Subordination principle, Wright functions and large-time behavior for the discrete in time fractional diffusion equation

The main goal in this paper is to study asymptotic behavior in Lp(RN ) for the solutions of the fractional version of the discrete in time N-dimensional diffusion equation, which involves the Caputo fractional h-difference operator. The techniques to prove the results are based in new subordination...

Full description

Autores:
Abadias, Luciano
Alvarez, Edgardo
Díaz , Stiven
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9214
Acceso en línea:
https://hdl.handle.net/11323/9214
https://doi.org/10.1016/j.jmaa.2021.125741
https://repositorio.cuc.edu.co/
Palabra clave:
Subordination formula
Scaled Wright function
Fractional difference equations
Large-time behavior
Decay of solutions
Discrete fundamental solution
Rights
embargoedAccess
License
© 2021 Elsevier Inc. All rights reserved.
id RCUC2_f2fc9adb4b534b2d4d8ba39d9b94ed1d
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9214
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Subordination principle, Wright functions and large-time behavior for the discrete in time fractional diffusion equation
title Subordination principle, Wright functions and large-time behavior for the discrete in time fractional diffusion equation
spellingShingle Subordination principle, Wright functions and large-time behavior for the discrete in time fractional diffusion equation
Subordination formula
Scaled Wright function
Fractional difference equations
Large-time behavior
Decay of solutions
Discrete fundamental solution
title_short Subordination principle, Wright functions and large-time behavior for the discrete in time fractional diffusion equation
title_full Subordination principle, Wright functions and large-time behavior for the discrete in time fractional diffusion equation
title_fullStr Subordination principle, Wright functions and large-time behavior for the discrete in time fractional diffusion equation
title_full_unstemmed Subordination principle, Wright functions and large-time behavior for the discrete in time fractional diffusion equation
title_sort Subordination principle, Wright functions and large-time behavior for the discrete in time fractional diffusion equation
dc.creator.fl_str_mv Abadias, Luciano
Alvarez, Edgardo
Díaz , Stiven
dc.contributor.author.spa.fl_str_mv Abadias, Luciano
Alvarez, Edgardo
Díaz , Stiven
dc.contributor.corporatename.spa.fl_str_mv Corporación Universidad de la Costa
dc.subject.proposal.eng.fl_str_mv Subordination formula
Scaled Wright function
Fractional difference equations
Large-time behavior
Decay of solutions
Discrete fundamental solution
topic Subordination formula
Scaled Wright function
Fractional difference equations
Large-time behavior
Decay of solutions
Discrete fundamental solution
description The main goal in this paper is to study asymptotic behavior in Lp(RN ) for the solutions of the fractional version of the discrete in time N-dimensional diffusion equation, which involves the Caputo fractional h-difference operator. The techniques to prove the results are based in new subordination formulas involving the discrete in time Gaussian kernel, and which are defined via an analogue in discrete time setting of the scaled Wright functions. Moreover, we get an equivalent representation of that subordination formula by Fox H-functions.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-10-14
dc.date.accessioned.none.fl_str_mv 2022-06-07T17:41:39Z
dc.date.available.none.fl_str_mv 2022-10-14
2022-06-07T17:41:39Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.spa.fl_str_mv 0022-247X
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9214
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1016/j.jmaa.2021.125741
dc.identifier.doi.spa.fl_str_mv 10.1016/j.jmaa.2021.125741
dc.identifier.eissn.spa.fl_str_mv 1096-0813
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0022-247X
10.1016/j.jmaa.2021.125741
1096-0813
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9214
https://doi.org/10.1016/j.jmaa.2021.125741
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Mathematical Analysis and Applications
dc.relation.references.spa.fl_str_mv [1] L. Abadias, E. Alvarez, Uniform stability for fractional Cauchy problems and applications, Topol. Methods Nonlinear Anal. 52 (2) (2018) 707–728.
[2] L. Abadias, E. Alvarez, Asymptotic behaviour for the discrete in time heat equation, Manuscript available at https:// arxiv.org/pdf/2102.11109.pdf.
[3] L. Abadias, M. De León, J.L. Torrea, Non-local fractional derivatives. Discrete and continuous, J. Math. Anal. Appl. 449 (1) (2017) 734–755.
[4] L. Abadias, C. Lizama, Almost automorphic mild solutions to fractional partial difference-differential equations, Appl. Anal. 95 (6) (2016) 1347–1369.
[5] L. Abadias, P. Miana, A subordination principle on Wright functions and regularized resolvent families, J. Funct. Spaces 2015 (2015) 158145, https://doi.org/10.1155/2015/158145.
[6] M. Aigner, Diskrete Mathematik, 6th ed., Friedr. Vieweg & Sohn, 2006.
[7] E. Alvarez, S. Diaz, C. Lizama, C-semigroups, subordination principle and the Lévy α-stable distribution on discrete time, Commun. Contemp. Math. (2020).
[8] E.G. Bazhlekova, Fractional evolution equations in Banach spaces, Ph.D. thesis, University Press Facilities, Eindhoven University of Technology, 2001.
[9] O. Ciaurri, T.A. Gillespie, L. Roncal, J.L. Torrea, J.L. Varona, Harmonic analysis associated with a discrete Laplacian, J. Anal. Math. 132 (2017) 109–131.
[10] O. Ciaurri, L. Roncal, P.R. Stinga, J.L. Torrea, J.L. Varona, Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications, Adv. Math. 330 (2018) 688–738.
[11] E.B. Davies, Gaussian upper bounds for the heat kernels of some second-order operators on Riemannian manifolds, J. Funct. Anal. 80 (1) (1988) 16–32.
[12] E.B. Davies, Lp spectral theory of higher-order elliptic differential operators, Bull. Lond. Math. Soc. 29 (5) (1997) 513–546.
[13] M. Del Pino, J. Dolbeault, Asymptotic behavior of nonlinear diffusions, Math. Res. Lett. 10 (4) (2003) 551–557.
[14] J. Duoandikoetxea, J. Zuazua, Moments, masses de Dirac et décomposition de fonctions, C. R. Acad. Sci. Paris Sér. I Math. 315 (6) (1992) 693–698.
[15] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, H. Bateman, Higher Transcenden-tal Functions, vol. III, McGraw–Hill, New York, 1953.
[16] A. Erdélyi, F.G. Tricomi, The aymptotic expansion of a ratio of Gamma functions, Pac. J. Math. 1 (1951) 133–142.
[17] M. Escobedo, E. Zuazua, Large time behavior for convection-diffusion equations in RN , J. Funct. Anal. 100 (1) (1991) 119–161.
[18] L.C. Evans, Partial Differential Equations, second ed., Graduate Studies in Mathematics, vol. 19, AMS Publications, Providence, Rhode Island, 2014.
[19] J. Fourier, Théorie Analytique de la Chaleur, Reprint of the 1822 original Cambridge Library Collection, Cambridge University Press, Cambridge, 2009.
[20] A. Gmira, L. Veron, Asymptotic behaviour of the solution of a semilinear parabolic equation, Monatshefte Math. 94 (1982) 299–311.
[21] A. Gmira, L. Veron, Large time behaviour of the solutions of a semilinear parabolic equation in RN , J. Funct. Anal. 53 (1984) 258–276.
[22] C. Goodrich, C. Lizama, A transference principle for nonlocal operators using a convolutional approach: fractional monotonicity and convexity, Isr. J. Math. 236 (2020) 533–589.
[23] C. Goodrich, A.C. Peterson, Discrete Fractional Calculus, Springer International Publishing, 2015.
[24] I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 6th edition, Academic Press, Inc., San Diego, CA, 2000.
[25] A. Grigor’yan, Estimates of heat kernels on Riemannian manifolds, manuscript available at www.ma.ic.ac.uk/~grigor, 1999.
[26] J. Kemppainen, J. Siljander, R. Zacher, Representation of solutions and large-time behavior for fully nonlocal diffusion equations, J. Differ. Equ. 263 (1) (2017) 149–201.
[27] A.A. Kilbas, M. Saigo, H-Transforms, Theory and Applications, Analytical Methods and Special Functions, vol. 9, 2004.
[28] S. Kusuoka, D. Stroock, Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator, Ann. Math. 127 (1) (1988) 165–189.
[29] P. Li, Large time behavior of the heat equation on complete manifolds with nonnegative Ricci curvature, Ann. Math. 124 (1) (1986) 1–21.
[30] C. Lizama, lp-Maximal regularity for fractional difference equations on UMD spaces, Math. Nachr. 288 (17/18) (2015) 2079–2092.
[31] C. Lizama, The Poisson distribution, abstract fractional difference equations and stability, Proc. Am. Math. Soc. 145 (9) (2017) 3809–3827.
[32] C. Lizama, L. Roncal, Hölder-Lebesgue regularity and almost periodicity for semidiscrete equations with a fractional Laplacian, Discrete Contin. Dyn. Syst. 38 (3) (2018) 1365–1403.
[33] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, UK, 2010.
[34] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993.
[35] D. Mozyrska, M. Wyrwas, The Z-transform method and delta type fractional difference operators, Discrete Dyn. Nat. Soc. 2015 (2015) 852734, https://doi.org/10.1155/2015/852734.
[36] S. Mustapha, Gaussian estimates for heat kernels on Lie groups, Math. Proc. Camb. Philos. Soc. 128 (1) (2000) 45–64.
[37] J.R. Norris, Long-time behaviour of heat flow: global estimates and exact asymptotics, Arch. Ration. Mech. Anal. 140 (2) (1997) 161–195.
[38] R. Ponce, Time discretization of fractional subdiffusion equations via fractional resolvent operators, Comput. Math. Appl. 80 (4) (2020) 69–92.
[39] A. Zygmund, Trigonometric Series, Vols. I, II, 2nd ed., Cambridge University Press, New York, 1959.
dc.relation.citationendpage.spa.fl_str_mv 23
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 507
dc.rights.spa.fl_str_mv © 2021 Elsevier Inc. All rights reserved.
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv © 2021 Elsevier Inc. All rights reserved.
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 23 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Academic Press Inc.
dc.publisher.place.spa.fl_str_mv United States
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www-sciencedirect-com.ezproxy.cuc.edu.co/science/article/pii/S0022247X21008209?via%3Dihub#!
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/b64f8878-8c10-4901-8d23-cea031a5c368/download
https://repositorio.cuc.edu.co/bitstreams/1ed23f40-6bd9-4e49-b560-63782f105abe/download
https://repositorio.cuc.edu.co/bitstreams/f6717e00-46aa-4184-a33d-178eacbcc8c7/download
https://repositorio.cuc.edu.co/bitstreams/799a16c1-5741-44f3-bb1f-c24f210bfa23/download
bitstream.checksum.fl_str_mv fd5351558757d13ac1e72c3f3145b872
e30e9215131d99561d40d6b0abbe9bad
d5098f6963ee6a3d43dc6254cbf6e136
a4ce4b6961b32761519c43aed4c7e9ce
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760724304723968
spelling Abadias, LucianoAlvarez, EdgardoDíaz , StivenCorporación Universidad de la Costa2022-06-07T17:41:39Z2022-10-142022-06-07T17:41:39Z2021-10-140022-247Xhttps://hdl.handle.net/11323/9214https://doi.org/10.1016/j.jmaa.2021.12574110.1016/j.jmaa.2021.1257411096-0813Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The main goal in this paper is to study asymptotic behavior in Lp(RN ) for the solutions of the fractional version of the discrete in time N-dimensional diffusion equation, which involves the Caputo fractional h-difference operator. The techniques to prove the results are based in new subordination formulas involving the discrete in time Gaussian kernel, and which are defined via an analogue in discrete time setting of the scaled Wright functions. Moreover, we get an equivalent representation of that subordination formula by Fox H-functions.23 páginasapplication/pdfengAcademic Press Inc.United States© 2021 Elsevier Inc. All rights reserved.Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfSubordination principle, Wright functions and large-time behavior for the discrete in time fractional diffusion equationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www-sciencedirect-com.ezproxy.cuc.edu.co/science/article/pii/S0022247X21008209?via%3Dihub#!Journal of Mathematical Analysis and Applications[1] L. Abadias, E. Alvarez, Uniform stability for fractional Cauchy problems and applications, Topol. Methods Nonlinear Anal. 52 (2) (2018) 707–728.[2] L. Abadias, E. Alvarez, Asymptotic behaviour for the discrete in time heat equation, Manuscript available at https:// arxiv.org/pdf/2102.11109.pdf.[3] L. Abadias, M. De León, J.L. Torrea, Non-local fractional derivatives. Discrete and continuous, J. Math. Anal. Appl. 449 (1) (2017) 734–755.[4] L. Abadias, C. Lizama, Almost automorphic mild solutions to fractional partial difference-differential equations, Appl. Anal. 95 (6) (2016) 1347–1369.[5] L. Abadias, P. Miana, A subordination principle on Wright functions and regularized resolvent families, J. Funct. Spaces 2015 (2015) 158145, https://doi.org/10.1155/2015/158145.[6] M. Aigner, Diskrete Mathematik, 6th ed., Friedr. Vieweg & Sohn, 2006.[7] E. Alvarez, S. Diaz, C. Lizama, C-semigroups, subordination principle and the Lévy α-stable distribution on discrete time, Commun. Contemp. Math. (2020).[8] E.G. Bazhlekova, Fractional evolution equations in Banach spaces, Ph.D. thesis, University Press Facilities, Eindhoven University of Technology, 2001.[9] O. Ciaurri, T.A. Gillespie, L. Roncal, J.L. Torrea, J.L. Varona, Harmonic analysis associated with a discrete Laplacian, J. Anal. Math. 132 (2017) 109–131.[10] O. Ciaurri, L. Roncal, P.R. Stinga, J.L. Torrea, J.L. Varona, Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications, Adv. Math. 330 (2018) 688–738.[11] E.B. Davies, Gaussian upper bounds for the heat kernels of some second-order operators on Riemannian manifolds, J. Funct. Anal. 80 (1) (1988) 16–32.[12] E.B. Davies, Lp spectral theory of higher-order elliptic differential operators, Bull. Lond. Math. Soc. 29 (5) (1997) 513–546.[13] M. Del Pino, J. Dolbeault, Asymptotic behavior of nonlinear diffusions, Math. Res. Lett. 10 (4) (2003) 551–557.[14] J. Duoandikoetxea, J. Zuazua, Moments, masses de Dirac et décomposition de fonctions, C. R. Acad. Sci. Paris Sér. I Math. 315 (6) (1992) 693–698.[15] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, H. Bateman, Higher Transcenden-tal Functions, vol. III, McGraw–Hill, New York, 1953.[16] A. Erdélyi, F.G. Tricomi, The aymptotic expansion of a ratio of Gamma functions, Pac. J. Math. 1 (1951) 133–142.[17] M. Escobedo, E. Zuazua, Large time behavior for convection-diffusion equations in RN , J. Funct. Anal. 100 (1) (1991) 119–161.[18] L.C. Evans, Partial Differential Equations, second ed., Graduate Studies in Mathematics, vol. 19, AMS Publications, Providence, Rhode Island, 2014.[19] J. Fourier, Théorie Analytique de la Chaleur, Reprint of the 1822 original Cambridge Library Collection, Cambridge University Press, Cambridge, 2009.[20] A. Gmira, L. Veron, Asymptotic behaviour of the solution of a semilinear parabolic equation, Monatshefte Math. 94 (1982) 299–311.[21] A. Gmira, L. Veron, Large time behaviour of the solutions of a semilinear parabolic equation in RN , J. Funct. Anal. 53 (1984) 258–276.[22] C. Goodrich, C. Lizama, A transference principle for nonlocal operators using a convolutional approach: fractional monotonicity and convexity, Isr. J. Math. 236 (2020) 533–589.[23] C. Goodrich, A.C. Peterson, Discrete Fractional Calculus, Springer International Publishing, 2015.[24] I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 6th edition, Academic Press, Inc., San Diego, CA, 2000.[25] A. Grigor’yan, Estimates of heat kernels on Riemannian manifolds, manuscript available at www.ma.ic.ac.uk/~grigor, 1999.[26] J. Kemppainen, J. Siljander, R. Zacher, Representation of solutions and large-time behavior for fully nonlocal diffusion equations, J. Differ. Equ. 263 (1) (2017) 149–201.[27] A.A. Kilbas, M. Saigo, H-Transforms, Theory and Applications, Analytical Methods and Special Functions, vol. 9, 2004.[28] S. Kusuoka, D. Stroock, Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator, Ann. Math. 127 (1) (1988) 165–189.[29] P. Li, Large time behavior of the heat equation on complete manifolds with nonnegative Ricci curvature, Ann. Math. 124 (1) (1986) 1–21.[30] C. Lizama, lp-Maximal regularity for fractional difference equations on UMD spaces, Math. Nachr. 288 (17/18) (2015) 2079–2092.[31] C. Lizama, The Poisson distribution, abstract fractional difference equations and stability, Proc. Am. Math. Soc. 145 (9) (2017) 3809–3827.[32] C. Lizama, L. Roncal, Hölder-Lebesgue regularity and almost periodicity for semidiscrete equations with a fractional Laplacian, Discrete Contin. Dyn. Syst. 38 (3) (2018) 1365–1403.[33] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, UK, 2010.[34] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993.[35] D. Mozyrska, M. Wyrwas, The Z-transform method and delta type fractional difference operators, Discrete Dyn. Nat. Soc. 2015 (2015) 852734, https://doi.org/10.1155/2015/852734.[36] S. Mustapha, Gaussian estimates for heat kernels on Lie groups, Math. Proc. Camb. Philos. Soc. 128 (1) (2000) 45–64.[37] J.R. Norris, Long-time behaviour of heat flow: global estimates and exact asymptotics, Arch. Ration. Mech. Anal. 140 (2) (1997) 161–195.[38] R. Ponce, Time discretization of fractional subdiffusion equations via fractional resolvent operators, Comput. Math. Appl. 80 (4) (2020) 69–92.[39] A. Zygmund, Trigonometric Series, Vols. I, II, 2nd ed., Cambridge University Press, New York, 1959.231507Subordination formulaScaled Wright functionFractional difference equationsLarge-time behaviorDecay of solutionsDiscrete fundamental solutionPublicationORIGINAL1-s2.0-S0022247X21008209-main.pdf1-s2.0-S0022247X21008209-main.pdfapplication/pdf448238https://repositorio.cuc.edu.co/bitstreams/b64f8878-8c10-4901-8d23-cea031a5c368/downloadfd5351558757d13ac1e72c3f3145b872MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/1ed23f40-6bd9-4e49-b560-63782f105abe/downloade30e9215131d99561d40d6b0abbe9badMD52TEXT1-s2.0-S0022247X21008209-main.pdf.txt1-s2.0-S0022247X21008209-main.pdf.txttext/plain45701https://repositorio.cuc.edu.co/bitstreams/f6717e00-46aa-4184-a33d-178eacbcc8c7/downloadd5098f6963ee6a3d43dc6254cbf6e136MD53THUMBNAIL1-s2.0-S0022247X21008209-main.pdf.jpg1-s2.0-S0022247X21008209-main.pdf.jpgimage/jpeg13151https://repositorio.cuc.edu.co/bitstreams/799a16c1-5741-44f3-bb1f-c24f210bfa23/downloada4ce4b6961b32761519c43aed4c7e9ceMD5411323/9214oai:repositorio.cuc.edu.co:11323/92142024-09-17 10:49:03.611https://creativecommons.org/licenses/by-nc-nd/4.0/© 2021 Elsevier Inc. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==