Intellectual property in colombian museums: an application of machine learning

The purpose of this research is to answer the following guiding question: how can the behavior of museum networks in Colombia be predicted with respect to the protection of intellectual property (copyright, confidential information and use of patents, domain names, industrial designs, use of tradema...

Full description

Autores:
Lis-Gutiérrez, Jenny-Paola
Zerda Sarmiento, Alvaro
amelec, viloria
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5859
Acceso en línea:
https://hdl.handle.net/11323/5859
https://repositorio.cuc.edu.co/
Palabra clave:
Proximity
Intellectual property
Intellectual property management
Museum
Museum networks
Machine learning
Rights
openAccess
License
http://creativecommons.org/publicdomain/zero/1.0/
Description
Summary:The purpose of this research is to answer the following guiding question: how can the behavior of museum networks in Colombia be predicted with respect to the protection of intellectual property (copyright, confidential information and use of patents, domain names, industrial designs, use of trademarks) and the interaction of different types of proximity (geographical, organizational, relational, cognitive, cultural and institutional), based on the use of supervised learning algorithms? Among the main findings are that the best learning algorithms to predict the behavior of networks, considering different target variables are the AdaBoost, the naive Bayes and CN2 rule inducer