Fuzzy logic methodology to study the behavior of energy transformation processes based on statistics t2 and q

In the processes of energy transformation, to carry out an adequate follow-up of the process parameters represent an opportunity to propose strategies to improve the processes' performance. For this reason, it is essential to analyze the behavior of process variables under the quantitative and...

Full description

Autores:
Cárdenas, Y
Carrillo, G E
Alviz, A
Carrillo, G
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7885
Acceso en línea:
https://hdl.handle.net/11323/7885
http://doi.org/10.1088/1742-6596/1708/1/012034
https://repositorio.cuc.edu.co/
Palabra clave:
MATLAB
fuzzy Mandani type logic
analysis of energy transformation processes
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_f02f15db77d4b625100f9d0608f25712
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7885
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Fuzzy logic methodology to study the behavior of energy transformation processes based on statistics t2 and q
title Fuzzy logic methodology to study the behavior of energy transformation processes based on statistics t2 and q
spellingShingle Fuzzy logic methodology to study the behavior of energy transformation processes based on statistics t2 and q
MATLAB
fuzzy Mandani type logic
analysis of energy transformation processes
title_short Fuzzy logic methodology to study the behavior of energy transformation processes based on statistics t2 and q
title_full Fuzzy logic methodology to study the behavior of energy transformation processes based on statistics t2 and q
title_fullStr Fuzzy logic methodology to study the behavior of energy transformation processes based on statistics t2 and q
title_full_unstemmed Fuzzy logic methodology to study the behavior of energy transformation processes based on statistics t2 and q
title_sort Fuzzy logic methodology to study the behavior of energy transformation processes based on statistics t2 and q
dc.creator.fl_str_mv Cárdenas, Y
Carrillo, G E
Alviz, A
Carrillo, G
dc.contributor.author.spa.fl_str_mv Cárdenas, Y
Carrillo, G E
Alviz, A
Carrillo, G
dc.subject.spa.fl_str_mv MATLAB
fuzzy Mandani type logic
analysis of energy transformation processes
topic MATLAB
fuzzy Mandani type logic
analysis of energy transformation processes
description In the processes of energy transformation, to carry out an adequate follow-up of the process parameters represent an opportunity to propose strategies to improve the processes' performance. For this reason, it is essential to analyze the behavior of process variables under the quantitative and qualitative optics supported by the experts. Thus, this work proposes a methodology of fuzzy Mandani type logic that allows the analysis of energy transformation processes (such as internal combustion engines) based on T2 and Q statistics, as a way to identify whether the operation limits are kept within the normal or exceed the limits, achieving to identify the anomaly in the process. In the initial stage, MATLAB implements two diffuse systems; the first system aims to determine the impact variables have on the generation of an anomaly, without identifying the type of defect. In the second stage, it's defined as a function of the number guests, the kind of monster that occurs in the observations made from the transition range in the operation of the system analyzed, until the last measurement obtained. In the third stage, the statistics T2, Q, and its limits are determined from the operating variables of the selected system. Finally, the previously calculated statistics are graphically processed in the diffuse systems. The results obtained in this work show that the analysis of processes or phenomena based on qualitative observations, the methodology implemented, is a useful tool for decision making in the industrial sector.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-02-19T16:55:26Z
dc.date.available.none.fl_str_mv 2021-02-19T16:55:26Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7885
dc.identifier.doi.spa.fl_str_mv http://doi.org/10.1088/1742-6596/1708/1/012034
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7885
http://doi.org/10.1088/1742-6596/1708/1/012034
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Li Z, Sun L, Geng Y, Dong H, Ren J, Liug Z, Tian X, Yabara H and Higanoa Y 2017 Examining industrial structure changes and corresponding carbon emissionreduction effect by combining input-output analysis and social network analysis: A comparison study of China and Japan J. Clean. Prod. 162 70-82
Islam J, Hu Y, Haltas I, Balta-ozkan N, Jr G and Varga L 2018 Reducing industrial energy demand in the UK: A review of energy e ffi ciency technologies and energy-saving potentia in selected sectors Renew. Sustain. Energy Rev. 94 1153-1178
Franciosi C, Voisin A, Miranda S, Riemma S and Iung B 2020 Measuring maintenance impacts on the sustainability of manufacturing industries: from a systematic literature review to a framework proposal J. Clean. Prod. 260 121-129
Waligórski M, Batura K, Kucal K and Merkisz J 2020 Research on airplanes engines dynamic processes with modern acoustic methods for fast and accurate diagnostics and safety improvement Measurement 12 123-129
Diéguez M, Urroz J, Sáinz D, Machin J, Arana M and Gandía L 2018 Characterization of combustion anomalies in a hydrogen-fueled 1. 4 L commercial spark-ignition engine using in-cylinder pressure, block-engine vibration, and acoustic measurements Energy Convers. Manag. 172 67-80
Alblawi A 2020 Fault diagnosis of an industrial gas turbine based on the thermodynamic model coupled with a multi feedforward artificial neural networks Energy Reports 6 1083-1096
Khelil Y, Graton G, Djeziri M, Ouladsine M and Outbib R 2012 Fault detection and isolation in marine diesel engines-a generic methodology IFAC Proc. 45 964-969
Tayarani S S and Khorasani K Fault detection and isolation of gas turbine engines using a bank of neural networks J. Process Control 36 41-48
Delvecchio S, Bonfiglio P and Pompoli F 2018 Vibro-acoustic condition monitoring of internal combustion engines: A critical review of existing techniques Mech. Syst. Signal Process 99 661-683
Çeven S, Albayrak A and Bayır R 2020 Real-time range estimation in electric vehicles using fuzzy Comput. Electr. Eng. 34 83-89
Ansari F 2020 Cost-based text understanding to improve maintenance knowledge intelligence in manufacturing enterprises Comput. Ind. Eng. 141 106-115
Lin Q, Zhang Y, Yang S, Ma S, Zhang T and Xiao Q 2020 Full length Article A self-learning and self-optimizing framework for the fault diagnosis knowledge base in a workshop Robot. Comput. Integer Manuf. 65 101-121
Tso W, Burnak B and Pistikopoulos E 2020 HY-POP: Hyperparameter optimization of machine learning models through parametric programming Comput. Chem. Eng. 139 106-113
Sangha M, Gomm J, Yu D and Page G 2005 Fault detection and identification of automotive engines using neural networks IFAC Proc. 38 272-277
Zumoffen D 2008 Desarrollo de Sistemas de Diagnóstico de Fallas Integrado al Diseño de Control Tolerante a Fallas en Procesos Químicos (Colombia: Universidad Nacional de Rosario)
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Journal of Physics: Conference Series
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://iopscience.iop.org/article/10.1088/1742-6596/1708/1/012034/meta
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/eca485d8-9488-46f6-8f0d-7f23166ae305/download
https://repositorio.cuc.edu.co/bitstreams/ea787ce0-51c4-4603-a1c7-b48775c52a3b/download
https://repositorio.cuc.edu.co/bitstreams/9f36f7a6-5dbd-404d-825a-ed8f16acc076/download
https://repositorio.cuc.edu.co/bitstreams/d5ab898b-dddb-42bf-bd59-afd4543f075e/download
https://repositorio.cuc.edu.co/bitstreams/b2f88556-8c48-42a0-b59d-14b906549aa7/download
bitstream.checksum.fl_str_mv e30e9215131d99561d40d6b0abbe9bad
57c8159ae1d546149bcc732beb3affdd
4460e5956bc1d1639be9ae6146a50347
fe87482caa7e81241b4daf3e88df02b7
e0c75fd31a5d487e9e68c99d9bc8a13a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760777245229056
spelling Cárdenas, YCarrillo, G EAlviz, ACarrillo, G2021-02-19T16:55:26Z2021-02-19T16:55:26Z2020https://hdl.handle.net/11323/7885http://doi.org/10.1088/1742-6596/1708/1/012034Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In the processes of energy transformation, to carry out an adequate follow-up of the process parameters represent an opportunity to propose strategies to improve the processes' performance. For this reason, it is essential to analyze the behavior of process variables under the quantitative and qualitative optics supported by the experts. Thus, this work proposes a methodology of fuzzy Mandani type logic that allows the analysis of energy transformation processes (such as internal combustion engines) based on T2 and Q statistics, as a way to identify whether the operation limits are kept within the normal or exceed the limits, achieving to identify the anomaly in the process. In the initial stage, MATLAB implements two diffuse systems; the first system aims to determine the impact variables have on the generation of an anomaly, without identifying the type of defect. In the second stage, it's defined as a function of the number guests, the kind of monster that occurs in the observations made from the transition range in the operation of the system analyzed, until the last measurement obtained. In the third stage, the statistics T2, Q, and its limits are determined from the operating variables of the selected system. Finally, the previously calculated statistics are graphically processed in the diffuse systems. The results obtained in this work show that the analysis of processes or phenomena based on qualitative observations, the methodology implemented, is a useful tool for decision making in the industrial sector.Cárdenas, YCarrillo, G EAlviz, ACarrillo, Gapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Physics: Conference Serieshttps://iopscience.iop.org/article/10.1088/1742-6596/1708/1/012034/metaMATLABfuzzy Mandani type logicanalysis of energy transformation processesFuzzy logic methodology to study the behavior of energy transformation processes based on statistics t2 and qArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionLi Z, Sun L, Geng Y, Dong H, Ren J, Liug Z, Tian X, Yabara H and Higanoa Y 2017 Examining industrial structure changes and corresponding carbon emissionreduction effect by combining input-output analysis and social network analysis: A comparison study of China and Japan J. Clean. Prod. 162 70-82Islam J, Hu Y, Haltas I, Balta-ozkan N, Jr G and Varga L 2018 Reducing industrial energy demand in the UK: A review of energy e ffi ciency technologies and energy-saving potentia in selected sectors Renew. Sustain. Energy Rev. 94 1153-1178Franciosi C, Voisin A, Miranda S, Riemma S and Iung B 2020 Measuring maintenance impacts on the sustainability of manufacturing industries: from a systematic literature review to a framework proposal J. Clean. Prod. 260 121-129Waligórski M, Batura K, Kucal K and Merkisz J 2020 Research on airplanes engines dynamic processes with modern acoustic methods for fast and accurate diagnostics and safety improvement Measurement 12 123-129Diéguez M, Urroz J, Sáinz D, Machin J, Arana M and Gandía L 2018 Characterization of combustion anomalies in a hydrogen-fueled 1. 4 L commercial spark-ignition engine using in-cylinder pressure, block-engine vibration, and acoustic measurements Energy Convers. Manag. 172 67-80Alblawi A 2020 Fault diagnosis of an industrial gas turbine based on the thermodynamic model coupled with a multi feedforward artificial neural networks Energy Reports 6 1083-1096Khelil Y, Graton G, Djeziri M, Ouladsine M and Outbib R 2012 Fault detection and isolation in marine diesel engines-a generic methodology IFAC Proc. 45 964-969Tayarani S S and Khorasani K Fault detection and isolation of gas turbine engines using a bank of neural networks J. Process Control 36 41-48Delvecchio S, Bonfiglio P and Pompoli F 2018 Vibro-acoustic condition monitoring of internal combustion engines: A critical review of existing techniques Mech. Syst. Signal Process 99 661-683Çeven S, Albayrak A and Bayır R 2020 Real-time range estimation in electric vehicles using fuzzy Comput. Electr. Eng. 34 83-89Ansari F 2020 Cost-based text understanding to improve maintenance knowledge intelligence in manufacturing enterprises Comput. Ind. Eng. 141 106-115Lin Q, Zhang Y, Yang S, Ma S, Zhang T and Xiao Q 2020 Full length Article A self-learning and self-optimizing framework for the fault diagnosis knowledge base in a workshop Robot. Comput. Integer Manuf. 65 101-121Tso W, Burnak B and Pistikopoulos E 2020 HY-POP: Hyperparameter optimization of machine learning models through parametric programming Comput. Chem. Eng. 139 106-113Sangha M, Gomm J, Yu D and Page G 2005 Fault detection and identification of automotive engines using neural networks IFAC Proc. 38 272-277Zumoffen D 2008 Desarrollo de Sistemas de Diagnóstico de Fallas Integrado al Diseño de Control Tolerante a Fallas en Procesos Químicos (Colombia: Universidad Nacional de Rosario)PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/eca485d8-9488-46f6-8f0d-7f23166ae305/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALFuzzy logic methodology to study the behavior of energy transformation.pdfFuzzy logic methodology to study the behavior of energy transformation.pdfapplication/pdf1282435https://repositorio.cuc.edu.co/bitstreams/ea787ce0-51c4-4603-a1c7-b48775c52a3b/download57c8159ae1d546149bcc732beb3affddMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/9f36f7a6-5dbd-404d-825a-ed8f16acc076/download4460e5956bc1d1639be9ae6146a50347MD52THUMBNAILFuzzy logic methodology to study the behavior of energy transformation.pdf.jpgFuzzy logic methodology to study the behavior of energy transformation.pdf.jpgimage/jpeg34164https://repositorio.cuc.edu.co/bitstreams/d5ab898b-dddb-42bf-bd59-afd4543f075e/downloadfe87482caa7e81241b4daf3e88df02b7MD54TEXTFuzzy logic methodology to study the behavior of energy transformation.pdf.txtFuzzy logic methodology to study the behavior of energy transformation.pdf.txttext/plain22195https://repositorio.cuc.edu.co/bitstreams/b2f88556-8c48-42a0-b59d-14b906549aa7/downloade0c75fd31a5d487e9e68c99d9bc8a13aMD5511323/7885oai:repositorio.cuc.edu.co:11323/78852024-09-17 11:06:13.097http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==