A critical review of the current environmental risks posed by the antidiabetic metformin and the status, advances, and trends in adsorption technologies for its remediation
The consumption of the antidiabetic drug Metformin (MTFN) has escalated over the last years due to the worrisome modern sedentary lifestyle. Since MTFN is not metabolized, it reaches several environmental compartments, imposing risks to aquatic organisms and possible future public health issues. The...
- Autores:
-
Vieira, Yasmin
Ribeiro, Tatiane Horta
Leichtweis, Jandira
Dotto, Guilherme Luiz
Foletto, Edson Luiz
Georgin, Jordana
Stracke Pfingsten, Franco, Dison
Lima, Eder C.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13705
- Acceso en línea:
- https://hdl.handle.net/11323/13705
https://repositorio.cuc.edu.co/
- Palabra clave:
- Adsorption mechanism
Metformin
Occurrence in the environment
Remediation
Toxicological effects
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_f24bc22a6ced8b5d45b3250a2db31f5d |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13705 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A critical review of the current environmental risks posed by the antidiabetic metformin and the status, advances, and trends in adsorption technologies for its remediation |
title |
A critical review of the current environmental risks posed by the antidiabetic metformin and the status, advances, and trends in adsorption technologies for its remediation |
spellingShingle |
A critical review of the current environmental risks posed by the antidiabetic metformin and the status, advances, and trends in adsorption technologies for its remediation Adsorption mechanism Metformin Occurrence in the environment Remediation Toxicological effects |
title_short |
A critical review of the current environmental risks posed by the antidiabetic metformin and the status, advances, and trends in adsorption technologies for its remediation |
title_full |
A critical review of the current environmental risks posed by the antidiabetic metformin and the status, advances, and trends in adsorption technologies for its remediation |
title_fullStr |
A critical review of the current environmental risks posed by the antidiabetic metformin and the status, advances, and trends in adsorption technologies for its remediation |
title_full_unstemmed |
A critical review of the current environmental risks posed by the antidiabetic metformin and the status, advances, and trends in adsorption technologies for its remediation |
title_sort |
A critical review of the current environmental risks posed by the antidiabetic metformin and the status, advances, and trends in adsorption technologies for its remediation |
dc.creator.fl_str_mv |
Vieira, Yasmin Ribeiro, Tatiane Horta Leichtweis, Jandira Dotto, Guilherme Luiz Foletto, Edson Luiz Georgin, Jordana Stracke Pfingsten, Franco, Dison Lima, Eder C. |
dc.contributor.author.none.fl_str_mv |
Vieira, Yasmin Ribeiro, Tatiane Horta Leichtweis, Jandira Dotto, Guilherme Luiz Foletto, Edson Luiz Georgin, Jordana Stracke Pfingsten, Franco, Dison Lima, Eder C. |
dc.subject.proposal.eng.fl_str_mv |
Adsorption mechanism Metformin Occurrence in the environment Remediation Toxicological effects |
topic |
Adsorption mechanism Metformin Occurrence in the environment Remediation Toxicological effects |
description |
The consumption of the antidiabetic drug Metformin (MTFN) has escalated over the last years due to the worrisome modern sedentary lifestyle. Since MTFN is not metabolized, it reaches several environmental compartments, imposing risks to aquatic organisms and possible future public health issues. Therefore, the use of adsorption as a low-cost and highly versatile mass transfer process has been proposed for its remediation and environmental control. This review presents, discusses, and compares the efficiencies reached by all adsorbents prepared and employed in MTFN adsorption. We carefully addressed the interaction mechanisms, adsorption kinetics, equilibrium modeling, and the most relevant thermodynamic parameters, creating a guide of solutions to practical problems. By comparing the data on its toxicity and controversial endocrine-disrupting effects reported in the literature with self-performed quantitative structure-activity relationship (QSAR) analysis, it was possible to see that MTFN is indeed adequately classified under the highest toxicity class, contrarily to the claims of various studies. Thus, according to the research gaps, possibilities, and challenges in the field, there is much yet to be understood and developed toward MTFN thorough removal by adsorption, such as i) the need for studies under continuous systems, ii) mechanism elucidation employing computational tools, and iii) adsorption coupled to environmental catalysis. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-06-21 |
dc.date.accessioned.none.fl_str_mv |
2024-11-18T14:37:38Z |
dc.date.available.none.fl_str_mv |
2024-11-18T14:37:38Z |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Yasmin Vieira, Tatiane Horta Ribeiro, Jandira Leichtweis, Guilherme Luiz Dotto, Edson Luiz Foletto, Jordana Georgin, Dison Stracke Pfingsten Franco, Eder C. Lima, A critical review of the current environmental risks posed by the antidiabetic Metformin and the status, advances, and trends in adsorption technologies for its remediation, Journal of Water Process Engineering, Volume 54, 2023, 103943, ISSN 2214-7144, https://doi.org/10.1016/j.jwpe.2023.103943. |
dc.identifier.issn.none.fl_str_mv |
2214-7144 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13705 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.jwpe.2023.103943 |
dc.identifier.instname.none.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.none.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Yasmin Vieira, Tatiane Horta Ribeiro, Jandira Leichtweis, Guilherme Luiz Dotto, Edson Luiz Foletto, Jordana Georgin, Dison Stracke Pfingsten Franco, Eder C. Lima, A critical review of the current environmental risks posed by the antidiabetic Metformin and the status, advances, and trends in adsorption technologies for its remediation, Journal of Water Process Engineering, Volume 54, 2023, 103943, ISSN 2214-7144, https://doi.org/10.1016/j.jwpe.2023.103943. 2214-7144 10.1016/j.jwpe.2023.103943 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/13705 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.none.fl_str_mv |
Journal of Water Process Engineering |
dc.relation.references.none.fl_str_mv |
World Health Organization, Global report on diabetes. https://www.who.int/p ublications/i/item/9789241565257, 2016. (Accessed 7 April 2023) M.A.B. Khan, M.J. Hashim, J.K. King, R.D. Govender, H. Mustafa, J. Al Kaabi, Epidemiology of type 2 diabetes – global burden of disease and forecasted trends, J. Epidemiol. Glob. Health 10 (2019) 107–111, https://doi.org/10.2991/JEGH. K.191028.001. R.D. MacLaren, K. Wisniewski, C. MacLaren, Environmental concentrations of metformin exposure affect aggressive behavior in the siamese fighting fish, betta splendens, PLoS One 13 (2018) 6–8, https://doi.org/10.1371/journal. pone.0197259. S. Wild, G. Roglic, A. Green, R. Sicree, H. King, Global prevalence of diabetes: estimates for the year 2000 and projections for 2030, Diabetes Care 27 (2004) 1047–1053, https://doi.org/10.2337/DIACARE.27.5.1047. S. Terzi´c, I. Senta, M. Ahel, M. Gros, M. Petrovi´c, D. Barcelo, J. Müller, T. Knepper, I. Martí, F. Ventura, P. Jovanˇci´c, D. Jabuˇcar, Occurrence and fate of emerging wastewater contaminants in Western Balkan Region, Sci. Total Environ. 399 (2008) 66–77, https://doi.org/10.1016/j.scitotenv.2008.03.003. B. Viollet, B. Guigas, N. Sanz Garcia, J. Leclerc, M. Foretz, F. Andreelli, Cellular and molecular mechanisms of metformin: an overview, Clin. Sci. 122 (2012) 253–270, https://doi.org/10.1042/CS20110386. C.V. Rizos, M.S. Elisaf, Metformin and cancer, Eur. J. Pharmacol. 705 (2013) 96–108, https://doi.org/10.1016/j.ejphar.2013.02.038. Q. Weng, B. Wang, X. Wang, N. Hanagata, X. Li, D. Liu, X. Wang, X. Jiang, Y. Bando, D. Golberg, Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery, ACS Nano 8 (2014) 6123–6130, https://doi. org/10.1021/NN5014808/SUPPL_FILE/NN5014808_SI_001.PDF. C. Bulcao, ˜ F.F. Ribeiro-Filho, A. Sanudo, ˜ S.G.R. Ferreira, Effects of simvastatin and metformin on inflammation and insulin resistance in individuals with mild metabolic syndrome, Am. J. Cardiovasc. Drugs 7 (2007) 219–224, https://doi. org/10.2165/00129784-200707030-00007/METRICS. L. He, F.E. Wondisford, Metformin action: concentrations matter, Cell Metab. 21 (2015) 159–162, https://doi.org/10.1016/j.cmet.2015.01.003. N.J. Niemuth, R.D. Klaper, Emerging wastewater contaminant metformin causes intersex and reduced fecundity in fish, Chemosphere. 135 (2015) 38–45, https:// doi.org/10.1016/j.chemosphere.2015.03.060. CDER-FDA, Highlights of Prescribing Information for Metformin Hydrochloride, Cent. Drug Eval. Res. U.S. Food Drug Adm., 2018, p. 19. https://www.accessdata. fda.gov/drugsatfda_docs/label/2018/021591s007lbl.pdf. (Accessed 24 February 2023). R.M. Briones, W.Q. Zhuang, A.K. Sarmah, Biodegradation of metformin and guanylurea by aerobic cultures enriched from sludge, Environ. Pollut. 243 (2018) 255–262, https://doi.org/10.1016/j.envpol.2018.08.075. P.J. Pentik¨ ainen, P.J. Neuvonen, A. Penttil¨ a, Pharmacokinetics of metformin after intravenous and oral administration to man, Eur. J. Clin. Pharmacol. 16 (1979) 195–202, https://doi.org/10.1007/BF00562061. C.I. Kosma, D.A. Lambropoulou, T.A. Albanis, Comprehensive study of the antidiabetic drug metformin and its transformation product guanylurea in Greek wastewaters, Water Res. 70 (2015) 436–448, https://doi.org/10.1016/j. watres.2014.12.010. C. Trautwein, J.D. Berset, H. Wolschke, K. Kümmerer, Occurrence of the antidiabetic drug Metformin and its ultimate transformation product Guanylurea in several compartments of the aquatic cycle, Environ. Int. 70 (2014) 203–212, https://doi.org/10.1016/J.ENVINT.2014.05.008. T. Eggen, T.N. Asp, K. Grave, V. Hormazabal, Uptake and translocation of metformin, ciprofloxacin and narasin in forage- and crop plants, Chemosphere. 85 (2011) 26–33, https://doi.org/10.1016/j.chemosphere.2011.06.041. V. David, A. Medvedovici, F. Albu, Retention behavior of metformin and related impurities in ion-pairing liquid chromatography, J. Liq. Chromatogr. Relat. Technol. 28 (2005) 81–95, https://doi.org/10.1081/JLC-200038592. E.R. Kabir, M.S. Rahman, I. Rahman, A review on endocrine disruptors and their possible impacts on human health, Environ. Toxicol. Pharmacol. 40 (2015) 241–258, https://doi.org/10.1016/j.etap.2015.06.009. C.L.S. Vilela, J.P. Bassin, R.S. Peixoto, Water contamination by endocrine disruptors: impacts, microbiological aspects and trends for environmental protection, Environ. Pollut. 235 (2018) 546–559, https://doi.org/10.1016/j. envpol.2017.12.098. N.J. Niemuth, R. Jordan, J. Crago, C. Blanksma, R. Johnson, R.D. Klaper, Metformin exposure at environmentally relevant concentrations causes potential endocrine disruption in adult male fish, Environ. Toxicol. Chem. 34 (2015) 291–296, https://doi.org/10.1002/etc.2793. J. Crago, C. Bui, S. Grewal, D. Schlenk, Age-dependent effects in fathead minnows from the anti-diabetic drug metformin, Gen. Comp. Endocrinol. 232 (2016) 185–190, https://doi.org/10.1016/J.YGCEN.2015.12.030. T. Tang, J.M. Lord, R.J. Norman, E. Yasmin, A.H. Balen, Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility, Cochrane Database Syst. Rev. (2012), https://doi.org/10.1002/14651858.CD003053. PUB5/MEDIA/CDSR/CD003053/REL0005/CD003053/IMAGE_N/NCD003053- CMP-006-06.PNG. A.T. Hoang, S. Niˇzeti´c, X.Q. Duong, L. Rowinski, X.P. Nguyen, Advanced superhydrophobic polymer-based porous absorbents for the treatment of oil-polluted water, Chemosphere. 277 (2021), 130274, https://doi.org/10.1016/J. CHEMOSPHERE.2021.130274. A.T. Hoang, S. Kumar, E. Lichtfouse, C.K. Cheng, R.S. Varma, N. Senthilkumar, P. Q. Phong Nguyen, X.P. Nguyen, Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: an update of recent trends, Chemosphere. 302 (2022), 134825, https://doi.org/10.1016/J. CHEMOSPHERE.2022.134825. W.H. Chen, A.T. Hoang, S. Niˇzeti´c, A. Pandey, C.K. Cheng, R. Luque, H.C. Ong, S. Thomas, X.P. Nguyen, Biomass-derived biochar: from production to application in removing heavy metal-contaminated water, Process. Saf. Environ. Prot. 160 (2022) 704–733, https://doi.org/10.1016/J.PSEP.2022.02.061. A.T. Hoang, S. Niˇzeti´c, C.K. Cheng, R. Luque, S. Thomas, T.L. Banh, V.V. Pham, X. P. Nguyen, Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: a comprehensive review, Chemosphere. 287 (2022), 131959, https://doi.org/10.1016/J.CHEMOSPHERE.2021.131959. S. Choi, H. Yoom, H. Son, C. Seo, K. Kim, Y. Lee, Y.M. Kim, Removal efficiency of organic micropollutants in successive wastewater treatment steps in a full-scale wastewater treatment plant: bench-scale application of tertiary treatment processes to improve removal of organic micropollutants persisting after secondary treatment, Chemosphere. 