece919d715e0951dc73dMD5411323/9394oai:repositorio.cuc.edu.co:11323/93942024-09-17 10:57:31.01https://creativecommons.org/licenses/by-nc-nd/4.0/© 2022 by SAGE Publicationsopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |