Reducing torque pulsations in PMa-SynRM: A way for improving motor performance

This paper aims to evaluate the performance of synchronous reluctance motors assisted by a permanent magnet (PMa-SynRM) focused on efficiency and torque pulsations. PMa-SynRM shows high efficiency and power factor, compared to induction motors (IM), although they have a greater cost. These machines...

Full description

Autores:
Viego, Percy
Gómez, Julio R.
Sousa Santos, Vladimir
Monteagudo Yanes, José Pedro
Quispe, Enrique C.
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7958
Acceso en línea:
https://hdl.handle.net/11323/7958
http://doi.org/10.11591/ijpeds.v12.i1.pp%25p
https://repositorio.cuc.edu.co/
Palabra clave:
Permanent magnet motor drives
Synchronous reluctance motor drives
Torque ripple
Cogging torque
Economic analysis
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_f17e4a84b475d93caef33a6c7d6ba206
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7958
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Reducing torque pulsations in PMa-SynRM: A way for improving motor performance
title Reducing torque pulsations in PMa-SynRM: A way for improving motor performance
spellingShingle Reducing torque pulsations in PMa-SynRM: A way for improving motor performance
Permanent magnet motor drives
Synchronous reluctance motor drives
Torque ripple
Cogging torque
Economic analysis
title_short Reducing torque pulsations in PMa-SynRM: A way for improving motor performance
title_full Reducing torque pulsations in PMa-SynRM: A way for improving motor performance
title_fullStr Reducing torque pulsations in PMa-SynRM: A way for improving motor performance
title_full_unstemmed Reducing torque pulsations in PMa-SynRM: A way for improving motor performance
title_sort Reducing torque pulsations in PMa-SynRM: A way for improving motor performance
dc.creator.fl_str_mv Viego, Percy
Gómez, Julio R.
Sousa Santos, Vladimir
Monteagudo Yanes, José Pedro
Quispe, Enrique C.
dc.contributor.author.spa.fl_str_mv Viego, Percy
Gómez, Julio R.
Sousa Santos, Vladimir
Monteagudo Yanes, José Pedro
Quispe, Enrique C.
dc.subject.spa.fl_str_mv Permanent magnet motor drives
Synchronous reluctance motor drives
Torque ripple
Cogging torque
Economic analysis
topic Permanent magnet motor drives
Synchronous reluctance motor drives
Torque ripple
Cogging torque
Economic analysis
description This paper aims to evaluate the performance of synchronous reluctance motors assisted by a permanent magnet (PMa-SynRM) focused on efficiency and torque pulsations. PMa-SynRM shows high efficiency and power factor, compared to induction motors (IM), although they have a greater cost. These machines develop relatively high torque ripple, cogging torque, and torque imbalances. Consequently, the electromagnetic torque is reduced, the motor temperature is increased, and mechanical vibrations are induced. The optimal design of the machine structures such as flow barriers, permanent magnets, and stator slots, among others, allow reducing torque pulsations. A comparison is made between different designs of the PMa-SynRM reported in the scientific literature, and the effects on efficiency, torque pulsation, and operating costs are evaluated. A case study on the motor driving the air conditioner blower in a hotel room was made, to determine the best economic variant between IM or PMa-SynRM. A sensitive analysis was made to evaluate several uncertainties. The advantages of using one of the PMa-SynRM analyzed were demonstrated. Also, it was proved that the investment is feasible economically, although NPV and payback are not the best, due to low load factor in inverter-controlled motors in air conditioners.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-08-03
dc.date.accessioned.none.fl_str_mv 2021-03-04T19:51:46Z
dc.date.available.none.fl_str_mv 2021-03-04T19:51:46Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2088-8694
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7958
dc.identifier.doi.spa.fl_str_mv http://doi.org/10.11591/ijpeds.v12.i1.pp%25p
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2088-8694
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7958
http://doi.org/10.11591/ijpeds.v12.i1.pp%25p
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] L. Collazo, et al., “A new exact equivalent circuit of the medium voltage three-phase induction motor,” International Journal of Electrical and Computer Engineering (IJECE). vol. 10, no. 6, pp. 6164-6171, 2020.
[2] V. Sousa, et al, “Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages,” in 2015 CHILEAN Conference on electrical, electronics engineering, information and communication technologies (CHILECON), 2015, pp. 567 - 572.
[3] V. Sousa, et al., “Harmonic distortion evaluation generated by PMW motor drives in electrical industrial systems,” International Journal of Electrical and Computer Engineering (IJECE), vol. 7, no. 6, pp. 3207-3216, 2017.
[4] D. R. Quintero, et al., “Methodology to measure electric discharge machining (EDM) bearing currents in induction motors with supply from a variable speed drive (VSD),” INGE CUC, vol. 9, no. 2, pp. 83-93, 2013.
[5] V. Sousa, et al., “Assessment of the energy efficiency estimation methods on induction motors considering real-time monitoring,” Measurement, vol. 136, pp. 237–247, 2019.
[6] A. T. de Almeida, et al., “Beyond induction motors—technology trends to move up efficiency,” IEEE Transactions on Industry Applications, vol. 50, no. 3, pp. 2103-2114, 2014.
[7] E. I. Mbadiwe, et al., “Permanent magnet flux switching motor technology as a solution for high torque clean electric vehicle drive,” International Journal of Power Electronics and Drive System (IJPEDS), vol. 10, no. 2, pp. 575-584, 2019.
[8] F. A. Hasan and L. J. Rashad, “Fractional-order PID controller for permanent magnet DC motor based on PSO algorithm,” International Journal of Power Electronics and Drive System (IJPEDS), vol. 10 no. 4, pp. 1724-1733, 2019.
[9] D. Mingardi and N. Bianchi, “Line-start pm-assisted synchronous motor design, optimization, and tests,” IEEE Transactions on Industrial Electronics, vol. 64, no. 12, pp. 9739-9747, 2017.
[10] R. Vartanian and A.H.A.Toliat, “Design and comparison of an optimized permanent magnet-assisted synchronous reluctance motor (PMa-SynRM) with an induction motor with identical NEMA Frame stators,” in Electric Ship Technologies Symposium (ESTS), Baltimore, USA, 2009, pp. 107-112, 2009.
[11] Q. Lin, et al., “Design and optimization of a reluctance-torque-assisted synchronous motor with high efficiency and low torque ripple,” in 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, pp. 1-4, 2019.
[12] Won-ho Kim, et al., “Optimal PM design of PMa-SynRM for wide constant-power operation and torque ripple reduction”, IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4660-4663, 2009.
[13] P.R. Viego, et al., “Direct-on-line-start permanent-magnet-assisted synchronous reluctance motors with ferrite magnets for driving constant loads,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 1, pp. 651-659, 2020.
[14] S. Huang, et al., “Optimization the electromagnetic torque ripple of permanent magnet synchronous motor.” in 2010 International Conference on Electrical and Control Engineering, Wuhan, China, pp. 3969-3972, 2010.
[15] J. Li, H., et al., "Vibration analysis of permanent-magnet-assisted synchronous reluctance machines," in 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China pp. 1-6, 2019.
[16] M. T. Bin Tarek, J. Herbert and S. Choi, “Analysis of unbalanced magnetic pull of permanent magnet assisted synchronous reluctance motor based on uneven axial temperature distribution of magnets,” in 2017 IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, pp. 1-6, 2017.
[17] B. Silwal, M. N. Ibrahim and P. Sergean, “Performance of PM-assisted synchronous reluctance machine under rotor eccentricity,” in 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Amalfi, pp. 319-323, 2018.
[18] B. Gaussens, et al., “Torque ripple mitigation of PM-assisted synchronous reluctance machine: design and optimization,” in 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sidney, NSW, pp. 1-6, 2017.
[19] P. Niazi and H.A. Toliyat, “Design of a low-cost concentric winding permanent magnet assisted synchronous reluctance motor drive,” in Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, Kowloon, Hong Kong, vol. 3, pp. 1744-1748, 2005.
[20] Wu Ren, et al., “Reducing cogging torque and suppressing torque ripple in PMASynRM for EV/HEV applications,” in 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, pp. 1-6, 2014.
[21] A. Tap, et al., “Effects of the rotor design parameters on the torque production of a PMaSynRM for washing machine applications”, in 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), Brasov, pp. 370-375, 2017.
[22] A. O. Dulanto, “Design of a synchronous reluctance motor assisted with permanent magnets for pump applications,” M.S. Thesis, Dept. of Elec. Eng., KTH Royal Ins. of Technology, Sweden, 2016.
[23] H.C. Liu, et al., "Design of permanent magnet-assisted synchronous reluctance motor for maximized back-emf and torque ripple reduction," IEEE Transactions on Magnetics, vol. 53, no. 6, pp.1-4, 2017.
[24] B. Kerdsup, et al., “Design of permanent magnet-assisted synchronous reluctance motors with maximum efficiency-power factor and torque per cost” in 2018 XIII International Conference on Electrical Machines (ICEM), Alexandroupoli, pp. 2465-2471, 2018.
[25] A. Tap, et al., “Effects of the stator design parameters on the torque performance of a PMaSynRM,” in 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Cadiz, pp. 346-351, 2017.
[26] C.M. Spargo, et al, “Application of fractional slot concentrated windings to syncronous reluctance motor”, IEEE Transactions on Industry Applications, vol.51, pp. 1446-1455, 2015.
[27] O. Payza, et al., “Investigation of losses for a concentrated winding high-speed permanent magnet-assisted synchronous reluctance motor for washing machine application,” IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1-5, 2018.
[28] M. Gamba, et al., "A new PM-assisted synchronous reluctance machine with a nonconventional fractional slot per pole combination," in Optimization of Electrical and Electronic Equipment (OPTIM), 2014 International Conference, Bran, Romania, pp. 268-275, 2014.
[29] X. Cheng, et al., “Permanent magnet assisted synchronous reluctance machine with fractional-slot winding configurations,” in 2013 International Electric Machines and Drives Conference, Chicago, IL, pp. 374-381, 2013.
[30] W. Ren, et al., “Reducing cogging torque and suppressing torque ripple in PMASynRM for EV/HEV applications”, in Proceedings of the Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, pp. 1-6, 2014.
[31] M. J. S. Zuberi, et al., “Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry”, Applied Energy, vol. 205, pp. 85–104, 2017.
[32] Y. Özkara and M. Atak, “Regional total-factor energy efficiency and electricity saving potential of manufacturing industry in Turkey”, Energy, vol. 93, pp. 495–510, 2015.
[33] C.J. Verucchi, et al, “High efficiency electric motors: economic and energy advantages”, IEEE Latin America Transactions, vol. 11, no. 6, pp. 1325-1331, 2013.
[34] Resolution No. 28-2011: “Electric rates for the non-residential sector”, Ministry of Finance and Prices, Havana, 2011.
[35] E. Sierra, et al., “obtaining load Curves of Distribution transformers by Customers’ Billings: Case Study,” INGE CUC, vol. 10, no. 2, pp. 27-35, 2014.
[36] F. J. T. E. Ferreira, et al., "Overview of retrofitting options in induction motors to improve their efficiency and reliability," in 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, pp. 1-12, 2018.
[37] A.T. De Almeida, et al, “Technical and economic considerations on super high-efficiency three-phase motors”, IEEE Transactions on Industry Applications, vol. 50, no. 2, pp. 1274-1285, 2014.
[38] J. Fong, et al., “IEC61800-9 system standards as a tool to boost the efficiency of electric motor driven systems worldwide”, Inventions 2020, 5, 20, pp 1-15
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv International Journal of Power Electronics and Drive Systems
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv http://ijpeds.iaescore.com/index.php/IJPEDS/article/view/21057
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/018a1b13-e4a0-4cd8-8cac-fb1cbbc693cd/download
https://repositorio.cuc.edu.co/bitstreams/017fb9a1-5c11-46d2-8dcb-d8a41659d2b6/download
https://repositorio.cuc.edu.co/bitstreams/0a741748-9a2b-404c-ac0d-b1423835b4fc/download
https://repositorio.cuc.edu.co/bitstreams/d7a06166-5f43-4c4d-b4a6-fa324dfb3b2e/download
https://repositorio.cuc.edu.co/bitstreams/b34786f4-b2a5-4ed7-bd95-26fb467e62e0/download
bitstream.checksum.fl_str_mv d9ef3db4014bd1d95da82631f90418b8
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
cf5fe12cfed61747cdd807084b2777dc
12fd90420706b544410bf3eaefe49a7e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760799680561152
spelling Viego, PercyGómez, Julio R.Sousa Santos, VladimirMonteagudo Yanes, José PedroQuispe, Enrique C.2021-03-04T19:51:46Z2021-03-04T19:51:46Z2019-08-032088-8694https://hdl.handle.net/11323/7958http://doi.org/10.11591/ijpeds.v12.i1.pp%25pCorporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper aims to evaluate the performance of synchronous reluctance motors assisted by a permanent magnet (PMa-SynRM) focused on efficiency and torque pulsations. PMa-SynRM shows high efficiency and power factor, compared to induction motors (IM), although they have a greater cost. These machines develop relatively high torque ripple, cogging torque, and torque imbalances. Consequently, the electromagnetic torque is reduced, the motor temperature is increased, and mechanical vibrations are induced. The optimal design of the machine structures such as flow barriers, permanent magnets, and stator slots, among others, allow reducing torque pulsations. A comparison is made between different designs of the PMa-SynRM reported in the scientific literature, and the effects on efficiency, torque pulsation, and operating costs are evaluated. A case study on the motor driving the air conditioner blower in a hotel room was made, to determine the best economic variant between IM or PMa-SynRM. A sensitive analysis was made to evaluate several uncertainties. The advantages of using one of the PMa-SynRM analyzed were demonstrated. Also, it was proved that the investment is feasible economically, although NPV and payback are not the best, due to low load factor in inverter-controlled motors in air conditioners.Viego, Percy-will be generated-orcid-0000-0002-6396-5737-600Gómez, Julio R.Sousa Santos, Vladimir-will be generated-orcid-0000-0001-8808-1914-600Monteagudo Yanes, José Pedro-will be generated-orcid-0000-0001-7234-7853-600Quispe, Enrique C.-will be generated-orcid-0000-0003-3223-1834-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2International Journal of Power Electronics and Drive Systemshttp://ijpeds.iaescore.com/index.php/IJPEDS/article/view/21057Permanent magnet motor drivesSynchronous reluctance motor drivesTorque rippleCogging torqueEconomic analysisReducing torque pulsations in PMa-SynRM: A way for improving motor performanceArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] L. Collazo, et al., “A new exact equivalent circuit of the medium voltage three-phase induction motor,” International Journal of Electrical and Computer Engineering (IJECE). vol. 10, no. 6, pp. 6164-6171, 2020.[2] V. Sousa, et al, “Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages,” in 2015 CHILEAN Conference on electrical, electronics engineering, information and communication technologies (CHILECON), 2015, pp. 567 - 572.[3] V. Sousa, et al., “Harmonic distortion evaluation generated by PMW motor drives in electrical industrial systems,” International Journal of Electrical and Computer Engineering (IJECE), vol. 7, no. 6, pp. 3207-3216, 2017.[4] D. R. Quintero, et al., “Methodology to measure electric discharge machining (EDM) bearing currents in induction motors with supply from a variable speed drive (VSD),” INGE CUC, vol. 9, no. 2, pp. 83-93, 2013.[5] V. Sousa, et al., “Assessment of the energy efficiency estimation methods on induction motors considering real-time monitoring,” Measurement, vol. 136, pp. 237–247, 2019.[6] A. T. de Almeida, et al., “Beyond induction motors—technology trends to move up efficiency,” IEEE Transactions on Industry Applications, vol. 50, no. 3, pp. 2103-2114, 2014.[7] E. I. Mbadiwe, et al., “Permanent magnet flux switching motor technology as a solution for high torque clean electric vehicle drive,” International Journal of Power Electronics and Drive System (IJPEDS), vol. 10, no. 2, pp. 575-584, 2019.[8] F. A. Hasan and L. J. Rashad, “Fractional-order PID controller for permanent magnet DC motor based on PSO algorithm,” International Journal of Power Electronics and Drive System (IJPEDS), vol. 10 no. 4, pp. 1724-1733, 2019.[9] D. Mingardi and N. Bianchi, “Line-start pm-assisted synchronous motor design, optimization, and tests,” IEEE Transactions on Industrial Electronics, vol. 64, no. 12, pp. 9739-9747, 2017.[10] R. Vartanian and A.H.A.Toliat, “Design and comparison of an optimized permanent magnet-assisted synchronous reluctance motor (PMa-SynRM) with an induction motor with identical NEMA Frame stators,” in Electric Ship Technologies Symposium (ESTS), Baltimore, USA, 2009, pp. 107-112, 2009.[11] Q. Lin, et al., “Design and optimization of a reluctance-torque-assisted synchronous motor with high efficiency and low torque ripple,” in 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, pp. 1-4, 2019.[12] Won-ho Kim, et al., “Optimal PM design of PMa-SynRM for wide constant-power operation and torque ripple reduction”, IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4660-4663, 2009.[13] P.R. Viego, et al., “Direct-on-line-start permanent-magnet-assisted synchronous reluctance motors with ferrite magnets for driving constant loads,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 1, pp. 651-659, 2020.[14] S. Huang, et al., “Optimization the electromagnetic torque ripple of permanent magnet synchronous motor.” in 2010 International Conference on Electrical and Control Engineering, Wuhan, China, pp. 3969-3972, 2010.[15] J. Li, H., et al., "Vibration analysis of permanent-magnet-assisted synchronous reluctance machines," in 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China pp. 1-6, 2019.[16] M. T. Bin Tarek, J. Herbert and S. Choi, “Analysis of unbalanced magnetic pull of permanent magnet assisted synchronous reluctance motor based on uneven axial temperature distribution of magnets,” in 2017 IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, pp. 1-6, 2017.[17] B. Silwal, M. N. Ibrahim and P. Sergean, “Performance of PM-assisted synchronous reluctance machine under rotor eccentricity,” in 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Amalfi, pp. 319-323, 2018.[18] B. Gaussens, et al., “Torque ripple mitigation of PM-assisted synchronous reluctance machine: design and optimization,” in 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sidney, NSW, pp. 1-6, 2017.[19] P. Niazi and H.A. Toliyat, “Design of a low-cost concentric winding permanent magnet assisted synchronous reluctance motor drive,” in Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, Kowloon, Hong Kong, vol. 3, pp. 1744-1748, 2005.[20] Wu Ren, et al., “Reducing cogging torque and suppressing torque ripple in PMASynRM for EV/HEV applications,” in 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, pp. 1-6, 2014.[21] A. Tap, et al., “Effects of the rotor design parameters on the torque production of a PMaSynRM for washing machine applications”, in 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), Brasov, pp. 370-375, 2017.[22] A. O. Dulanto, “Design of a synchronous reluctance motor assisted with permanent magnets for pump applications,” M.S. Thesis, Dept. of Elec. Eng., KTH Royal Ins. of Technology, Sweden, 2016.[23] H.C. Liu, et al., "Design of permanent magnet-assisted synchronous reluctance motor for maximized back-emf and torque ripple reduction," IEEE Transactions on Magnetics, vol. 53, no. 6, pp.1-4, 2017.[24] B. Kerdsup, et al., “Design of permanent magnet-assisted synchronous reluctance motors with maximum efficiency-power factor and torque per cost” in 2018 XIII International Conference on Electrical Machines (ICEM), Alexandroupoli, pp. 2465-2471, 2018.[25] A. Tap, et al., “Effects of the stator design parameters on the torque performance of a PMaSynRM,” in 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Cadiz, pp. 346-351, 2017.[26] C.M. Spargo, et al, “Application of fractional slot concentrated windings to syncronous reluctance motor”, IEEE Transactions on Industry Applications, vol.51, pp. 1446-1455, 2015.[27] O. Payza, et al., “Investigation of losses for a concentrated winding high-speed permanent magnet-assisted synchronous reluctance motor for washing machine application,” IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1-5, 2018.[28] M. Gamba, et al., "A new PM-assisted synchronous reluctance machine with a nonconventional fractional slot per pole combination," in Optimization of Electrical and Electronic Equipment (OPTIM), 2014 International Conference, Bran, Romania, pp. 268-275, 2014.[29] X. Cheng, et al., “Permanent magnet assisted synchronous reluctance machine with fractional-slot winding configurations,” in 2013 International Electric Machines and Drives Conference, Chicago, IL, pp. 374-381, 2013.[30] W. Ren, et al., “Reducing cogging torque and suppressing torque ripple in PMASynRM for EV/HEV applications”, in Proceedings of the Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, pp. 1-6, 2014.[31] M. J. S. Zuberi, et al., “Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry”, Applied Energy, vol. 205, pp. 85–104, 2017.[32] Y. Özkara and M. Atak, “Regional total-factor energy efficiency and electricity saving potential of manufacturing industry in Turkey”, Energy, vol. 93, pp. 495–510, 2015.[33] C.J. Verucchi, et al, “High efficiency electric motors: economic and energy advantages”, IEEE Latin America Transactions, vol. 11, no. 6, pp. 1325-1331, 2013.[34] Resolution No. 28-2011: “Electric rates for the non-residential sector”, Ministry of Finance and Prices, Havana, 2011.[35] E. Sierra, et al., “obtaining load Curves of Distribution transformers by Customers’ Billings: Case Study,” INGE CUC, vol. 10, no. 2, pp. 27-35, 2014.[36] F. J. T. E. Ferreira, et al., "Overview of retrofitting options in induction motors to improve their efficiency and reliability," in 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, pp. 1-12, 2018.[37] A.T. De Almeida, et al, “Technical and economic considerations on super high-efficiency three-phase motors”, IEEE Transactions on Industry Applications, vol. 50, no. 2, pp. 1274-1285, 2014.[38] J. Fong, et al., “IEC61800-9 system standards as a tool to boost the efficiency of electric motor driven systems worldwide”, Inventions 2020, 5, 20, pp 1-15PublicationORIGINALReducing torque pulsations in PMa-SynRM.pdfReducing torque pulsations in PMa-SynRM.pdfapplication/pdf515677https://repositorio.cuc.edu.co/bitstreams/018a1b13-e4a0-4cd8-8cac-fb1cbbc693cd/downloadd9ef3db4014bd1d95da82631f90418b8MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/017fb9a1-5c11-46d2-8dcb-d8a41659d2b6/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/0a741748-9a2b-404c-ac0d-b1423835b4fc/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILReducing torque pulsations in PMa-SynRM.pdf.jpgReducing torque pulsations in PMa-SynRM.pdf.jpgimage/jpeg64325https://repositorio.cuc.edu.co/bitstreams/d7a06166-5f43-4c4d-b4a6-fa324dfb3b2e/downloadcf5fe12cfed61747cdd807084b2777dcMD54TEXTReducing torque pulsations in PMa-SynRM.pdf.txtReducing torque pulsations in PMa-SynRM.pdf.txttext/plain41533https://repositorio.cuc.edu.co/bitstreams/b34786f4-b2a5-4ed7-bd95-26fb467e62e0/download12fd90420706b544410bf3eaefe49a7eMD5511323/7958oai:repositorio.cuc.edu.co:11323/79582024-09-17 12:45:36.828http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==