288 (2022), 132629, https://doi.org/ 10.1016/J.CHEMOSPHERE.2021.132629. R. Zhang, Y. He, L. Yao, J. Chen, S. Zhu, X. Rao, P. Tang, J. You, G. Hua, L. Zhang, F. Ju, L. Wu, Metformin chlorination byproducts in drinking water exhibit marked toxicities of a potential health concern, Environ. Int. 146 (2021), 106244, https://doi.org/10.1016/J.ENVINT.2020.106244. Y. He, H. Jin, H. Gao, G. Zhang, F. Ju, Prevalence, production, and ecotoxicity of chlorination-derived metformin byproducts in Chinese urban water systems, Sci. Total Environ. 816 (2022), 151665, https://doi.org/10.1016/J. SCITOTENV.2021.151665. O.A.A. Eletta, A.G. Adeniyi, J.O. Ighalo, D.V. Onifade, F.O. Ayandele, Valorisation of Cocoa (Theobroma cacao) pod husk as precursors for the production of adsorbents for water treatment, Environ. Technol. Rev. 9 (2020) 20–36, https://doi.org/10.1080/21622515.2020.1730983. R.K.S. Santos, C. Schnorr, L.F.O. Silva, B.F. Nascimento, J.V.F.L. Cavalcanti, Y. Vieira, G.L. Dotto, M.A.M. Sobrinho, Euterpe oleracea-based biochar for clonazepam adsorption: synthesis, characterization, adsorption properties, and toxicity assays, Environ. Sci. Pollut. Res. 30 (2023) 52485–52497, https://doi. org/10.1007/S11356-023-26044-Y/FIGURES/8. Y. Vieira, G.L. Dotto, Trends and perspectives towards activated carbon and activated carbon-derived materials in environmental catalysis applications, Act. Carbon (2023) 206–232, https://doi.org/10.1039/BK9781839169861-00206. G.S. dos Reis, P.S. Thue, B.G. Cazacliu, E.C. Lima, C.H. Sampaio, M. Quattrone, E. Ovsyannikova, A. Kruse, G.L. Dotto, Effect of concrete carbonation on phosphate removal through adsorption process and its potential application as fertilizer, J. Clean. Prod. 256 (2020), 120416, https://doi.org/10.1016/J. JCLEPRO.2020.120416. M. Oosterhuis, F. Sacher, T.L. ter Laak, Prediction of concentration levels of metformin and other high consumption pharmaceuticals in wastewater and regional surface water based on sales data, Sci. Total Environ. 442 (2013) 380–388, https://doi.org/10.1016/J.SCITOTENV.2012.10.046. K. Hider-Mlynarz, P. Cavali´e, P. Maison, Trends in analgesic consumption in France over the last 10 years and comparison of patterns across Europe, Br. J. Clin. Pharmacol. 84 (2018) 1324–1334, https://doi.org/10.1111/BCP.13564. Wolters Kluwer, Drug decision support, Wolters Kluwer, 2023. https://www.wo lterskluwer.com/en/know/drug-decision-support-solutions. (Accessed 7 April 2023). B.D. Blair, J.P. Crago, C.J. Hedman, R.D. Klaper, Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern, Chemosphere. 93 (2013) 2116–2123, https://doi.org/10.1016/j. chemosphere.2013.07.057. D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, H. T. Buxton, Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance, Environ. Sci. Technol. 36 (2002) 1202–1211, https://doi.org/10.1021/es011055j. M. Scheurer, F. Sacher, H.J. Brauch, Occurrence of the antidiabetic drug metformin in sewage and surface waters in Germany, J. Environ. Monit. 11 (2009) 1608–1613, https://doi.org/10.1039/B909311G. J.Y. Song, S.H. Jhung, Adsorption of pharmaceuticals and personal care products over metal-organic frameworks functionalized with hydroxyl groups: quantitative analyses of H-bonding in adsorption, Chem. Eng. J. 322 (2017) 366–374, https:// doi.org/10.1016/j.cej.2017.04.036. N.A. Al-Odaini, M.P. Zakaria, M.I. Yaziz, S. Surif, M. Abdulghani, The occurrence of human pharmaceuticals in wastewater effluents and surface water of Langat River and its tributaries, Malaysia, Int. J. Environ. Anal. Chem. 93 (2013) 245–264, https://doi.org/10.1080/03067319.2011.592949. E.E. Burns, L.J. Carter, D.W. Kolpin, J. Thomas-Oates, A.B.A. Boxall, Temporal and spatial variation in pharmaceutical concentrations in an urban river system, Water Res. 137 (2018) 72–85, https://doi.org/10.1016/j.watres.2018.02.066. B. Lubliner, M. Redding, D. Ragsdale, Control of Toxic Chemicals in Puget Sound Phase 3: Pharmaceuticals and Personal Care Products and Their Removal by Nutrient Treatment Technologies, 2010. S.R. de Solla, A.M. Gilroy, J.S. Klinck, L.E. King, R. McInnis, J. Struger, S. M. Backus, P.L. Gillis, Bioaccumulation of pharmaceuticals and personal care products in the unionid mussel Lasmigona costata in a river receiving wastewater effluent, Chemosphere. 146 (2016) 486–496, https://doi.org/10.1016/j. chemosphere.2015.12.022. P.M. Bradley, C.A. Journey, D.T. Button, D.M. Carlisle, J.M. Clark, B.J. Mahler, N. Nakagaki, S.L. Qi, I.R. Waite, P.C. VanMetre, Metformin and other pharmaceuticals widespread in wadeable streams of the southeastern United States, Environ. Sci. Technol. Lett. 3 (2016) 243–249, https://doi.org/10.1021/ acs.estlett.6b00170. C.J. Houtman, J. Kroesbergen, K. Lekkerkerker-Teunissen, J.P. van der Hoek, Human health risk assessment of the mixture of pharmaceuticals in Dutch drinking water and its sources based on frequent monitoring data, Sci. Total Environ. 496 (2014) 54–62, https://doi.org/10.1016/J. SCITOTENV.2014.07.022. E. Vulliet, C. Cren-Oliv´e, Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption, Environ. Pollut. 159 (2011) 2929–2934, https://doi.org/10.1016/J. ENVPOL.2011.04.033. A.Z. Tong, A.J. Ghoshdastidar, S. Fox, A.Z. Tong, The presence of the top prescribed pharmaceuticals in treated sewage effluents and receiving waters in southwest Nova Scotia, Canada, Environ. Sci. Pollut. Res. 22 (2015) 689–700, https://doi.org/10.1007/S11356-014-3400-Z. J. Fick, R.H. Lindberg, L. Kaj, E. Brorstrom-Lund ¨ ´en, Results from the Swedish National Screening Programme 2010 Subreport 3. Pharmaceuticals. http://urn. kb.se/resolve?urn=urn:nbn:se:ivl:diva-2649, 2011. (Accessed 7 April 2023). J. Martín, D. Camacho-Munoz, ˜ J.L. Santos, I. Aparicio, E. Alonso, Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal, J. Hazard. Mater. 239–240 (2012) 40–47, https://doi.org/10.1016/J. JHAZMAT.2012.04.068. J.P. Meador, A. Yeh, G. Young, E.P. Gallagher, Contaminants of emerging concern in a large temperate estuary, Environ. Pollut. 213 (2016) 254–267, https://doi. org/10.1016/J.ENVPOL.2016.01.088. J. Martín, W. Buchberger, J.L. Santos, E. Alonso, I. Aparicio, High-performance liquid chromatography quadrupole time-of-flight mass spectrometry method for the analysis of antidiabetic drugs in aqueous environmental samples, J. Chromatogr. B 895–896 (2012) 94–101, https://doi.org/10.1016/J. JCHROMB.2012.03.023. B.D. Blair, J.P. Crago, C.J. Hedman, R.J.F. Treguer, C. Magruder, L.S. Royer, R. D. Klaper, Evaluation of a model for the removal of pharmaceuticals, personal care products, and hormones from wastewater 444 (2013) 515–521, https://doi. org/10.1016/J.SCITOTENV.2012.11.103. J.H. Yan, Y. Xiao, D.Q. Tan, X.T. Shao, Z. Wang, D.G. Wang, Wastewater analysis reveals spatial pattern in consumption of anti-diabetes drug metformin in China, Chemosphere. 222 (2019) 688–695, https://doi.org/10.1016/J. CHEMOSPHERE.2019.01.151. M.A. Asghar, Q. Zhu, S. Sun, Y. Peng, Q. Shuai, Suspect screening and target quantification of human pharmaceutical residues in the surface water of Wuhan, China, using UHPLC-Q-Orbitrap HRMS, Sci. Total Environ. 635 (2018) 828–837, https://doi.org/10.1016/J.SCITOTENV.2018.04.179. K.H. Nguyen, Analysis of Emerging Environmental Contaminations Using Advanced Instrumental Tools: Application to Human and Environmental Exposure, 2018. E. Carmona, V. Andreu, Y. Pico, ´ Multi-residue determination of 47 organic compounds in water, soil, sediment and fish—Turia River as case study, J. Pharm. Biomed. Anal. 146 (2017) 117–125, https://doi.org/10.1016/J. JPBA.2017.08.014. E. Archer, B. Petrie, B. Kasprzyk-Hordern, G.M. Wolfaardt, The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters, Chemosphere. 174 (2017) 437–446, https://doi.org/ 10.1016/J.CHEMOSPHERE.2017.01.101. V. de Jesus Gaffney, V.V. Cardoso, E. Cardoso, A.P. Teixeira, J. Martins, M. J. Benoliel, C.M.M. Almeida, Occurrence and behaviour of pharmaceutical compounds in a Portuguese wastewater treatment plant: removal efficiency through conventional treatment processes, Environ. Sci. Pollut. Res. 24 (2017) 14717–14734, https://doi.org/10.1007/S11356-017-9012-7/FIGURES/7. L.E. Lesser, A. Mora, C. Moreau, J. Mahlknecht, A. Hern´ andez-Antonio, A. I. Ramírez, H. Barrios-Pina, ˜ Survey of 218 organic contaminants in groundwater derived from the world’s largest untreated wastewater irrigation system: Mezquital Valley, Mexico, Chemosphere. 198 (2018) 510–521, https://doi.org/ 10.1016/J.CHEMOSPHERE.2018.01.154. I. P´erez-Alvarez, H. Islas-Flores, L.M. Gomez-Oliv ´ an, ´ D. Barcelo, ´ M. Lopez ´ De Alda, S. P´erez Solsona, L. Sanchez-Aceves, ´ N. SanJuan-Reyes, M. Galar-Martínez, Determination of metals and pharmaceutical compounds released in hospital wastewater from Toluca, Mexico, and evaluation of their toxic impact, Environ. Pollut. 240 (2018) 330–341, https://doi.org/10.1016/J.ENVPOL.2018.04.116. Z. Moldovan, O. Marincas, I. Povar, T. Lupascu, P. Longree, J.S. Rota, H. Singer, A.C. Alder, Environmental exposure of anthropogenic micropollutants in the Prut River at the Romanian-Moldavian border: a snapshot in the lower Danube river basin, Environ. Sci. Pollut. Res. 25 (2018) 31040–31050, https://doi.org/ 10.1007/S11356-018-3025-8/FIGURES/4. P. Gago-Ferrero, V. Borova, M.E. Dasenaki, N.S. Τhomaidis, Simultaneous determination of 148 pharmaceuticals and illicit drugs in sewage sludge based on ultrasound-assisted extraction and liquid chromatography–tandem mass spectrometry, Anal. Bioanal. Chem. 407 (2015) 4287–4297, https://doi.org/ 10.1007/S00216-015-8540-6/TABLES/2. V.S. Thomaidi, A.S. Stasinakis, V.L. Borova, N.S. Thomaidis, Assessing the risk associated with the presence of emerging organic contaminants in sludgeamended soil: a country-level analysis, Sci. Total Environ. 548–549 (2016) 280–288, https://doi.org/10.1016/J.SCITOTENV.2016.01.043. E.V.T. Mayoudom, E. Nguidjoe, R.N. Mballa, O.F. Tankoua, C. Fokunang, C. Anyakora, K.N. Blackett, Identification and quantification of 19 pharmaceutical active compounds and metabolites in hospital wastewater in Cameroon using LC/QQQ and LC/Q-TOF, Environ. Monit. Assess. 190 (2018) 1–10, https://doi.org/10.1007/S10661-018-7097-1/FIGURES/6. E.Y. Guzel, F. Cevik, N. Daglioglu, Determination of pharmaceutical active compounds in Ceyhan River, Turkey: seasonal, spatial variations and environmental risk assessment 25 (2018) 1980–1995, https://doi.org/10.1080/ 10807039.2018.1479631. H.T.C. Chau, K. Kadokami, H.T. Duong, L. Kong, T.T. Nguyen, T.Q. Nguyen, Y. Ito, Occurrence of 1153 organic micropollutants in the aquatic environment of Vietnam, Environ. Sci. Pollut. Res. 25 (2018) 7147–7156, https://doi.org/ 10.1007/S11356-015-5060-Z/TABLES/3. Y. Xiao, X.T. Shao, D.Q. Tan, J.H. Yan, W. Pei, Z. Wang, M. Yang, D.G. Wang, Assessing the trend of diabetes mellitus by analyzing metformin as a biomarker in wastewater, Sci. Total Environ. 688 (2019) 281–287, https://doi.org/10.1016/J. SCITOTENV.2019.06.117. T. Eggen, C. Lillo, Antidiabetic II drug metformin in plants: uptake and translocation to edible parts of cereals, oily seeds, beans, tomato, squash, carrots, and potatoes, J. Agric. Food Chem. 60 (2012) 6929–6935, https://doi.org/ 10.1021/jf301267c. H. Cui, B.A. Hense, J. Müller, P. Schroder, ¨ Short term uptake and transport process for metformin in roots of Phragmites australis and Typha latifolia, Chemosphere. 134 (2015) 307–312, https://doi.org/10.1016/j. chemosphere.2015.04.072. S.D. Melvin, L.J. Habener, F.D.L. Leusch, A.R. Carroll, 1H NMR-based metabolomics reveals sub-lethal toxicity of a mixture of diabetic and lipidregulating pharmaceuticals on amphibian larvae, Aquat. Toxicol. 184 (2017) 123–132, https://doi.org/10.1016/j.aquatox.2017.01.012. A.A. Godoy, I. Domingues, A.J. Ars´enia Nogueira, F. Kummrow, Ecotoxicological effects, water quality standards and risk assessment for the anti-diabetic metformin, Environ. Pollut. 243 (2018) 534–542, https://doi.org/10.1016/j. envpol.2018.09.031. B.M. Cummings, J.A. Needoba, T.D. Peterson, Effect of metformin exposure on growth and photosynthetic performance in the unicellular freshwater chlorophyte, Chlorella vulgaris, PLoS One 13 (2018) 1–17, https://doi.org/ 10.1371/journal.pone.0207041. W. Koagouw, R.J. Hazell, C. Ciocan, Induction of apoptosis in the gonads of Mytilus edulis by metformin and increased temperature, via regulation of HSP70, CASP8, BCL2 and FAS, Mar. Pollut. Bull. 173 (2021), 113011, https://doi.org/ 10.1016/j.marpolbul.2021.113011. C. Johnson, The effects of acute urban mixture exposure on the T cells of fathead minnows (Pimephales promelas) recommended citation. https://repository.stclo udstate.edu/biol_etds/36, 2018. (Accessed 28 February 2023). G.A. Elizalde-Velazquez, ´ L.M. Gomez-Oliv ´ ´ an, S. García-Medina, H. Islas-Flores, M.D. Hern´ andez-Navarro, M. Galar-Martínez, Antidiabetic drug metformin disrupts the embryogenesis in zebrafish through an oxidative stress mechanism, Chemosphere. 285 (2021), https://doi.org/10.1016/j. chemosphere.2021.131213. J. Phillips, C. Akemann, J.N. Shields, C.C. Wu, D.N. Meyer, B.B. Baker, D.K. Pitts, T.R. Baker, Developmental phenotypic and transcriptomic effects of exposure to nanomolar levels of metformin in zebrafish, Environ. Toxicol. Pharmacol. 87 (2021), 103716, https://doi.org/10.1016/j.etap.2021.103716. E. Ussery, K.N. Bridges, Z. Pandelides, A.E. Kirkwood, D. Bonetta, B.J. Venables, J. Guchardi, D. Holdway, Effects of environmentally relevant metformin exposure on Japanese medaka (Oryzias latipes), Aquat. Toxicol. 205 (2018) 58–65, https:// doi.org/10.1016/j.aquatox.2018.10.003. S. Jacob, A. Dotsch, ¨ S. Knoll, H.R. Kohler, ¨ E. Rogall, D. Stoll, S. Tisler, C. Huhn, T. Schwartz, C. Zwiener, R. Triebskorn, Does the antidiabetic drug metformin affect embryo development and the health of brown trout (Salmo trutta f. fario)? Environ. Sci. Eur. 30 (2018) https://doi.org/10.1186/s12302-018-0179-4. S. Forcato, D.R.B. da S. Novi, N.O. Costa, L.I. Borges, M.L.M. de Goes, ´ G. S. Ceravolo, D.C.C. Gerardin, In utero and lactational exposure to metformin induces reproductive alterations in male rat offspring, Reprod. Toxicol. 74 (2017) 48–58, https://doi.org/10.1016/j.reprotox.2017.08.023. P. Tartarin, D. Moison, E. Guibert, J. Dupont, R. Habert, V. Rouiller-Fabre, N. Frydman, S. Pozzi, R. Frydman, C. Lecureuil, P. Froment, Metformin exposure affects human and mouse fetal testicular cells, Hum. Reprod. 27 (2012) 3304–3314, https://doi.org/10.1093/humrep/des264. L. Tosca, C. Chabrolle, S. Uzbekova, J. Dupont, Effects of metformin on bovine granulosa cells steroidogenesis: possible involvement of adenosine 5′ monophosphate-activated protein kinase (AMPK), Biol. Reprod. 76 (2007) 368–378, https://doi.org/10.1095/biolreprod.106.055749. S. Rice, L. Pellatt, K. Ramanathan, S.A. Whitehead, H.D. Mason, Metformin inhibits aromatase via an extracellular signal-regulated kinase-mediated pathway, Endocrinology. 150 (2009) 4794–4801, https://doi.org/10.1210/ en.2009-0540. S. Rice, A. Elia, Z. Jawad, L. Pellatt, H.D. Mason, Metformin inhibits folliclestimulating hormone (FSH) action in human Granulosa cells: relevance to polycystic ovary syndrome, J. Clin. Endocrinol. Metab. 98 (2013) 1–10, https:// doi.org/10.1210/jc.2013-1865. R. Mansfield, R. Galea, M. Brincat, D. Hole, H. Mason, Metformin has direct effects on human ovarian steroidogenesis, Fertil. Steril. 79 (2003) 956–962, https://doi.org/10.1016/S0015-0282(02)04925-7. A. Hanazono, Y. Takahashi, Y. Sanpei, S. Kamada, M. Sugawara, Focal brain lactate accumulation in metformin-induced encephalopathy without systemic lactic acidosis: a case report suggesting mitochondrial vulnerability in lentiform fork sign, ENeurologicalSci. 25 (2021), 100383, https://doi.org/10.1016/j. ensci.2021.100383. E. Vanky, K. Zahlsen, O. Spigset, S.M. Carlsen, Placental passage of metformin in women with polycystic ovary syndrome, Fertil. Steril. 83 (2005) 1575–1578, https://doi.org/10.1016/j.fertnstert.2004.11.051. H.L. Barrett, K.L. Gatford, C.M. Houda, M.J. De Blasio, H.D. Mcintyre, L. K. Callaway, M.D. Nitert, S. Coat, J.A. Owens, W.M. Hague, J.A. Rowan, Maternal and neonatal circulating markers ofmetabolic and cardiovascular risk in themetformin in gestational diabetes (mig) trial, Diabetes Care 36 (2013) 529–536, https://doi.org/10.2337/dc12-1097. S.M. Ho, A. Cheong, M.A. Adgent, J. Veevers, A.A. Suen, N.N.C. Tam, Y.K. Leung, W.N. Jefferson, C.J. Williams, Environmental factors, epigenetics, and developmental origin of reproductive disorders, Reprod. Toxicol. 68 (2017) 85–104, https://doi.org/10.1016/j.reprotox.2016.07.011. J.W. Lee, Y.J. Shin, H. Kim, H. Kim, J. Kim, S.A. Min, P. Kim, S. Do Yu, K. Park, Metformin-induced endocrine disruption and oxidative stress of Oryzias latipes on two-generational condition, J. Hazard. Mater. 367 (2019) 171–181, https:// doi.org/10.1016/j.jhazmat.2018.12.084. J.P. Sumpter, A.P. Scott, I. Katsiadaki, Comments on Niemuth, N.J. and Klaper, R. D. 2015. Emerging wastewater contaminant metformin causes intersex and reduced fecundity in fish. Chemosphere 135, 38–45, Chemosphere. 165 (2016) 566–569, https://doi.org/10.1016/j.chemosphere.2016.08.049. J.L. Parrott, G. Pacepavicius, K. Shires, S. Clarence, H. Khan, M. Gardiner, C. Sullivan, M. Alaee, Fathead minnow exposed to environmentally relevant concentrations of metformin for one life cycle show no adverse effects, Facets. 6 (2021) 998–1023, https://doi.org/10.1139/FACETS-2020-0106/SUPPL_FILE/ FACETS-2020-0106_SUPPLEMENT4.PDF. B.R. Blackwell, G.T. Ankley, A.D. Biales, J.E. Cavallin, A.R. Cole, T.W. Collette, D. R. Ekman, R.N. Hofer, W. Huang, K.M. Jensen, M.D. Kahl, A.R. Kittelson, S. N. Romano, M.J. See, Q. Teng, C.B. Tilton, D.L. Villeneuve, Effects of metformin and its metabolite guanylurea on fathead minnow (Pimephales promelas) reproduction, Environ. Toxicol. Chem. 41 (2022) 2708–2720, https://doi.org/ 10.1002/ETC.5450. J.O. Straub, D.J. Caldwell, T. Davidson, V. D’Aco, K. Kappler, P.F. Robinson, B. Simon-Hettich, J. Tell, Environmental risk assessment of metformin and its transformation product guanylurea. I. Environmental fate, Chemosphere. 216 (2019) 844–854, https://doi.org/10.1016/J.CHEMOSPHERE.2018.10.036. D.J. Caldwell, V. D’Aco, T. Davidson, K. Kappler, R.J. Murray-Smith, S.F. Owen, P.F. Robinson, B. Simon-Hettich, J.O. Straub, J. Tell, Environmental risk assessment of metformin and its transformation product guanylurea: II. Occurrence in surface waters of Europe and the United States and derivation of predicted no-effect concentrations, Chemosphere. 216 (2019) 855–865, https:// doi.org/10.1016/J.CHEMOSPHERE.2018.10.038. A.K. Singh, M. Bilal, D. Barcelo, ´ H.M.N. Iqbal, A predictive toolset for the identification of degradation pattern and toxic hazard estimation of multimeric hazardous compounds persists in water bodies, Sci. Total Environ. 824 (2022), 153979, https://doi.org/10.1016/J.SCITOTENV.2022.153979. G. Patlewicz, N. Jeliazkova, R.J. Safford, A.P. Worth, B. Aleksiev, An evaluation of the implementation of the Cramer classification scheme in the Toxtree software, SAR QSAR Environ. Res. 19 (2010) 495–524, https://doi.org/10.1080/ 10629360802083871. G.M. Cramer, R.A. Ford, R.L. Hall, Estimation of toxic hazard—a decision tree approach, Food Cosmet. Toxicol. 16 (1976) 255–276, https://doi.org/10.1016/ S0015-6264(76)80522-6. I.C. Munro, R.A. Ford, E. Kennepohl, J.G. Sprenger, Correlation of structural class with no-observed-effect levels: a proposal for establishing a threshold of concern, Food Chem. Toxicol. 34 (1996) 829–867, https://doi.org/10.1016/S0278-6915 (96)00049-X. C. Trautwein, K. Kümmerer, Incomplete aerobic degradation of the antidiabetic drug Metformin and identification of the bacterial dead-end transformation product Guanylurea, Chemosphere. 85 (2011) 765–773, https://doi.org/ 10.1016/j.chemosphere.2011.06.057. M. Kalumpha, U. Guyo, N.P. Zinyama, F.M. Vakira, B.C. Nyamunda, Adsorptive potential of Zea mays tassel activated carbon towards the removal of metformin hydrochloride from pharmaceutical effluent, Int. J. Phytoremediation 22 (2020) 148–156, https://doi.org/10.1080/15226514.2019.1652561. H.B. Quesada, T.P. De Araújo, L.F. Cusioli, M.A.S.D. De Barros, R.G. Gomes, R. Bergamasco, Evaluation of novel activated carbons from chich´ a-do-cerrado (Sterculia striata St. Hil. et Naud) fruit shells on metformin adsorption and treatment of a synthetic mixture, J. Environ. Chem. Eng. 9 (2021), https://doi. org/10.1016/j.jece.2020.104914. L. Spessato, V.A. Duarte, P. Viero, H. Zanella, J.M. Fonseca, P.A. Arroyo, V. C. Almeida, Optimization of Sibipiruna activated carbon preparation by simplexcentroid mixture design for simultaneous adsorption of rhodamine B and metformin, J. Hazard. Mater. 411 (2021), 125166, https://doi.org/10.1016/j. jhazmat.2021.125166. O.S. Jimoh, A.O. Ibrahim, O.S. Bello. Metformin adsorption onto activated carbon prepared by acid activation and carbonization of orange peel. 25 125–136. doi: https://doi.org/10.1080/15226514.2022.2064815. (n.d.). S. Neha, P. Rajput, N. Remya, Biochar from microwave co-pyrolysis of food waste and polyethylene using different microwave susceptors-production, modification and application for metformin removal, Environ. Res. 210 (2022), 112922, https://doi.org/10.1016/j.envres.2022.112922. J.M. Sanchez-Silva, V.H. Collins-Martínez, E. Padilla-Ortega, A. Aguilar-Aguilar, G.J. Labrada-Delgado, O. Gonzalez-Ortega, G. Palestino-Escobedo, R. OcampoP´erez, Characterization and transformation of nanche stone (Byrsonima crassifolia) in an activated hydrochar with high adsorption capacity towards metformin in aqueous solution, Chem. Eng. Res. Des. 183 (2022) 580–594. www. sciencedirect.com. (Accessed 12 May 2023). A.H. Mohammad, I. Radovic, M. Ivanovic, M. Kijevcanin, Adsorption of metformin on activated carbon produced from the water hyacinth biowaste using H3PO4 as a chemical activator, Sustain 14 (2022) 11144, https://doi.org/ 10.3390/SU141811144. G. De Bhowmick, R.M. Briones, S. Thiele-Bruhn, R. Sen, A.K. Sarmah, Adsorptive removal of metformin on specially designed algae-lignocellulosic biochar mix and techno-economic feasibility assessment, Environ. Pollut. 292 (2022), https://doi. org/10.1016/j.envpol.2021.118256. M.E. Mahmoud, A.M. El-Ghanam, S.R. Saad, R.H.A. Mohamed, Promoted removal of metformin hydrochloride anti-diabetic drug from water by fabricated and modified nanobiochar from artichoke leaves, Sustain. Chem. Pharm. 18 (2020), 100336, https://doi.org/10.1016/j.scp.2020.100336. K. Balasubramani, N. Sivarajasekar, G. Sarojini, M. Naushad, Removal of antidiabetic pharmaceutical (metformin) using graphene oxide microcrystalline cellulose (GOMCC): insights to process optimization, equilibrium, kinetics, and machine learning, Ind. Eng. Chem. Res. (2022), https://doi.org/10.1021/ACS. IECR.2C04480/ASSET/IMAGES/LARGE/IE2C04480_0011.JPEG. K. Balasubramani, N. Sivarajasekar, M. Naushad, Effective adsorption of antidiabetic pharmaceutical (metformin) from aqueous medium using graphene oxide nanoparticles: equilibrium and statistical modelling, J. Mol. Liq. 301 (2020), 112426, https://doi.org/10.1016/j.molliq.2019.112426. S. Zhu, Y. guo Liu, S. bo Liu, G. ming Zeng, L. hua Jiang, X. fei Tan, L. Zhou, W. Zeng, T. ting Li, C. ping Yang, Adsorption of emerging contaminant metformin using graphene oxide, Chemosphere. 179 (2017) 20–28, https://doi.org/ 10.1016/j.chemosphere.2017.03.071. L.F. Cusioli, H.B. Quesada, A.L. de Brito Portela, R.G. Castro, R. Bergamasco Gomes, Development of a new low-cost adsorbent functionalized with iron nanoparticles for removal of metformin from contaminated water, Chemosphere. 247 (2020), 125852, https://doi.org/10.1016/j. chemosphere.2020.125852. F.C. Çavus¸oglu, ˘ S¸ .S. Bayazit, M.S. Secula, B. Cagnon, Magnetic carbon composites as regenerable and fully recoverable adsorbents: performance on the removal of antidiabetic agent metformin hydrochloride, Chem. Eng. Res. Des. 168 (2021) 443–452, https://doi.org/10.1016/j.cherd.2021.01.034. Y.A. Faleh, N.D. Radhy, Removal of metformin hydrochloride from aqueous solutions by using carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide) hydrogel: adsorption and thermodynamic studies, IOP Conf. Ser. Earth Environ. Sci. 790 (2021), https://doi.org/10.1088/1755-1315/790/1/012062. H. Adel Niaei, M. Rostamizadeh, Adsorption of metformin from an aqueous solution by Fe-ZSM-5 nano-adsorbent: isotherm, kinetic and thermodynamic studies, J. Chem. Thermodyn. 142 (2020), 106003, https://doi.org/10.1016/j. jct.2019.106003. M. Alnajjar, A. Hethnawi, G. Nafie, A. Hassan, G. Vitale, N.N. Nassar, Silicaalumina composite as an effective adsorbent for the removal of metformin from water, J. Environ. Chem. Eng. 7 (2019) 1–10, https://doi.org/10.1016/j. jece.2019.102994 M.R. Elamin, B.Y. Abdulkhair, F.K. Algethami, L. Khezami, Linear and nonlinear investigations for the adsorption of paracetamol and metformin from water on acid-treated clay, Sci. Rep. 11 (2021) 1–13, https://doi.org/10.1038/s41598- 021-93040-y. S. Iftekhar, D.L. Ramasamy, V. Srivastava, M.B. Asif, M. Sillanp¨ aa, ¨ Understanding the factors affecting the adsorption of Lanthanum using different adsorbents: a critical review, Chemosphere. 204 (2018) 413–430, https://doi.org/10.1016/j. chemosphere.2018.04.053. C.M. Kerkhoff, K. da Boit Martinello, D.S.P. Franco, M.S. Netto, J. Georgin, E. L. Foletto, D.G.A. Piccilli, L.F.O. Silva, G.L. Dotto, Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp, J. Mol. Liq. 339 (2021), 117184, https://doi.org/ 10.1016/J.MOLLIQ.2021.117184. C.A. Igwegbe, S.N. Oba, C.O. Aniagor, A.G. Adeniyi, J.O. Ighalo, Adsorption of ciprofloxacin from water: a comprehensive review, J. Ind. Eng. Chem. 93 (2021) 57–77, https://doi.org/10.1016/J.JIEC.2020.09.023. M.S. Salman, M.N. Hasan, M.M. Hasan, K.T. Kubra, M.C. Sheikh, A.I. Rehan, R. M. Waliullah, A.I. Rasee, M.E. Awual, M.S. Hossain, A.K.D. Alsukaibi, H. M. Alshammari, M.R. Awual, Improving copper(II) ion detection and adsorption from wastewater by the ligand-functionalized composite adsorbent, J. Mol. Struct. 1282 (2023), 135259, https://doi.org/10.1016/J. MOLSTRUC.2023.135259. M.N. Hasan, M.S. Salman, M.M. Hasan, K.T. Kubra, M.C. Sheikh, A.I. Rehan, A. I. Rasee, M.E. Awual, R.M. Waliullah, M.S. Hossain, A. Islam, S. Khandaker, A.K. D. Alsukaibi, H.M. Alshammari, M.R. Awual, Assessing sustainable Lutetium(III) ions adsorption and recovery using novel composite hybrid nanomaterials, J. Mol. Struct. 1276 (2023), 134795, https://doi.org/10.1016/J. MOLSTRUC.2022.134795. M.M. Hasan, K.T. Kubra, M.N. Hasan, M.E. Awual, M.S. Salman, M.C. Sheikh, A. I. Rehan, A.I. Rasee, R.M. Waliullah, M.S. Islam, S. Khandaker, A. Islam, M. S. Hossain, A.K.D. Alsukaibi, H.M. Alshammari, M.R. Awual, Sustainable ligandmodified based composite material for the selective and effective cadmium(II) capturing from wastewater, J. Mol. Liq. 371 (2023), 121125, https://doi.org/ 10.1016/J.MOLLIQ.2022.121125. P.R. Souza, G.L. Dotto, N.P.G. Salau, Detailed numerical solution of pore volume and surface diffusion model in adsorption systems, Chem. Eng. Res. Des. 122 (2017) 298–307, https://doi.org/10.1016/J.CHERD.2017.04.021. Y. Vieira, J.P. Silveira, G.L. Dotto, S. Knani, J. Vieillard, J. Georgin, D.S.P. Franco, E.C. Lima, Mechanistic insights and steric interpretations through statistical physics modelling and density functional theory calculations for the adsorption of the pesticides atrazine and diuron by Hovenia dulcis biochar, J. Mol. Liq. 367 (2022), 120418, https://doi.org/10.1016/J.MOLLIQ.2022.120418. Y. Vieira, C. Schnorr, A.C. Piazzi, M.S. Netto, W.M. Piccini, D.S.P. Franco, E. S. Mallmann, J. Georgin, L.F.O. Silva, G.L. Dotto, An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon, J. Mol. Liq. 361 (2022), 119639, https://doi.org/10.1016/J. MOLLIQ.2022.119639. A.M. Awad, S.M.R. Shaikh, R. Jalab, M.H. Gulied, M.S. Nasser, A. Benamor, S. Adham, Adsorption of organic pollutants by natural and modified clays: a comprehensive review, Sep. Purif. Technol. 228 (2019), 115719, https://doi.org/ 10.1016/j.seppur.2019.115719. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156 (2010) 2–10, https://doi.org/10.1016/j. cej.2009.09.013. M.N. Hasan, M.A. Shenashen, M.M. Hasan, H. Znad, M.R. Awual, Assessing of cesium removal from wastewater using functionalized wood cellulosic adsorbent, Chemosphere. 270 (2021), 128668, https://doi.org/10.1016/J. CHEMOSPHERE.2020.128668. H.N. Tran, H.C. Nguyen, S.H. Woo, T.V. Nguyen, S. Vigneswaran, A. HosseiniBandegharaei, J. Rinklebe, A. Kumar Sarmah, A. Ivanets, G.L. Dotto, T.T. Bui, R. S. Juang, H.P. Chao, Removal of various contaminants from water by renewable lignocellulose-derived biosorbents: a comprehensive and critical review 49 (2019) 2155–2219, https://doi.org/10.1080/10643389.2019.1607442. M.R. Awual, A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater, Chem. Eng. J. 266 (2015) 368–375, https://doi.org/10.1016/J.CEJ.2014.12.094. M.R. Awual, M.M. Hasan, M.M. Rahman, A.M. Asiri, Novel composite material for selective copper(II) detection and removal from aqueous media, J. Mol. Liq. 283 (2019) 772–780, https://doi.org/10.1016/J.MOLLIQ.2019.03.141. A. Shahat, K.T. Kubra, M.S. Salman, M.N. Hasan, M.M. Hasan, Novel solid-state sensor material for efficient cadmium(II) detection and capturing from wastewater, Microchem. J. 164 (2021), 105967, https://doi.org/10.1016/J. MICROC.2021.105967. M.N. Hasan, M.S. Salman, A. Islam, H. Znad, M.M. Hasan, Sustainable composite sensor material for optical cadmium(II) monitoring and capturing from wastewater, Microchem. J. 161 (2021), 105800, https://doi.org/10.1016/J. MICROC.2020.105800. L. Sellaoui, G.L. Dotto, A. Ben Lamine, A. Erto, Interpretation of single and competitive adsorption of cadmium and zinc on activated carbon using monolayer and exclusive extended monolayer models, Environ. Sci. Pollut. Res. 24 (2017) 19902–19908, https://doi.org/10.1007/S11356-017-9562-8/TABLES/ 1. M.R. Awual, M.M. Hasan, H. Znad, Organic–inorganic based nano-conjugate adsorbent for selective palladium(II) detection, separation and recovery, Chem. Eng. J. 259 (2015) 611–619, https://doi.org/10.1016/J.CEJ.2014.08.028. M.R. Awual, Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater, Chem. Eng. J. 303 (2016) 539–546, https://doi.org/10.1016/J.CEJ.2016.06.040. M.S. Salman, H. Znad, M.N. Hasan, M.M. Hasan, Optimization of innovative composite sensor for Pb(II) detection and capturing from water samples, Microchem. J. 160 (2021), 105765, https://doi.org/10.1016/J. MICROC.2020.105765. M.R. Awual, M.M. Hasan, A. Islam, M.M. Rahman, A.M. Asiri, M.A. Khaleque, M. C. Sheikh, Introducing an amine functionalized novel conjugate material for toxic nitrite detection and adsorption from wastewater, J. Clean. Prod. 228 (2019) 778–785, https://doi.org/10.1016/J.JCLEPRO.2019.04.280. M.R. Awual, Efficient phosphate removal from water for controlling eutrophication using novel composite adsorbent, J. Clean. Prod. 228 (2019) 1311–1319, https://doi.org/10.1016/J.JCLEPRO.2019.04.325. J.P. Maity, C.M. Hsu, T.J. Lin, W.C. Lee, P. Bhattacharya, J. Bundschuh, C. Y. Chen, Removal of fluoride from water through bacterial-surfactin mediated novel hydroxyapatite nanoparticle and its efficiency assessment: adsorption isotherm, adsorption kinetic and adsorption thermodynamics, Environ. Nanotechnol. Monit. Manag. 9 (2018) 18–28, https://doi.org/10.1016/j. enmm.2017.11.001. S. Hong, C. Wen, J. He, F. Gan, Y.S. Ho, Adsorption thermodynamics of Methylene Blue onto bentonite, J. Hazard. Mater. 167 (2009) 630–633, https://doi.org/ 10.1016/j.jhazmat.2009.01.014. D.T. Nguyen, H.N. Tran, R.S. Juang, N.D. Dat, F. Tomul, A. Ivanets, S.H. Woo, A. Hosseini-Bandegharaei, V.P. Nguyen, H.P. Chao, Adsorption process and mechanism of acetaminophen onto commercial activated carbon, J. Environ. Chem. Eng. 8 (2020), 104408, https://doi.org/10.1016/J.JECE.2020.104408. S. Lyubchik, A. Lyubchik, O. Lygina, S. Lyubchik, I. Fonsec, Comparison of the thermodynamic parameters estimation for the adsorption process of the metals from liquid phase on activated carbons, Thermodyn. Interact. Stud. Solids, Liq. Gases (2011), https://doi.org/10.5772/19514 O.S. Bello, K.A. Adegoke, O.O. Sarumi, O.S. Lameed, Functionalized locust bean pod (Parkia biglobosa) activated carbon for Rhodamine B dye removal, Heliyon. 5 (2019), e02323, https://doi.org/10.1016/j.heliyon.2019.e02323. P. Sharma, N. Hussain, D.J. Borah, M.R. Das, Kinetics and adsorption behavior of the methyl blue at the graphene oxide/reduced graphene oxide nanosheet-water interface: a comparative study, J. Chem. Eng. Data 58 (2013) 3477–3488, https:// doi.org/10.1021/je400743r. A.L. Cazetta, O. Pezoti, K.C. Bedin, T.L. Silva, A. Paesano Junior, T. Asefa, V. C. Almeida, Magnetic activated carbon derived from biomass waste by concurrent synthesis: efficient adsorbent for toxic dyes, ACS Sustain. Chem. Eng. 4 (2016) 1058–1068, https://doi.org/10.1021/acssuschemeng.5b01141. D. Douroumis, A. Fahr, J. Siepmann, M.J. Snowden, V. Torchilin, Computational Pharmaceutics: Application of Molecular Modeling in Drug Delivery, John Wiley & Sons, 2015. https://books.google.com.br/books? hl=pt-BR&lr=&id=54d8EAAAQBAJ&oi=fnd&pg=PR12&dq=Computational+ Pharmaceutics:+Application+of+Molecular+Modeling+in+Drug+Delivery &ots=fc3ZQzGYUZ&sig=bpa1S_4VJIo-p-d9S3U5bUlMIpY#v=onepage& q=Computational Pharmaceutics%3A Application of Molecular Modeling in Drug Delivery&f=false. (Accessed 28 March 2023). N. Haddish-Berhane, J.L. Rickus, K. Haghighi, The role of multiscale computational approaches for rational design of conventional and nanoparticle oral drug delivery systems, Int. J. Nanomedicine 2 (2007) 315–331. L. Sellaoui, D. Franco, H. Ghalla, J. Georgin, M.S. Netto, G. Luiz Dotto, A. BonillaPetriciolet, H. Belmabrouk, A. Bajahzar, Insights of the adsorption mechanism of methylene blue on brazilian berries seeds: experiments, phenomenological modelling and DFT calculations, Chem. Eng. J. 394 (2020), 125011, https://doi. org/10.1016/J.CEJ.2020.125011. L. Sellaoui, E.P. Hessou, M. Badawi, M.S. Netto, G.L. Dotto, L.F.O. Silva, F. Tielens, J. Ifthikar, A. Bonilla-Petriciolet, Z. Chen, Trapping of Ag+, Cu2+, and Co2+ by faujasite zeolite Y: new interpretations of the adsorption mechanism via DFT and statistical modeling investigation, Chem. Eng. J. 420 (2021), 127712, https://doi.org/10.1016/J.CEJ.2020.127712. H. Gasparetto, Y. Vieira, N. Paula Gonçalves Salau, The role of quantum-chemical descriptors and sigma-profile overlapping of different co-solvents on tuning ethanolic extraction of soybean oil, J. Mol. Liq. (2023), 122306, https://doi.org/ 10.1016/J.MOLLIQ.2023.122306. M. Ibarra-Rodríguez, M. S´ anchez, Adsorption of metformin on graphitic carbon nitride functionalized with metals of group 1–3 (Li, Na, K, Be, Mg, Ca, B, Al, and Ga), DFT calculations, Comput. Theor. Chem. 1207 (2022), https://doi.org/ 10.1016/j.comptc.2021.113532. A.S. Ghasemi, M.R. Taghartapeh, A. Soltani, P.J. Mahon, Adsorption behavior of metformin drug on boron nitride fullerenes: thermodynamics and DFT studies, J. Mol. Liq. 275 (2019) 955–967, https://doi.org/10.1016/j.molliq.2018.11.124 E. Chigo Anota, G.H. Cocoletzi, GGA-based analysis of the metformin adsorption on BN nanotubes, Phys. E Low Dimensional Syst. Nanostruct. 56 (2014) 134–140, https://doi.org/10.1016/j.physe.2013.08.033. M.S. Hoseininezhad-Namin, P. Pargolghasemi, S. Alimohammadi, A.S. Rad, L. Taqavi, Quantum chemical study on the adsorption of metformin drug on the surface of pristine, Si- and Al-doped (5, 5) SWCNTs, Phys. E Low Dimensional Syst. Nanostruct. 90 (2017) 204–213, https://doi.org/10.1016/j. physe.2017.04.002. F. Kamali, G. Ebrahimzadeh Rajaei, S. Mohajeri, A. Shamel, M. KhodadadiMoghaddam, Adsorption behavior of metformin drug on the C60 and C48 nanoclusters: a comparative DFT study, Monatshefte Fur Chemie. 151 (2020) 711–720, https://doi.org/10.1007/S00706-020-02597-3/TABLES/2. X. Huang, Y. Liu, S. Liu, Z. Li, X. Tan, Y. Ding, G. Zeng, Y. Xu, W. Zeng, B. Zheng, Removal of metformin hydrochloride by: alternanthera philoxeroides biomass derived porous carbon materials treated with hydrogen peroxide, RSC Adv. 6 (2016) 79275–79284, https://doi.org/10.1039/c6ra08365j. A. Hethnawi, M. Alnajjar, A.D. Manasrah, A. Hassan, G. Vitale, R. Jeong, N. N. Nassar, Metformin removal from water using fixed-bed column of silicaalumina composite, Colloids Surf. A Physicochem. Eng. Asp. 597 (2020), 124814, https://doi.org/10.1016/j.colsurfa.2020.124814. L. Piai, M. Blokland, A. van der Wal, A. Langenhoff, Biodegradation and adsorption of micropollutants by biological activated carbon from a drinking water production plant, J. Hazard. Mater. 388 (2020), https://doi.org/10.1016/j. jhazmat.2020.122028. B.A.J. Poursat, R.J.M. van Spanning, M. Braster, R. Helmus, P. de Voogt, J. R. Parsons, Biodegradation of metformin and its transformation product, guanylurea, by natural and exposed microbial communities, Ecotoxicol. Environ. Saf. 182 (2019), 109414, https://doi.org/10.1016/j.ecoenv.2019.109414. H. Cui, P. Schroder, ¨ Uptake, translocation and possible biodegradation of the antidiabetic agent metformin by hydroponically grown Typha latifolia, J. Hazard. Mater. 308 (2016) 355–361, https://doi.org/10.1016/j.jhazmat.2016.01.054. W. Mrozik, J. Stefanska, ´ Adsorption and biodegradation of antidiabetic pharmaceuticals in soils, Chemosphere. 95 (2014) 281–288, https://doi.org/ 10.1016/j.chemosphere.2013.09.012. S. Tisler, C. Zwiener, Aerobic and anaerobic formation and biodegradation of guanyl urea and other transformation products of metformin, Water Res. 149 (2019) 130–135, https://doi.org/10.1016/j.watres.2018.11.001. E. Janka, D. Carvajal, S. Wang, R. Bakke, C. Dinamarca, Treatment of metformincontaining wastewater by a hybrid vertical anaerobic biofilm-reactor (HyVAB), Int. J. Environ. Res. Public Health 16 (2019), https://doi.org/10.3390/ ijerph16214125. M. Markiewicz, C. Jungnickel, S. Stolte, A. Białk-Bielinska, ´ J. Kumirska, W. Mrozik, Primary degradation of antidiabetic drugs, J. Hazard. Mater. 324 (2017) 428–435, https://doi.org/10.1016/j.jhazmat.2016.11.008. R. Moogouei, M. Borghei, S. Hosseini, G. Tajadod, Potential of plant species for phytoremediation of metformin from solutions, Int. J. Environ. Sci. Technol. 15 (2018) 593–598, https://doi.org/10.1007/s13762-017-1538-1. M.F. Mohd Amin, S.G.J. Heijman, L.C. Rietveld, Clay-starch combination for micropollutants removal from wastewater treatment plant effluent, Water Sci. Technol. 73 (2016) 1719–1727, https://doi.org/10.2166/wst.2016.001. A. Islam, S.H. Teo, Y.H. Taufiq-Yap, C.H. Ng, D.V.N. Vo, M.L. Ibrahim, M. M. Hasan, M.A.R. Khan, A.S.M. Nur, M.R. Awual, Step towards the sustainable toxic dyes removal and recycling from aqueous solution- a comprehensive review, Resour. Conserv. Recycl. 175 (2021), 105849, https://doi.org/10.1016/J. RESCONREC.2021.105849. K.T. Kubra, M.S. Salman, M.N. Hasan, Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent, J. Mol. Liq. 328 (2021), 115468, https://doi.org/10.1016/J.MOLLIQ.2021.115468. F.J.O. Quint˜ ao, J.R.L. Freitas, C. de Fatima ´ Machado, S.F. Aquino, S. de Queiroz Silva, R.J. de C´ assia Franco Afonso, Characterization of metformin by-products under photolysis, photocatalysis, ozonation and chlorination by highperformance liquid chromatography coupled to high-resolution mass spectrometry, Rapid Commun. Mass Spectrom. 30 (2016) 2360–2368, https:// doi.org/10.1002/RCM.7724. C.F. Carbuloni, J.E. Savoia, J.S.P. Santos, C.A.A. Pereira, R.G. Marques, V.A. S. Ribeiro, A.M. Ferrari, Degradation of metformin in water by TiO2–ZrO2 photocatalysis, J. Environ. Manag. 262 (2020), 110347, https://doi.org/ 10.1016/j.jenvman.2020.110347. F.R. Orsetti, L. Bukman, J.S. Santos, B.E. Nagay, E.C. Rangel, N.C. Cruz, Methylene blue and metformin photocatalytic activity of CeO2-Nb2O5 coatings is dependent on the treatment time of plasma electrolytic oxidation on titanium, Appl. Surf. Sci. Adv. 6 (2021), https://doi.org/10.1016/j.apsadv.2021.100143. M. Neamt¸u, D. Grandjean, A. Sienkiewicz, S. Le Faucheur, V. Slaveykova, J.J. V. Colmenares, C. Pulgarín, L.F. De Alencastro, Degradation of eight relevant micropollutants in different water matrices by neutral photo-Fenton process under UV254 and simulated solar light irradiation - a comparative study, Appl. Catal. B Environ. 158–159 (2014) 30–37, https://doi.org/10.1016/j. apcatb.2014.04.001. A. You, J. Song, H. Deng, C. Zhou, J. Chao, G. Zhong, W. Liao, Design and assembly of TZCS/PO/Ni2P-MnOx composite with “homojunction + protection layer + cocatalyst” structure for photocatalytic overall water splitting, Colloids Surf. A Physicochem. Eng. Asp. 667 (2023), 131374, https://doi.org/10.1016/J. COLSURFA.2023.131374. |
dc.relation.citationendpage.none.fl_str_mv |
19 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationvolume.none.fl_str_mv |
54 |
dc.rights.eng.fl_str_mv |
© 2023 Elsevier Ltd. |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2023 Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
19 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
dc.publisher.place.none.fl_str_mv |
United Kingdom |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2214714423004622?via%3Dihub |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/b780d383-40ed-4108-81a8-54aef01ac7e0/download https://repositorio.cuc.edu.co/bitstreams/0dd6dc69-7a4e-406c-8ca8-4f1a656503f5/download https://repositorio.cuc.edu.co/bitstreams/db715ba5-c9ca-4616-867d-73e76c0f6b68/download https://repositorio.cuc.edu.co/bitstreams/e6a81230-ed37-4a9b-a9f4-e124295fc019/download |
bitstream.checksum.fl_str_mv |
49eee9c747423e62566d6acc20332b03 73a5432e0b76442b22b026844140d683 9ab548766149c68a4a30fdb07b3085e1 a30e397a62c49dad34aae65f4488c146 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166743541940224 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2023 Elsevier Ltd.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vieira, YasminRibeiro, Tatiane HortaLeichtweis, JandiraDotto, Guilherme LuizFoletto, Edson LuizGeorgin, JordanaStracke Pfingsten, Franco, DisonLima, Eder C.2024-11-18T14:37:38Z2024-11-18T14:37:38Z2023-06-21Yasmin Vieira, Tatiane Horta Ribeiro, Jandira Leichtweis, Guilherme Luiz Dotto, Edson Luiz Foletto, Jordana Georgin, Dison Stracke Pfingsten Franco, Eder C. Lima, A critical review of the current environmental risks posed by the antidiabetic Metformin and the status, advances, and trends in adsorption technologies for its remediation, Journal of Water Process Engineering, Volume 54, 2023, 103943, ISSN 2214-7144, https://doi.org/10.1016/j.jwpe.2023.103943.2214-7144https://hdl.handle.net/11323/1370510.1016/j.jwpe.2023.103943Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The consumption of the antidiabetic drug Metformin (MTFN) has escalated over the last years due to the worrisome modern sedentary lifestyle. Since MTFN is not metabolized, it reaches several environmental compartments, imposing risks to aquatic organisms and possible future public health issues. Therefore, the use of adsorption as a low-cost and highly versatile mass transfer process has been proposed for its remediation and environmental control. This review presents, discusses, and compares the efficiencies reached by all adsorbents prepared and employed in MTFN adsorption. We carefully addressed the interaction mechanisms, adsorption kinetics, equilibrium modeling, and the most relevant thermodynamic parameters, creating a guide of solutions to practical problems. By comparing the data on its toxicity and controversial endocrine-disrupting effects reported in the literature with self-performed quantitative structure-activity relationship (QSAR) analysis, it was possible to see that MTFN is indeed adequately classified under the highest toxicity class, contrarily to the claims of various studies. Thus, according to the research gaps, possibilities, and challenges in the field, there is much yet to be understood and developed toward MTFN thorough removal by adsorption, such as i) the need for studies under continuous systems, ii) mechanism elucidation employing computational tools, and iii) adsorption coupled to environmental catalysis.19 páginasapplication/pdfengElsevier LtdUnited Kingdomhttps://www.sciencedirect.com/science/article/pii/S2214714423004622?via%3DihubA critical review of the current environmental risks posed by the antidiabetic metformin and the status, advances, and trends in adsorption technologies for its remediationArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Journal of Water Process EngineeringWorld Health Organization, Global report on diabetes. https://www.who.int/p ublications/i/item/9789241565257, 2016. (Accessed 7 April 2023)M.A.B. Khan, M.J. Hashim, J.K. King, R.D. Govender, H. Mustafa, J. Al Kaabi, Epidemiology of type 2 diabetes – global burden of disease and forecasted trends, J. Epidemiol. Glob. Health 10 (2019) 107–111, https://doi.org/10.2991/JEGH. K.191028.001.R.D. MacLaren, K. Wisniewski, C. MacLaren, Environmental concentrations of metformin exposure affect aggressive behavior in the siamese fighting fish, betta splendens, PLoS One 13 (2018) 6–8, https://doi.org/10.1371/journal. pone.0197259.S. Wild, G. Roglic, A. Green, R. Sicree, H. King, Global prevalence of diabetes: estimates for the year 2000 and projections for 2030, Diabetes Care 27 (2004) 1047–1053, https://doi.org/10.2337/DIACARE.27.5.1047.S. Terzi´c, I. Senta, M. Ahel, M. Gros, M. Petrovi´c, D. Barcelo, J. Müller, T. Knepper, I. Martí, F. Ventura, P. Jovanˇci´c, D. Jabuˇcar, Occurrence and fate of emerging wastewater contaminants in Western Balkan Region, Sci. Total Environ. 399 (2008) 66–77, https://doi.org/10.1016/j.scitotenv.2008.03.003.B. Viollet, B. Guigas, N. Sanz Garcia, J. Leclerc, M. Foretz, F. Andreelli, Cellular and molecular mechanisms of metformin: an overview, Clin. Sci. 122 (2012) 253–270, https://doi.org/10.1042/CS20110386.C.V. Rizos, M.S. Elisaf, Metformin and cancer, Eur. J. Pharmacol. 705 (2013) 96–108, https://doi.org/10.1016/j.ejphar.2013.02.038.Q. Weng, B. Wang, X. Wang, N. Hanagata, X. Li, D. Liu, X. Wang, X. Jiang, Y. Bando, D. Golberg, Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery, ACS Nano 8 (2014) 6123–6130, https://doi. org/10.1021/NN5014808/SUPPL_FILE/NN5014808_SI_001.PDF.C. Bulcao, ˜ F.F. Ribeiro-Filho, A. Sanudo, ˜ S.G.R. Ferreira, Effects of simvastatin and metformin on inflammation and insulin resistance in individuals with mild metabolic syndrome, Am. J. Cardiovasc. Drugs 7 (2007) 219–224, https://doi. org/10.2165/00129784-200707030-00007/METRICS.L. He, F.E. Wondisford, Metformin action: concentrations matter, Cell Metab. 21 (2015) 159–162, https://doi.org/10.1016/j.cmet.2015.01.003.N.J. Niemuth, R.D. Klaper, Emerging wastewater contaminant metformin causes intersex and reduced fecundity in fish, Chemosphere. 135 (2015) 38–45, https:// doi.org/10.1016/j.chemosphere.2015.03.060.CDER-FDA, Highlights of Prescribing Information for Metformin Hydrochloride, Cent. Drug Eval. Res. U.S. Food Drug Adm., 2018, p. 19. https://www.accessdata. fda.gov/drugsatfda_docs/label/2018/021591s007lbl.pdf. (Accessed 24 February 2023).R.M. Briones, W.Q. Zhuang, A.K. Sarmah, Biodegradation of metformin and guanylurea by aerobic cultures enriched from sludge, Environ. Pollut. 243 (2018) 255–262, https://doi.org/10.1016/j.envpol.2018.08.075.P.J. Pentik¨ ainen, P.J. Neuvonen, A. Penttil¨ a, Pharmacokinetics of metformin after intravenous and oral administration to man, Eur. J. Clin. Pharmacol. 16 (1979) 195–202, https://doi.org/10.1007/BF00562061.C.I. Kosma, D.A. Lambropoulou, T.A. Albanis, Comprehensive study of the antidiabetic drug metformin and its transformation product guanylurea in Greek wastewaters, Water Res. 70 (2015) 436–448, https://doi.org/10.1016/j. watres.2014.12.010.C. Trautwein, J.D. Berset, H. Wolschke, K. Kümmerer, Occurrence of the antidiabetic drug Metformin and its ultimate transformation product Guanylurea in several compartments of the aquatic cycle, Environ. Int. 70 (2014) 203–212, https://doi.org/10.1016/J.ENVINT.2014.05.008.T. Eggen, T.N. Asp, K. Grave, V. Hormazabal, Uptake and translocation of metformin, ciprofloxacin and narasin in forage- and crop plants, Chemosphere. 85 (2011) 26–33, https://doi.org/10.1016/j.chemosphere.2011.06.041.V. David, A. Medvedovici, F. Albu, Retention behavior of metformin and related impurities in ion-pairing liquid chromatography, J. Liq. Chromatogr. Relat. Technol. 28 (2005) 81–95, https://doi.org/10.1081/JLC-200038592.E.R. Kabir, M.S. Rahman, I. Rahman, A review on endocrine disruptors and their possible impacts on human health, Environ. Toxicol. Pharmacol. 40 (2015) 241–258, https://doi.org/10.1016/j.etap.2015.06.009.C.L.S. Vilela, J.P. Bassin, R.S. Peixoto, Water contamination by endocrine disruptors: impacts, microbiological aspects and trends for environmental protection, Environ. Pollut. 235 (2018) 546–559, https://doi.org/10.1016/j. envpol.2017.12.098.N.J. Niemuth, R. Jordan, J. Crago, C. Blanksma, R. Johnson, R.D. Klaper, Metformin exposure at environmentally relevant concentrations causes potential endocrine disruption in adult male fish, Environ. Toxicol. Chem. 34 (2015) 291–296, https://doi.org/10.1002/etc.2793.J. Crago, C. Bui, S. Grewal, D. Schlenk, Age-dependent effects in fathead minnows from the anti-diabetic drug metformin, Gen. Comp. Endocrinol. 232 (2016) 185–190, https://doi.org/10.1016/J.YGCEN.2015.12.030.T. Tang, J.M. Lord, R.J. Norman, E. Yasmin, A.H. Balen, Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility, Cochrane Database Syst. Rev. (2012), https://doi.org/10.1002/14651858.CD003053. PUB5/MEDIA/CDSR/CD003053/REL0005/CD003053/IMAGE_N/NCD003053- CMP-006-06.PNG.A.T. Hoang, S. Niˇzeti´c, X.Q. Duong, L. Rowinski, X.P. Nguyen, Advanced superhydrophobic polymer-based porous absorbents for the treatment of oil-polluted water, Chemosphere. 277 (2021), 130274, https://doi.org/10.1016/J. CHEMOSPHERE.2021.130274.A.T. Hoang, S. Kumar, E. Lichtfouse, C.K. Cheng, R.S. Varma, N. Senthilkumar, P. Q. Phong Nguyen, X.P. Nguyen, Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: an update of recent trends, Chemosphere. 302 (2022), 134825, https://doi.org/10.1016/J. CHEMOSPHERE.2022.134825.W.H. Chen, A.T. Hoang, S. Niˇzeti´c, A. Pandey, C.K. Cheng, R. Luque, H.C. Ong, S. Thomas, X.P. Nguyen, Biomass-derived biochar: from production to application in removing heavy metal-contaminated water, Process. Saf. Environ. Prot. 160 (2022) 704–733, https://doi.org/10.1016/J.PSEP.2022.02.061.A.T. Hoang, S. Niˇzeti´c, C.K. Cheng, R. Luque, S. Thomas, T.L. Banh, V.V. Pham, X. P. Nguyen, Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: a comprehensive review, Chemosphere. 287 (2022), 131959, https://doi.org/10.1016/J.CHEMOSPHERE.2021.131959.S. Choi, H. Yoom, H. Son, C. Seo, K. Kim, Y. Lee, Y.M. Kim, Removal efficiency of organic micropollutants in successive wastewater treatment steps in a full-scale wastewater treatment plant: bench-scale application of tertiary treatment processes to improve removal of organic micropollutants persisting after secondary treatment, Chemosphere. 288 (2022), 132629, https://doi.org/ 10.1016/J.CHEMOSPHERE.2021.132629.R. Zhang, Y. He, L. Yao, J. Chen, S. Zhu, X. Rao, P. Tang, J. You, G. Hua, L. Zhang, F. Ju, L. Wu, Metformin chlorination byproducts in drinking water exhibit marked toxicities of a potential health concern, Environ. Int. 146 (2021), 106244, https://doi.org/10.1016/J.ENVINT.2020.106244.Y. He, H. Jin, H. Gao, G. Zhang, F. Ju, Prevalence, production, and ecotoxicity of chlorination-derived metformin byproducts in Chinese urban water systems, Sci. Total Environ. 816 (2022), 151665, https://doi.org/10.1016/J. SCITOTENV.2021.151665.O.A.A. Eletta, A.G. Adeniyi, J.O. Ighalo, D.V. Onifade, F.O. Ayandele, Valorisation of Cocoa (Theobroma cacao) pod husk as precursors for the production of adsorbents for water treatment, Environ. Technol. Rev. 9 (2020) 20–36, https://doi.org/10.1080/21622515.2020.1730983.R.K.S. Santos, C. Schnorr, L.F.O. Silva, B.F. Nascimento, J.V.F.L. Cavalcanti, Y. Vieira, G.L. Dotto, M.A.M. Sobrinho, Euterpe oleracea-based biochar for clonazepam adsorption: synthesis, characterization, adsorption properties, and toxicity assays, Environ. Sci. Pollut. Res. 30 (2023) 52485–52497, https://doi. org/10.1007/S11356-023-26044-Y/FIGURES/8.Y. Vieira, G.L. Dotto, Trends and perspectives towards activated carbon and activated carbon-derived materials in environmental catalysis applications, Act. Carbon (2023) 206–232, https://doi.org/10.1039/BK9781839169861-00206.G.S. dos Reis, P.S. Thue, B.G. Cazacliu, E.C. Lima, C.H. Sampaio, M. Quattrone, E. Ovsyannikova, A. Kruse, G.L. Dotto, Effect of concrete carbonation on phosphate removal through adsorption process and its potential application as fertilizer, J. Clean. Prod. 256 (2020), 120416, https://doi.org/10.1016/J. JCLEPRO.2020.120416.M. Oosterhuis, F. Sacher, T.L. ter Laak, Prediction of concentration levels of metformin and other high consumption pharmaceuticals in wastewater and regional surface water based on sales data, Sci. Total Environ. 442 (2013) 380–388, https://doi.org/10.1016/J.SCITOTENV.2012.10.046.K. Hider-Mlynarz, P. Cavali´e, P. Maison, Trends in analgesic consumption in France over the last 10 years and comparison of patterns across Europe, Br. J. Clin. Pharmacol. 84 (2018) 1324–1334, https://doi.org/10.1111/BCP.13564.Wolters Kluwer, Drug decision support, Wolters Kluwer, 2023. https://www.wo lterskluwer.com/en/know/drug-decision-support-solutions. (Accessed 7 April 2023).B.D. Blair, J.P. Crago, C.J. Hedman, R.D. Klaper, Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern, Chemosphere. 93 (2013) 2116–2123, https://doi.org/10.1016/j. chemosphere.2013.07.057.D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, H. T. Buxton, Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance, Environ. Sci. Technol. 36 (2002) 1202–1211, https://doi.org/10.1021/es011055j.M. Scheurer, F. Sacher, H.J. Brauch, Occurrence of the antidiabetic drug metformin in sewage and surface waters in Germany, J. Environ. Monit. 11 (2009) 1608–1613, https://doi.org/10.1039/B909311G.J.Y. Song, S.H. Jhung, Adsorption of pharmaceuticals and personal care products over metal-organic frameworks functionalized with hydroxyl groups: quantitative analyses of H-bonding in adsorption, Chem. Eng. J. 322 (2017) 366–374, https:// doi.org/10.1016/j.cej.2017.04.036.N.A. Al-Odaini, M.P. Zakaria, M.I. Yaziz, S. Surif, M. Abdulghani, The occurrence of human pharmaceuticals in wastewater effluents and surface water of Langat River and its tributaries, Malaysia, Int. J. Environ. Anal. Chem. 93 (2013) 245–264, https://doi.org/10.1080/03067319.2011.592949.E.E. Burns, L.J. Carter, D.W. Kolpin, J. Thomas-Oates, A.B.A. Boxall, Temporal and spatial variation in pharmaceutical concentrations in an urban river system, Water Res. 137 (2018) 72–85, https://doi.org/10.1016/j.watres.2018.02.066.B. Lubliner, M. Redding, D. Ragsdale, Control of Toxic Chemicals in Puget Sound Phase 3: Pharmaceuticals and Personal Care Products and Their Removal by Nutrient Treatment Technologies, 2010.S.R. de Solla, A.M. Gilroy, J.S. Klinck, L.E. King, R. McInnis, J. Struger, S. M. Backus, P.L. Gillis, Bioaccumulation of pharmaceuticals and personal care products in the unionid mussel Lasmigona costata in a river receiving wastewater effluent, Chemosphere. 146 (2016) 486–496, https://doi.org/10.1016/j. chemosphere.2015.12.022.P.M. Bradley, C.A. Journey, D.T. Button, D.M. Carlisle, J.M. Clark, B.J. Mahler, N. Nakagaki, S.L. Qi, I.R. Waite, P.C. VanMetre, Metformin and other pharmaceuticals widespread in wadeable streams of the southeastern United States, Environ. Sci. Technol. Lett. 3 (2016) 243–249, https://doi.org/10.1021/ acs.estlett.6b00170.C.J. Houtman, J. Kroesbergen, K. Lekkerkerker-Teunissen, J.P. van der Hoek, Human health risk assessment of the mixture of pharmaceuticals in Dutch drinking water and its sources based on frequent monitoring data, Sci. Total Environ. 496 (2014) 54–62, https://doi.org/10.1016/J. SCITOTENV.2014.07.022.E. Vulliet, C. Cren-Oliv´e, Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption, Environ. Pollut. 159 (2011) 2929–2934, https://doi.org/10.1016/J. ENVPOL.2011.04.033.A.Z. Tong, A.J. Ghoshdastidar, S. Fox, A.Z. Tong, The presence of the top prescribed pharmaceuticals in treated sewage effluents and receiving waters in southwest Nova Scotia, Canada, Environ. Sci. Pollut. Res. 22 (2015) 689–700, https://doi.org/10.1007/S11356-014-3400-Z.J. Fick, R.H. Lindberg, L. Kaj, E. Brorstrom-Lund ¨ ´en, Results from the Swedish National Screening Programme 2010 Subreport 3. Pharmaceuticals. http://urn. kb.se/resolve?urn=urn:nbn:se:ivl:diva-2649, 2011. (Accessed 7 April 2023).J. Martín, D. Camacho-Munoz, ˜ J.L. Santos, I. Aparicio, E. Alonso, Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal, J. Hazard. Mater. 239–240 (2012) 40–47, https://doi.org/10.1016/J. JHAZMAT.2012.04.068.J.P. Meador, A. Yeh, G. Young, E.P. Gallagher, Contaminants of emerging concern in a large temperate estuary, Environ. Pollut. 213 (2016) 254–267, https://doi. org/10.1016/J.ENVPOL.2016.01.088.J. Martín, W. Buchberger, J.L. Santos, E. Alonso, I. Aparicio, High-performance liquid chromatography quadrupole time-of-flight mass spectrometry method for the analysis of antidiabetic drugs in aqueous environmental samples, J. Chromatogr. B 895–896 (2012) 94–101, https://doi.org/10.1016/J. JCHROMB.2012.03.023.B.D. Blair, J.P. Crago, C.J. Hedman, R.J.F. Treguer, C. Magruder, L.S. Royer, R. D. Klaper, Evaluation of a model for the removal of pharmaceuticals, personal care products, and hormones from wastewater 444 (2013) 515–521, https://doi. org/10.1016/J.SCITOTENV.2012.11.103.J.H. Yan, Y. Xiao, D.Q. Tan, X.T. Shao, Z. Wang, D.G. Wang, Wastewater analysis reveals spatial pattern in consumption of anti-diabetes drug metformin in China, Chemosphere. 222 (2019) 688–695, https://doi.org/10.1016/J. CHEMOSPHERE.2019.01.151.M.A. Asghar, Q. Zhu, S. Sun, Y. Peng, Q. Shuai, Suspect screening and target quantification of human pharmaceutical residues in the surface water of Wuhan, China, using UHPLC-Q-Orbitrap HRMS, Sci. Total Environ. 635 (2018) 828–837, https://doi.org/10.1016/J.SCITOTENV.2018.04.179.K.H. Nguyen, Analysis of Emerging Environmental Contaminations Using Advanced Instrumental Tools: Application to Human and Environmental Exposure, 2018.E. Carmona, V. Andreu, Y. Pico, ´ Multi-residue determination of 47 organic compounds in water, soil, sediment and fish—Turia River as case study, J. Pharm. Biomed. Anal. 146 (2017) 117–125, https://doi.org/10.1016/J. JPBA.2017.08.014.E. Archer, B. Petrie, B. Kasprzyk-Hordern, G.M. Wolfaardt, The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters, Chemosphere. 174 (2017) 437–446, https://doi.org/ 10.1016/J.CHEMOSPHERE.2017.01.101.V. de Jesus Gaffney, V.V. Cardoso, E. Cardoso, A.P. Teixeira, J. Martins, M. J. Benoliel, C.M.M. Almeida, Occurrence and behaviour of pharmaceutical compounds in a Portuguese wastewater treatment plant: removal efficiency through conventional treatment processes, Environ. Sci. Pollut. Res. 24 (2017) 14717–14734, https://doi.org/10.1007/S11356-017-9012-7/FIGURES/7.L.E. Lesser, A. Mora, C. Moreau, J. Mahlknecht, A. Hern´ andez-Antonio, A. I. Ramírez, H. Barrios-Pina, ˜ Survey of 218 organic contaminants in groundwater derived from the world’s largest untreated wastewater irrigation system: Mezquital Valley, Mexico, Chemosphere. 198 (2018) 510–521, https://doi.org/ 10.1016/J.CHEMOSPHERE.2018.01.154.I. P´erez-Alvarez, H. Islas-Flores, L.M. Gomez-Oliv ´ an, ´ D. Barcelo, ´ M. Lopez ´ De Alda, S. P´erez Solsona, L. Sanchez-Aceves, ´ N. SanJuan-Reyes, M. Galar-Martínez, Determination of metals and pharmaceutical compounds released in hospital wastewater from Toluca, Mexico, and evaluation of their toxic impact, Environ. Pollut. 240 (2018) 330–341, https://doi.org/10.1016/J.ENVPOL.2018.04.116.Z. Moldovan, O. Marincas, I. Povar, T. Lupascu, P. Longree, J.S. Rota, H. Singer, A.C. Alder, Environmental exposure of anthropogenic micropollutants in the Prut River at the Romanian-Moldavian border: a snapshot in the lower Danube river basin, Environ. Sci. Pollut. Res. 25 (2018) 31040–31050, https://doi.org/ 10.1007/S11356-018-3025-8/FIGURES/4.P. Gago-Ferrero, V. Borova, M.E. Dasenaki, N.S. Τhomaidis, Simultaneous determination of 148 pharmaceuticals and illicit drugs in sewage sludge based on ultrasound-assisted extraction and liquid chromatography–tandem mass spectrometry, Anal. Bioanal. Chem. 407 (2015) 4287–4297, https://doi.org/ 10.1007/S00216-015-8540-6/TABLES/2.V.S. Thomaidi, A.S. Stasinakis, V.L. Borova, N.S. Thomaidis, Assessing the risk associated with the presence of emerging organic contaminants in sludgeamended soil: a country-level analysis, Sci. Total Environ. 548–549 (2016) 280–288, https://doi.org/10.1016/J.SCITOTENV.2016.01.043.E.V.T. Mayoudom, E. Nguidjoe, R.N. Mballa, O.F. Tankoua, C. Fokunang, C. Anyakora, K.N. Blackett, Identification and quantification of 19 pharmaceutical active compounds and metabolites in hospital wastewater in Cameroon using LC/QQQ and LC/Q-TOF, Environ. Monit. Assess. 190 (2018) 1–10, https://doi.org/10.1007/S10661-018-7097-1/FIGURES/6.E.Y. Guzel, F. Cevik, N. Daglioglu, Determination of pharmaceutical active compounds in Ceyhan River, Turkey: seasonal, spatial variations and environmental risk assessment 25 (2018) 1980–1995, https://doi.org/10.1080/ 10807039.2018.1479631.H.T.C. Chau, K. Kadokami, H.T. Duong, L. Kong, T.T. Nguyen, T.Q. Nguyen, Y. Ito, Occurrence of 1153 organic micropollutants in the aquatic environment of Vietnam, Environ. Sci. Pollut. Res. 25 (2018) 7147–7156, https://doi.org/ 10.1007/S11356-015-5060-Z/TABLES/3.Y. Xiao, X.T. Shao, D.Q. Tan, J.H. Yan, W. Pei, Z. Wang, M. Yang, D.G. Wang, Assessing the trend of diabetes mellitus by analyzing metformin as a biomarker in wastewater, Sci. Total Environ. 688 (2019) 281–287, https://doi.org/10.1016/J. SCITOTENV.2019.06.117.T. Eggen, C. Lillo, Antidiabetic II drug metformin in plants: uptake and translocation to edible parts of cereals, oily seeds, beans, tomato, squash, carrots, and potatoes, J. Agric. Food Chem. 60 (2012) 6929–6935, https://doi.org/ 10.1021/jf301267c.H. Cui, B.A. Hense, J. Müller, P. Schroder, ¨ Short term uptake and transport process for metformin in roots of Phragmites australis and Typha latifolia, Chemosphere. 134 (2015) 307–312, https://doi.org/10.1016/j. chemosphere.2015.04.072.S.D. Melvin, L.J. Habener, F.D.L. Leusch, A.R. Carroll, 1H NMR-based metabolomics reveals sub-lethal toxicity of a mixture of diabetic and lipidregulating pharmaceuticals on amphibian larvae, Aquat. Toxicol. 184 (2017) 123–132, https://doi.org/10.1016/j.aquatox.2017.01.012.A.A. Godoy, I. Domingues, A.J. Ars´enia Nogueira, F. Kummrow, Ecotoxicological effects, water quality standards and risk assessment for the anti-diabetic metformin, Environ. Pollut. 243 (2018) 534–542, https://doi.org/10.1016/j. envpol.2018.09.031.B.M. Cummings, J.A. Needoba, T.D. Peterson, Effect of metformin exposure on growth and photosynthetic performance in the unicellular freshwater chlorophyte, Chlorella vulgaris, PLoS One 13 (2018) 1–17, https://doi.org/ 10.1371/journal.pone.0207041.W. Koagouw, R.J. Hazell, C. Ciocan, Induction of apoptosis in the gonads of Mytilus edulis by metformin and increased temperature, via regulation of HSP70, CASP8, BCL2 and FAS, Mar. Pollut. Bull. 173 (2021), 113011, https://doi.org/ 10.1016/j.marpolbul.2021.113011.C. Johnson, The effects of acute urban mixture exposure on the T cells of fathead minnows (Pimephales promelas) recommended citation. https://repository.stclo udstate.edu/biol_etds/36, 2018. (Accessed 28 February 2023).G.A. Elizalde-Velazquez, ´ L.M. Gomez-Oliv ´ ´ an, S. García-Medina, H. Islas-Flores, M.D. Hern´ andez-Navarro, M. Galar-Martínez, Antidiabetic drug metformin disrupts the embryogenesis in zebrafish through an oxidative stress mechanism, Chemosphere. 285 (2021), https://doi.org/10.1016/j. chemosphere.2021.131213.J. Phillips, C. Akemann, J.N. Shields, C.C. Wu, D.N. Meyer, B.B. Baker, D.K. Pitts, T.R. Baker, Developmental phenotypic and transcriptomic effects of exposure to nanomolar levels of metformin in zebrafish, Environ. Toxicol. Pharmacol. 87 (2021), 103716, https://doi.org/10.1016/j.etap.2021.103716.E. Ussery, K.N. Bridges, Z. Pandelides, A.E. Kirkwood, D. Bonetta, B.J. Venables, J. Guchardi, D. Holdway, Effects of environmentally relevant metformin exposure on Japanese medaka (Oryzias latipes), Aquat. Toxicol. 205 (2018) 58–65, https:// doi.org/10.1016/j.aquatox.2018.10.003.S. Jacob, A. Dotsch, ¨ S. Knoll, H.R. Kohler, ¨ E. Rogall, D. Stoll, S. Tisler, C. Huhn, T. Schwartz, C. Zwiener, R. Triebskorn, Does the antidiabetic drug metformin affect embryo development and the health of brown trout (Salmo trutta f. fario)? Environ. Sci. Eur. 30 (2018) https://doi.org/10.1186/s12302-018-0179-4.S. Forcato, D.R.B. da S. Novi, N.O. Costa, L.I. Borges, M.L.M. de Goes, ´ G. S. Ceravolo, D.C.C. Gerardin, In utero and lactational exposure to metformin induces reproductive alterations in male rat offspring, Reprod. Toxicol. 74 (2017) 48–58, https://doi.org/10.1016/j.reprotox.2017.08.023.P. Tartarin, D. Moison, E. Guibert, J. Dupont, R. Habert, V. Rouiller-Fabre, N. Frydman, S. Pozzi, R. Frydman, C. Lecureuil, P. Froment, Metformin exposure affects human and mouse fetal testicular cells, Hum. Reprod. 27 (2012) 3304–3314, https://doi.org/10.1093/humrep/des264.L. Tosca, C. Chabrolle, S. Uzbekova, J. Dupont, Effects of metformin on bovine granulosa cells steroidogenesis: possible involvement of adenosine 5′ monophosphate-activated protein kinase (AMPK), Biol. Reprod. 76 (2007) 368–378, https://doi.org/10.1095/biolreprod.106.055749.S. Rice, L. Pellatt, K. Ramanathan, S.A. Whitehead, H.D. Mason, Metformin inhibits aromatase via an extracellular signal-regulated kinase-mediated pathway, Endocrinology. 150 (2009) 4794–4801, https://doi.org/10.1210/ en.2009-0540.S. Rice, A. Elia, Z. Jawad, L. Pellatt, H.D. Mason, Metformin inhibits folliclestimulating hormone (FSH) action in human Granulosa cells: relevance to polycystic ovary syndrome, J. Clin. Endocrinol. Metab. 98 (2013) 1–10, https:// doi.org/10.1210/jc.2013-1865.R. Mansfield, R. Galea, M. Brincat, D. Hole, H. Mason, Metformin has direct effects on human ovarian steroidogenesis, Fertil. Steril. 79 (2003) 956–962, https://doi.org/10.1016/S0015-0282(02)04925-7.A. Hanazono, Y. Takahashi, Y. Sanpei, S. Kamada, M. Sugawara, Focal brain lactate accumulation in metformin-induced encephalopathy without systemic lactic acidosis: a case report suggesting mitochondrial vulnerability in lentiform fork sign, ENeurologicalSci. 25 (2021), 100383, https://doi.org/10.1016/j. ensci.2021.100383.E. Vanky, K. Zahlsen, O. Spigset, S.M. Carlsen, Placental passage of metformin in women with polycystic ovary syndrome, Fertil. Steril. 83 (2005) 1575–1578, https://doi.org/10.1016/j.fertnstert.2004.11.051.H.L. Barrett, K.L. Gatford, C.M. Houda, M.J. De Blasio, H.D. Mcintyre, L. K. Callaway, M.D. Nitert, S. Coat, J.A. Owens, W.M. Hague, J.A. Rowan, Maternal and neonatal circulating markers ofmetabolic and cardiovascular risk in themetformin in gestational diabetes (mig) trial, Diabetes Care 36 (2013) 529–536, https://doi.org/10.2337/dc12-1097.S.M. Ho, A. Cheong, M.A. Adgent, J. Veevers, A.A. Suen, N.N.C. Tam, Y.K. Leung, W.N. Jefferson, C.J. Williams, Environmental factors, epigenetics, and developmental origin of reproductive disorders, Reprod. Toxicol. 68 (2017) 85–104, https://doi.org/10.1016/j.reprotox.2016.07.011.J.W. Lee, Y.J. Shin, H. Kim, H. Kim, J. Kim, S.A. Min, P. Kim, S. Do Yu, K. Park, Metformin-induced endocrine disruption and oxidative stress of Oryzias latipes on two-generational condition, J. Hazard. Mater. 367 (2019) 171–181, https:// doi.org/10.1016/j.jhazmat.2018.12.084.J.P. Sumpter, A.P. Scott, I. Katsiadaki, Comments on Niemuth, N.J. and Klaper, R. D. 2015. Emerging wastewater contaminant metformin causes intersex and reduced fecundity in fish. Chemosphere 135, 38–45, Chemosphere. 165 (2016) 566–569, https://doi.org/10.1016/j.chemosphere.2016.08.049.J.L. Parrott, G. Pacepavicius, K. Shires, S. Clarence, H. Khan, M. Gardiner, C. Sullivan, M. Alaee, Fathead minnow exposed to environmentally relevant concentrations of metformin for one life cycle show no adverse effects, Facets. 6 (2021) 998–1023, https://doi.org/10.1139/FACETS-2020-0106/SUPPL_FILE/ FACETS-2020-0106_SUPPLEMENT4.PDF.B.R. Blackwell, G.T. Ankley, A.D. Biales, J.E. Cavallin, A.R. Cole, T.W. Collette, D. R. Ekman, R.N. Hofer, W. Huang, K.M. Jensen, M.D. Kahl, A.R. Kittelson, S. N. Romano, M.J. See, Q. Teng, C.B. Tilton, D.L. Villeneuve, Effects of metformin and its metabolite guanylurea on fathead minnow (Pimephales promelas) reproduction, Environ. Toxicol. Chem. 41 (2022) 2708–2720, https://doi.org/ 10.1002/ETC.5450.J.O. Straub, D.J. Caldwell, T. Davidson, V. D’Aco, K. Kappler, P.F. Robinson, B. Simon-Hettich, J. Tell, Environmental risk assessment of metformin and its transformation product guanylurea. I. Environmental fate, Chemosphere. 216 (2019) 844–854, https://doi.org/10.1016/J.CHEMOSPHERE.2018.10.036.D.J. Caldwell, V. D’Aco, T. Davidson, K. Kappler, R.J. Murray-Smith, S.F. Owen, P.F. Robinson, B. Simon-Hettich, J.O. Straub, J. Tell, Environmental risk assessment of metformin and its transformation product guanylurea: II. Occurrence in surface waters of Europe and the United States and derivation of predicted no-effect concentrations, Chemosphere. 216 (2019) 855–865, https:// doi.org/10.1016/J.CHEMOSPHERE.2018.10.038.A.K. Singh, M. Bilal, D. Barcelo, ´ H.M.N. Iqbal, A predictive toolset for the identification of degradation pattern and toxic hazard estimation of multimeric hazardous compounds persists in water bodies, Sci. Total Environ. 824 (2022), 153979, https://doi.org/10.1016/J.SCITOTENV.2022.153979.G. Patlewicz, N. Jeliazkova, R.J. Safford, A.P. Worth, B. Aleksiev, An evaluation of the implementation of the Cramer classification scheme in the Toxtree software, SAR QSAR Environ. Res. 19 (2010) 495–524, https://doi.org/10.1080/ 10629360802083871.G.M. Cramer, R.A. Ford, R.L. Hall, Estimation of toxic hazard—a decision tree approach, Food Cosmet. Toxicol. 16 (1976) 255–276, https://doi.org/10.1016/ S0015-6264(76)80522-6.I.C. Munro, R.A. Ford, E. Kennepohl, J.G. Sprenger, Correlation of structural class with no-observed-effect levels: a proposal for establishing a threshold of concern, Food Chem. Toxicol. 34 (1996) 829–867, https://doi.org/10.1016/S0278-6915 (96)00049-X.C. Trautwein, K. Kümmerer, Incomplete aerobic degradation of the antidiabetic drug Metformin and identification of the bacterial dead-end transformation product Guanylurea, Chemosphere. 85 (2011) 765–773, https://doi.org/ 10.1016/j.chemosphere.2011.06.057.M. Kalumpha, U. Guyo, N.P. Zinyama, F.M. Vakira, B.C. Nyamunda, Adsorptive potential of Zea mays tassel activated carbon towards the removal of metformin hydrochloride from pharmaceutical effluent, Int. J. Phytoremediation 22 (2020) 148–156, https://doi.org/10.1080/15226514.2019.1652561.H.B. Quesada, T.P. De Araújo, L.F. Cusioli, M.A.S.D. De Barros, R.G. Gomes, R. Bergamasco, Evaluation of novel activated carbons from chich´ a-do-cerrado (Sterculia striata St. Hil. et Naud) fruit shells on metformin adsorption and treatment of a synthetic mixture, J. Environ. Chem. Eng. 9 (2021), https://doi. org/10.1016/j.jece.2020.104914.L. Spessato, V.A. Duarte, P. Viero, H. Zanella, J.M. Fonseca, P.A. Arroyo, V. C. Almeida, Optimization of Sibipiruna activated carbon preparation by simplexcentroid mixture design for simultaneous adsorption of rhodamine B and metformin, J. Hazard. Mater. 411 (2021), 125166, https://doi.org/10.1016/j. jhazmat.2021.125166.O.S. Jimoh, A.O. Ibrahim, O.S. Bello. Metformin adsorption onto activated carbon prepared by acid activation and carbonization of orange peel. 25 125–136. doi: https://doi.org/10.1080/15226514.2022.2064815. (n.d.).S. Neha, P. Rajput, N. Remya, Biochar from microwave co-pyrolysis of food waste and polyethylene using different microwave susceptors-production, modification and application for metformin removal, Environ. Res. 210 (2022), 112922, https://doi.org/10.1016/j.envres.2022.112922.J.M. Sanchez-Silva, V.H. Collins-Martínez, E. Padilla-Ortega, A. Aguilar-Aguilar, G.J. Labrada-Delgado, O. Gonzalez-Ortega, G. Palestino-Escobedo, R. OcampoP´erez, Characterization and transformation of nanche stone (Byrsonima crassifolia) in an activated hydrochar with high adsorption capacity towards metformin in aqueous solution, Chem. Eng. Res. Des. 183 (2022) 580–594. www. sciencedirect.com. (Accessed 12 May 2023).A.H. Mohammad, I. Radovic, M. Ivanovic, M. Kijevcanin, Adsorption of metformin on activated carbon produced from the water hyacinth biowaste using H3PO4 as a chemical activator, Sustain 14 (2022) 11144, https://doi.org/ 10.3390/SU141811144.G. De Bhowmick, R.M. Briones, S. Thiele-Bruhn, R. Sen, A.K. Sarmah, Adsorptive removal of metformin on specially designed algae-lignocellulosic biochar mix and techno-economic feasibility assessment, Environ. Pollut. 292 (2022), https://doi. org/10.1016/j.envpol.2021.118256.M.E. Mahmoud, A.M. El-Ghanam, S.R. Saad, R.H.A. Mohamed, Promoted removal of metformin hydrochloride anti-diabetic drug from water by fabricated and modified nanobiochar from artichoke leaves, Sustain. Chem. Pharm. 18 (2020), 100336, https://doi.org/10.1016/j.scp.2020.100336.K. Balasubramani, N. Sivarajasekar, G. Sarojini, M. Naushad, Removal of antidiabetic pharmaceutical (metformin) using graphene oxide microcrystalline cellulose (GOMCC): insights to process optimization, equilibrium, kinetics, and machine learning, Ind. Eng. Chem. Res. (2022), https://doi.org/10.1021/ACS. IECR.2C04480/ASSET/IMAGES/LARGE/IE2C04480_0011.JPEG.K. Balasubramani, N. Sivarajasekar, M. Naushad, Effective adsorption of antidiabetic pharmaceutical (metformin) from aqueous medium using graphene oxide nanoparticles: equilibrium and statistical modelling, J. Mol. Liq. 301 (2020), 112426, https://doi.org/10.1016/j.molliq.2019.112426.S. Zhu, Y. guo Liu, S. bo Liu, G. ming Zeng, L. hua Jiang, X. fei Tan, L. Zhou, W. Zeng, T. ting Li, C. ping Yang, Adsorption of emerging contaminant metformin using graphene oxide, Chemosphere. 179 (2017) 20–28, https://doi.org/ 10.1016/j.chemosphere.2017.03.071.L.F. Cusioli, H.B. Quesada, A.L. de Brito Portela, R.G. Castro, R. Bergamasco Gomes, Development of a new low-cost adsorbent functionalized with iron nanoparticles for removal of metformin from contaminated water, Chemosphere. 247 (2020), 125852, https://doi.org/10.1016/j. chemosphere.2020.125852.F.C. Çavus¸oglu, ˘ S¸ .S. Bayazit, M.S. Secula, B. Cagnon, Magnetic carbon composites as regenerable and fully recoverable adsorbents: performance on the removal of antidiabetic agent metformin hydrochloride, Chem. Eng. Res. Des. 168 (2021) 443–452, https://doi.org/10.1016/j.cherd.2021.01.034.Y.A. Faleh, N.D. Radhy, Removal of metformin hydrochloride from aqueous solutions by using carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide) hydrogel: adsorption and thermodynamic studies, IOP Conf. Ser. Earth Environ. Sci. 790 (2021), https://doi.org/10.1088/1755-1315/790/1/012062.H. Adel Niaei, M. Rostamizadeh, Adsorption of metformin from an aqueous solution by Fe-ZSM-5 nano-adsorbent: isotherm, kinetic and thermodynamic studies, J. Chem. Thermodyn. 142 (2020), 106003, https://doi.org/10.1016/j. jct.2019.106003.M. Alnajjar, A. Hethnawi, G. Nafie, A. Hassan, G. Vitale, N.N. Nassar, Silicaalumina composite as an effective adsorbent for the removal of metformin from water, J. Environ. Chem. Eng. 7 (2019) 1–10, https://doi.org/10.1016/j. jece.2019.102994M.R. Elamin, B.Y. Abdulkhair, F.K. Algethami, L. Khezami, Linear and nonlinear investigations for the adsorption of paracetamol and metformin from water on acid-treated clay, Sci. Rep. 11 (2021) 1–13, https://doi.org/10.1038/s41598- 021-93040-y.S. Iftekhar, D.L. Ramasamy, V. Srivastava, M.B. Asif, M. Sillanp¨ aa, ¨ Understanding the factors affecting the adsorption of Lanthanum using different adsorbents: a critical review, Chemosphere. 204 (2018) 413–430, https://doi.org/10.1016/j. chemosphere.2018.04.053.C.M. Kerkhoff, K. da Boit Martinello, D.S.P. Franco, M.S. Netto, J. Georgin, E. L. Foletto, D.G.A. Piccilli, L.F.O. Silva, G.L. Dotto, Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp, J. Mol. Liq. 339 (2021), 117184, https://doi.org/ 10.1016/J.MOLLIQ.2021.117184.C.A. Igwegbe, S.N. Oba, C.O. Aniagor, A.G. Adeniyi, J.O. Ighalo, Adsorption of ciprofloxacin from water: a comprehensive review, J. Ind. Eng. Chem. 93 (2021) 57–77, https://doi.org/10.1016/J.JIEC.2020.09.023.M.S. Salman, M.N. Hasan, M.M. Hasan, K.T. Kubra, M.C. Sheikh, A.I. Rehan, R. M. Waliullah, A.I. Rasee, M.E. Awual, M.S. Hossain, A.K.D. Alsukaibi, H. M. Alshammari, M.R. Awual, Improving copper(II) ion detection and adsorption from wastewater by the ligand-functionalized composite adsorbent, J. Mol. Struct. 1282 (2023), 135259, https://doi.org/10.1016/J. MOLSTRUC.2023.135259.M.N. Hasan, M.S. Salman, M.M. Hasan, K.T. Kubra, M.C. Sheikh, A.I. Rehan, A. I. Rasee, M.E. Awual, R.M. Waliullah, M.S. Hossain, A. Islam, S. Khandaker, A.K. D. Alsukaibi, H.M. Alshammari, M.R. Awual, Assessing sustainable Lutetium(III) ions adsorption and recovery using novel composite hybrid nanomaterials, J. Mol. Struct. 1276 (2023), 134795, https://doi.org/10.1016/J. MOLSTRUC.2022.134795.M.M. Hasan, K.T. Kubra, M.N. Hasan, M.E. Awual, M.S. Salman, M.C. Sheikh, A. I. Rehan, A.I. Rasee, R.M. Waliullah, M.S. Islam, S. Khandaker, A. Islam, M. S. Hossain, A.K.D. Alsukaibi, H.M. Alshammari, M.R. Awual, Sustainable ligandmodified based composite material for the selective and effective cadmium(II) capturing from wastewater, J. Mol. Liq. 371 (2023), 121125, https://doi.org/ 10.1016/J.MOLLIQ.2022.121125.P.R. Souza, G.L. Dotto, N.P.G. Salau, Detailed numerical solution of pore volume and surface diffusion model in adsorption systems, Chem. Eng. Res. Des. 122 (2017) 298–307, https://doi.org/10.1016/J.CHERD.2017.04.021.Y. Vieira, J.P. Silveira, G.L. Dotto, S. Knani, J. Vieillard, J. Georgin, D.S.P. Franco, E.C. Lima, Mechanistic insights and steric interpretations through statistical physics modelling and density functional theory calculations for the adsorption of the pesticides atrazine and diuron by Hovenia dulcis biochar, J. Mol. Liq. 367 (2022), 120418, https://doi.org/10.1016/J.MOLLIQ.2022.120418.Y. Vieira, C. Schnorr, A.C. Piazzi, M.S. Netto, W.M. Piccini, D.S.P. Franco, E. S. Mallmann, J. Georgin, L.F.O. Silva, G.L. Dotto, An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon, J. Mol. Liq. 361 (2022), 119639, https://doi.org/10.1016/J. MOLLIQ.2022.119639.A.M. Awad, S.M.R. Shaikh, R. Jalab, M.H. Gulied, M.S. Nasser, A. Benamor, S. Adham, Adsorption of organic pollutants by natural and modified clays: a comprehensive review, Sep. Purif. Technol. 228 (2019), 115719, https://doi.org/ 10.1016/j.seppur.2019.115719.K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156 (2010) 2–10, https://doi.org/10.1016/j. cej.2009.09.013.M.N. Hasan, M.A. Shenashen, M.M. Hasan, H. Znad, M.R. Awual, Assessing of cesium removal from wastewater using functionalized wood cellulosic adsorbent, Chemosphere. 270 (2021), 128668, https://doi.org/10.1016/J. CHEMOSPHERE.2020.128668.H.N. Tran, H.C. Nguyen, S.H. Woo, T.V. Nguyen, S. Vigneswaran, A. HosseiniBandegharaei, J. Rinklebe, A. Kumar Sarmah, A. Ivanets, G.L. Dotto, T.T. Bui, R. S. Juang, H.P. Chao, Removal of various contaminants from water by renewable lignocellulose-derived biosorbents: a comprehensive and critical review 49 (2019) 2155–2219, https://doi.org/10.1080/10643389.2019.1607442.M.R. Awual, A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater, Chem. Eng. J. 266 (2015) 368–375, https://doi.org/10.1016/J.CEJ.2014.12.094.M.R. Awual, M.M. Hasan, M.M. Rahman, A.M. Asiri, Novel composite material for selective copper(II) detection and removal from aqueous media, J. Mol. Liq. 283 (2019) 772–780, https://doi.org/10.1016/J.MOLLIQ.2019.03.141.A. Shahat, K.T. Kubra, M.S. Salman, M.N. Hasan, M.M. Hasan, Novel solid-state sensor material for efficient cadmium(II) detection and capturing from wastewater, Microchem. J. 164 (2021), 105967, https://doi.org/10.1016/J. MICROC.2021.105967.M.N. Hasan, M.S. Salman, A. Islam, H. Znad, M.M. Hasan, Sustainable composite sensor material for optical cadmium(II) monitoring and capturing from wastewater, Microchem. J. 161 (2021), 105800, https://doi.org/10.1016/J. MICROC.2020.105800.L. Sellaoui, G.L. Dotto, A. Ben Lamine, A. Erto, Interpretation of single and competitive adsorption of cadmium and zinc on activated carbon using monolayer and exclusive extended monolayer models, Environ. Sci. Pollut. Res. 24 (2017) 19902–19908, https://doi.org/10.1007/S11356-017-9562-8/TABLES/ 1.M.R. Awual, M.M. Hasan, H. Znad, Organic–inorganic based nano-conjugate adsorbent for selective palladium(II) detection, separation and recovery, Chem. Eng. J. 259 (2015) 611–619, https://doi.org/10.1016/J.CEJ.2014.08.028.M.R. Awual, Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater, Chem. Eng. J. 303 (2016) 539–546, https://doi.org/10.1016/J.CEJ.2016.06.040.M.S. Salman, H. Znad, M.N. Hasan, M.M. Hasan, Optimization of innovative composite sensor for Pb(II) detection and capturing from water samples, Microchem. J. 160 (2021), 105765, https://doi.org/10.1016/J. MICROC.2020.105765.M.R. Awual, M.M. Hasan, A. Islam, M.M. Rahman, A.M. Asiri, M.A. Khaleque, M. C. Sheikh, Introducing an amine functionalized novel conjugate material for toxic nitrite detection and adsorption from wastewater, J. Clean. Prod. 228 (2019) 778–785, https://doi.org/10.1016/J.JCLEPRO.2019.04.280.M.R. Awual, Efficient phosphate removal from water for controlling eutrophication using novel composite adsorbent, J. Clean. Prod. 228 (2019) 1311–1319, https://doi.org/10.1016/J.JCLEPRO.2019.04.325.J.P. Maity, C.M. Hsu, T.J. Lin, W.C. Lee, P. Bhattacharya, J. Bundschuh, C. Y. Chen, Removal of fluoride from water through bacterial-surfactin mediated novel hydroxyapatite nanoparticle and its efficiency assessment: adsorption isotherm, adsorption kinetic and adsorption thermodynamics, Environ. Nanotechnol. Monit. Manag. 9 (2018) 18–28, https://doi.org/10.1016/j. enmm.2017.11.001.S. Hong, C. Wen, J. He, F. Gan, Y.S. Ho, Adsorption thermodynamics of Methylene Blue onto bentonite, J. Hazard. Mater. 167 (2009) 630–633, https://doi.org/ 10.1016/j.jhazmat.2009.01.014.D.T. Nguyen, H.N. Tran, R.S. Juang, N.D. Dat, F. Tomul, A. Ivanets, S.H. Woo, A. Hosseini-Bandegharaei, V.P. Nguyen, H.P. Chao, Adsorption process and mechanism of acetaminophen onto commercial activated carbon, J. Environ. Chem. Eng. 8 (2020), 104408, https://doi.org/10.1016/J.JECE.2020.104408.S. Lyubchik, A. Lyubchik, O. Lygina, S. Lyubchik, I. Fonsec, Comparison of the thermodynamic parameters estimation for the adsorption process of the metals from liquid phase on activated carbons, Thermodyn. Interact. Stud. Solids, Liq. Gases (2011), https://doi.org/10.5772/19514O.S. Bello, K.A. Adegoke, O.O. Sarumi, O.S. Lameed, Functionalized locust bean pod (Parkia biglobosa) activated carbon for Rhodamine B dye removal, Heliyon. 5 (2019), e02323, https://doi.org/10.1016/j.heliyon.2019.e02323.P. Sharma, N. Hussain, D.J. Borah, M.R. Das, Kinetics and adsorption behavior of the methyl blue at the graphene oxide/reduced graphene oxide nanosheet-water interface: a comparative study, J. Chem. Eng. Data 58 (2013) 3477–3488, https:// doi.org/10.1021/je400743r.A.L. Cazetta, O. Pezoti, K.C. Bedin, T.L. Silva, A. Paesano Junior, T. Asefa, V. C. Almeida, Magnetic activated carbon derived from biomass waste by concurrent synthesis: efficient adsorbent for toxic dyes, ACS Sustain. Chem. Eng. 4 (2016) 1058–1068, https://doi.org/10.1021/acssuschemeng.5b01141.D. Douroumis, A. Fahr, J. Siepmann, M.J. Snowden, V. Torchilin, Computational Pharmaceutics: Application of Molecular Modeling in Drug Delivery, John Wiley & Sons, 2015. https://books.google.com.br/books? hl=pt-BR&lr=&id=54d8EAAAQBAJ&oi=fnd&pg=PR12&dq=Computational+ Pharmaceutics:+Application+of+Molecular+Modeling+in+Drug+Delivery &ots=fc3ZQzGYUZ&sig=bpa1S_4VJIo-p-d9S3U5bUlMIpY#v=onepage& q=Computational Pharmaceutics%3A Application of Molecular Modeling in Drug Delivery&f=false. (Accessed 28 March 2023).N. Haddish-Berhane, J.L. Rickus, K. Haghighi, The role of multiscale computational approaches for rational design of conventional and nanoparticle oral drug delivery systems, Int. J. Nanomedicine 2 (2007) 315–331.L. Sellaoui, D. Franco, H. Ghalla, J. Georgin, M.S. Netto, G. Luiz Dotto, A. BonillaPetriciolet, H. Belmabrouk, A. Bajahzar, Insights of the adsorption mechanism of methylene blue on brazilian berries seeds: experiments, phenomenological modelling and DFT calculations, Chem. Eng. J. 394 (2020), 125011, https://doi. org/10.1016/J.CEJ.2020.125011.L. Sellaoui, E.P. Hessou, M. Badawi, M.S. Netto, G.L. Dotto, L.F.O. Silva, F. Tielens, J. Ifthikar, A. Bonilla-Petriciolet, Z. Chen, Trapping of Ag+, Cu2+, and Co2+ by faujasite zeolite Y: new interpretations of the adsorption mechanism via DFT and statistical modeling investigation, Chem. Eng. J. 420 (2021), 127712, https://doi.org/10.1016/J.CEJ.2020.127712.H. Gasparetto, Y. Vieira, N. Paula Gonçalves Salau, The role of quantum-chemical descriptors and sigma-profile overlapping of different co-solvents on tuning ethanolic extraction of soybean oil, J. Mol. Liq. (2023), 122306, https://doi.org/ 10.1016/J.MOLLIQ.2023.122306.M. Ibarra-Rodríguez, M. S´ anchez, Adsorption of metformin on graphitic carbon nitride functionalized with metals of group 1–3 (Li, Na, K, Be, Mg, Ca, B, Al, and Ga), DFT calculations, Comput. Theor. Chem. 1207 (2022), https://doi.org/ 10.1016/j.comptc.2021.113532.A.S. Ghasemi, M.R. Taghartapeh, A. Soltani, P.J. Mahon, Adsorption behavior of metformin drug on boron nitride fullerenes: thermodynamics and DFT studies, J. Mol. Liq. 275 (2019) 955–967, https://doi.org/10.1016/j.molliq.2018.11.124E. Chigo Anota, G.H. Cocoletzi, GGA-based analysis of the metformin adsorption on BN nanotubes, Phys. E Low Dimensional Syst. Nanostruct. 56 (2014) 134–140, https://doi.org/10.1016/j.physe.2013.08.033.M.S. Hoseininezhad-Namin, P. Pargolghasemi, S. Alimohammadi, A.S. Rad, L. Taqavi, Quantum chemical study on the adsorption of metformin drug on the surface of pristine, Si- and Al-doped (5, 5) SWCNTs, Phys. E Low Dimensional Syst. Nanostruct. 90 (2017) 204–213, https://doi.org/10.1016/j. physe.2017.04.002.F. Kamali, G. Ebrahimzadeh Rajaei, S. Mohajeri, A. Shamel, M. KhodadadiMoghaddam, Adsorption behavior of metformin drug on the C60 and C48 nanoclusters: a comparative DFT study, Monatshefte Fur Chemie. 151 (2020) 711–720, https://doi.org/10.1007/S00706-020-02597-3/TABLES/2.X. Huang, Y. Liu, S. Liu, Z. Li, X. Tan, Y. Ding, G. Zeng, Y. Xu, W. Zeng, B. Zheng, Removal of metformin hydrochloride by: alternanthera philoxeroides biomass derived porous carbon materials treated with hydrogen peroxide, RSC Adv. 6 (2016) 79275–79284, https://doi.org/10.1039/c6ra08365j.A. Hethnawi, M. Alnajjar, A.D. Manasrah, A. Hassan, G. Vitale, R. Jeong, N. N. Nassar, Metformin removal from water using fixed-bed column of silicaalumina composite, Colloids Surf. A Physicochem. Eng. Asp. 597 (2020), 124814, https://doi.org/10.1016/j.colsurfa.2020.124814.L. Piai, M. Blokland, A. van der Wal, A. Langenhoff, Biodegradation and adsorption of micropollutants by biological activated carbon from a drinking water production plant, J. Hazard. Mater. 388 (2020), https://doi.org/10.1016/j. jhazmat.2020.122028.B.A.J. Poursat, R.J.M. van Spanning, M. Braster, R. Helmus, P. de Voogt, J. R. Parsons, Biodegradation of metformin and its transformation product, guanylurea, by natural and exposed microbial communities, Ecotoxicol. Environ. Saf. 182 (2019), 109414, https://doi.org/10.1016/j.ecoenv.2019.109414.H. Cui, P. Schroder, ¨ Uptake, translocation and possible biodegradation of the antidiabetic agent metformin by hydroponically grown Typha latifolia, J. Hazard. Mater. 308 (2016) 355–361, https://doi.org/10.1016/j.jhazmat.2016.01.054.W. Mrozik, J. Stefanska, ´ Adsorption and biodegradation of antidiabetic pharmaceuticals in soils, Chemosphere. 95 (2014) 281–288, https://doi.org/ 10.1016/j.chemosphere.2013.09.012.S. Tisler, C. Zwiener, Aerobic and anaerobic formation and biodegradation of guanyl urea and other transformation products of metformin, Water Res. 149 (2019) 130–135, https://doi.org/10.1016/j.watres.2018.11.001.E. Janka, D. Carvajal, S. Wang, R. Bakke, C. Dinamarca, Treatment of metformincontaining wastewater by a hybrid vertical anaerobic biofilm-reactor (HyVAB), Int. J. Environ. Res. Public Health 16 (2019), https://doi.org/10.3390/ ijerph16214125.M. Markiewicz, C. Jungnickel, S. Stolte, A. Białk-Bielinska, ´ J. Kumirska, W. Mrozik, Primary degradation of antidiabetic drugs, J. Hazard. Mater. 324 (2017) 428–435, https://doi.org/10.1016/j.jhazmat.2016.11.008.R. Moogouei, M. Borghei, S. Hosseini, G. Tajadod, Potential of plant species for phytoremediation of metformin from solutions, Int. J. Environ. Sci. Technol. 15 (2018) 593–598, https://doi.org/10.1007/s13762-017-1538-1.M.F. Mohd Amin, S.G.J. Heijman, L.C. Rietveld, Clay-starch combination for micropollutants removal from wastewater treatment plant effluent, Water Sci. Technol. 73 (2016) 1719–1727, https://doi.org/10.2166/wst.2016.001.A. Islam, S.H. Teo, Y.H. Taufiq-Yap, C.H. Ng, D.V.N. Vo, M.L. Ibrahim, M. M. Hasan, M.A.R. Khan, A.S.M. Nur, M.R. Awual, Step towards the sustainable toxic dyes removal and recycling from aqueous solution- a comprehensive review, Resour. Conserv. Recycl. 175 (2021), 105849, https://doi.org/10.1016/J. RESCONREC.2021.105849.K.T. Kubra, M.S. Salman, M.N. Hasan, Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent, J. Mol. Liq. 328 (2021), 115468, https://doi.org/10.1016/J.MOLLIQ.2021.115468.F.J.O. Quint˜ ao, J.R.L. Freitas, C. de Fatima ´ Machado, S.F. Aquino, S. de Queiroz Silva, R.J. de C´ assia Franco Afonso, Characterization of metformin by-products under photolysis, photocatalysis, ozonation and chlorination by highperformance liquid chromatography coupled to high-resolution mass spectrometry, Rapid Commun. Mass Spectrom. 30 (2016) 2360–2368, https:// doi.org/10.1002/RCM.7724.C.F. Carbuloni, J.E. Savoia, J.S.P. Santos, C.A.A. Pereira, R.G. Marques, V.A. S. Ribeiro, A.M. Ferrari, Degradation of metformin in water by TiO2–ZrO2 photocatalysis, J. Environ. Manag. 262 (2020), 110347, https://doi.org/ 10.1016/j.jenvman.2020.110347.F.R. Orsetti, L. Bukman, J.S. Santos, B.E. Nagay, E.C. Rangel, N.C. Cruz, Methylene blue and metformin photocatalytic activity of CeO2-Nb2O5 coatings is dependent on the treatment time of plasma electrolytic oxidation on titanium, Appl. Surf. Sci. Adv. 6 (2021), https://doi.org/10.1016/j.apsadv.2021.100143.M. Neamt¸u, D. Grandjean, A. Sienkiewicz, S. Le Faucheur, V. Slaveykova, J.J. V. Colmenares, C. Pulgarín, L.F. De Alencastro, Degradation of eight relevant micropollutants in different water matrices by neutral photo-Fenton process under UV254 and simulated solar light irradiation - a comparative study, Appl. Catal. B Environ. 158–159 (2014) 30–37, https://doi.org/10.1016/j. apcatb.2014.04.001.A. You, J. Song, H. Deng, C. Zhou, J. Chao, G. Zhong, W. Liao, Design and assembly of TZCS/PO/Ni2P-MnOx composite with “homojunction + protection layer + cocatalyst” structure for photocatalytic overall water splitting, Colloids Surf. A Physicochem. Eng. Asp. 667 (2023), 131374, https://doi.org/10.1016/J. COLSURFA.2023.131374.19154Adsorption mechanismMetforminOccurrence in the environmentRemediationToxicological effectsPublicationORIGINALA critical review of the current environmental risks posed by the.pdfA critical review of the current environmental risks posed by the.pdfapplication/pdf6089266https://repositorio.cuc.edu.co/bitstreams/b780d383-40ed-4108-81a8-54aef01ac7e0/download49eee9c747423e62566d6acc20332b03MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/0dd6dc69-7a4e-406c-8ca8-4f1a656503f5/download73a5432e0b76442b22b026844140d683MD52TEXTA critical review of the current environmental risks posed by the.pdf.txtA critical review of the current environmental risks posed by the.pdf.txtExtracted texttext/plain100724https://repositorio.cuc.edu.co/bitstreams/db715ba5-c9ca-4616-867d-73e76c0f6b68/download9ab548766149c68a4a30fdb07b3085e1MD53THUMBNAILA critical review of the current environmental risks posed by the.pdf.jpgA critical review of the current environmental risks posed by the.pdf.jpgGenerated Thumbnailimage/jpeg14487https://repositorio.cuc.edu.co/bitstreams/e6a81230-ed37-4a9b-a9f4-e124295fc019/downloada30e397a62c49dad34aae65f4488c146MD5411323/13705oai:repositorio.cuc.edu.co:11323/137052024-11-19 04:01:50.486https://creativecommons.org/licenses/by-nc-nd/4.0/© 2023 Elsevier Ltd.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |