Determination of models of simple regression and multivariate analysis for the forecast of the electricity price in Colombia at 2030
The electricity price in Colombia responds to demographic, economic, climatic changes, among others, that generate uncertainty and therefore risks in the electric production. Considering that the decision-making process has a great importance in the electricity market and that the participation of g...
- Autores:
-
Hernández Bueno, Nelson Javier
Pinto Calderón, María De Los ángeles
Muñoz Maldonado, Yecid Alfonso
Ospino Castro, Adalberto Jose
Ospino C., Adalberto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/1212
- Acceso en línea:
- https://hdl.handle.net/11323/1212
https://repositorio.cuc.edu.co/
- Palabra clave:
- Econometric Modeling
Methods of Statistical Simulation
Forecasting
Electricity Price
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_f0df9590be011cd78f70824ef9fa2fe8 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/1212 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Determination of models of simple regression and multivariate analysis for the forecast of the electricity price in Colombia at 2030 |
title |
Determination of models of simple regression and multivariate analysis for the forecast of the electricity price in Colombia at 2030 |
spellingShingle |
Determination of models of simple regression and multivariate analysis for the forecast of the electricity price in Colombia at 2030 Econometric Modeling Methods of Statistical Simulation Forecasting Electricity Price |
title_short |
Determination of models of simple regression and multivariate analysis for the forecast of the electricity price in Colombia at 2030 |
title_full |
Determination of models of simple regression and multivariate analysis for the forecast of the electricity price in Colombia at 2030 |
title_fullStr |
Determination of models of simple regression and multivariate analysis for the forecast of the electricity price in Colombia at 2030 |
title_full_unstemmed |
Determination of models of simple regression and multivariate analysis for the forecast of the electricity price in Colombia at 2030 |
title_sort |
Determination of models of simple regression and multivariate analysis for the forecast of the electricity price in Colombia at 2030 |
dc.creator.fl_str_mv |
Hernández Bueno, Nelson Javier Pinto Calderón, María De Los ángeles Muñoz Maldonado, Yecid Alfonso Ospino Castro, Adalberto Jose Ospino C., Adalberto |
dc.contributor.author.spa.fl_str_mv |
Hernández Bueno, Nelson Javier Pinto Calderón, María De Los ángeles Muñoz Maldonado, Yecid Alfonso Ospino Castro, Adalberto Jose |
dc.contributor.author.none.fl_str_mv |
Ospino C., Adalberto |
dc.subject.eng.fl_str_mv |
Econometric Modeling Methods of Statistical Simulation Forecasting Electricity Price |
topic |
Econometric Modeling Methods of Statistical Simulation Forecasting Electricity Price |
description |
The electricity price in Colombia responds to demographic, economic, climatic changes, among others, that generate uncertainty and therefore risks in the electric production. Considering that the decision-making process has a great importance in the electricity market and that the participation of generators in energy auctions is usually based on intuition and previous experience, the need to study the possible alternatives and methods that minimize the risks before deciding some important matter can be appreciate. In this article, the estimation of the behavior of electrical energy prices in Colombia at the year 2030 for different scenarios and there are propose the following scientific models: (1) Simple regression; (2) econometric model. As result are obtained forecasts for each model, identifying that the econometric model has the lowest margin of error compared to the historical data that considers the behavior of different variables for the forecast |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-11-17T13:48:49Z |
dc.date.available.none.fl_str_mv |
2018-11-17T13:48:49Z |
dc.date.issued.none.fl_str_mv |
2018 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2146-4553 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/1212 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2146-4553 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/1212 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
International Journal of Energy Economics and Policy |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/57e9783e-e4f3-4641-ba9a-665136cfa221/download https://repositorio.cuc.edu.co/bitstreams/695c55fd-adc7-477a-9588-ac8b4a4a999d/download https://repositorio.cuc.edu.co/bitstreams/77556fcb-613a-4d76-8bf5-7ab1a552b24d/download https://repositorio.cuc.edu.co/bitstreams/cbf610cc-b81e-4c4e-a307-e84ad120fb71/download |
bitstream.checksum.fl_str_mv |
e6d720e8793cfcc673ce590ac3e8f4c4 8a4605be74aa9ea9d79846c1fba20a33 565a4fbdee4b384d023cfeea8193180c f3f6c56b95d9eb67903b29d6e4d99f47 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166851372253184 |
spelling |
Hernández Bueno, Nelson JavierPinto Calderón, María De Los ángelesMuñoz Maldonado, Yecid AlfonsoOspino Castro, Adalberto JoseOspino C., Adalbertovirtual::886-12018-11-17T13:48:49Z2018-11-17T13:48:49Z20182146-4553https://hdl.handle.net/11323/1212Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The electricity price in Colombia responds to demographic, economic, climatic changes, among others, that generate uncertainty and therefore risks in the electric production. Considering that the decision-making process has a great importance in the electricity market and that the participation of generators in energy auctions is usually based on intuition and previous experience, the need to study the possible alternatives and methods that minimize the risks before deciding some important matter can be appreciate. In this article, the estimation of the behavior of electrical energy prices in Colombia at the year 2030 for different scenarios and there are propose the following scientific models: (1) Simple regression; (2) econometric model. As result are obtained forecasts for each model, identifying that the econometric model has the lowest margin of error compared to the historical data that considers the behavior of different variables for the forecastHernández Bueno, Nelson Javier-5bd46355-89c5-4905-ba52-46534708c6d4-0Pinto Calderón, María De Los ángeles-651c5229-d584-444c-bbb8-f895c19865aa-0Muñoz Maldonado, Yecid Alfonso-2dd391fb-1576-44b3-a959-c8ee2220d434-0Ospino Castro, Adalberto Jose-0000-0003-1466-0424-600engInternational Journal of Energy Economics and PolicyAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Econometric ModelingMethods of Statistical SimulationForecastingElectricity PriceDetermination of models of simple regression and multivariate analysis for the forecast of the electricity price in Colombia at 2030Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationaf89e44d-2c08-45ae-b01c-cd941b86fa8avirtual::886-1af89e44d-2c08-45ae-b01c-cd941b86fa8avirtual::886-1https://scholar.google.es/citations?user=ODmDjToAAAAJ&hl=esvirtual::886-10000-0003-1466-0424virtual::886-1ORIGINALDetermination of models of simple regression and multivariate analysis for the forecast of the electricity price in Colombia at 2030.pdfDetermination of models of simple regression and multivariate analysis for the forecast of the electricity price in Colombia at 2030.pdfapplication/pdf1346200https://repositorio.cuc.edu.co/bitstreams/57e9783e-e4f3-4641-ba9a-665136cfa221/downloade6d720e8793cfcc673ce590ac3e8f4c4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/695c55fd-adc7-477a-9588-ac8b4a4a999d/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILDetermination of models of simple regression and multivariate analysis for the forecast of the electricity price in Colombia at 2030.pdf.jpgDetermination of models of simple regression and multivariate analysis for the forecast of the electricity price in Colombia at 2030.pdf.jpgimage/jpeg72033https://repositorio.cuc.edu.co/bitstreams/77556fcb-613a-4d76-8bf5-7ab1a552b24d/download565a4fbdee4b384d023cfeea8193180cMD54TEXTDetermination of models of simple regression and multivariate analysis for the forecast of the electricity price in Colombia at 2030.pdf.txtDetermination of models of simple regression and multivariate analysis for the forecast of the electricity price in Colombia at 2030.pdf.txttext/plain51160https://repositorio.cuc.edu.co/bitstreams/cbf610cc-b81e-4c4e-a307-e84ad120fb71/downloadf3f6c56b95d9eb67903b29d6e4d99f47MD5511323/1212oai:repositorio.cuc.edu.co:11323/12122025-02-25 11:44:39.238open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |