Cyanobacterial biomass pigments as natural sensitizer for tio2 thin films

In this work, we studied the effect of TiO2 sensitization with dry biomass extracted of cyanobacteria on the degradation of methylene blue dye (AM). Cyanobacterial cultures isolated from water samples were collected from the swamp of Malambo in Colombia; two main genera of cyanobacteria were identif...

Full description

Autores:
Patiño Camelo, Karen Lisana
Diaz-Uribe, Carlos
Gallego Cartagena, Euler
vallejo, william
Martinez, Vincent
Quiñones, Cesar
Hurtado, Mikel
Schott, E.
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5258
Acceso en línea:
https://hdl.handle.net/11323/5258
https://repositorio.cuc.edu.co/
Palabra clave:
Cyanobacterial
Biomass pigments
Natural sensitizer
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_efeb64d3752156662f90319d3cdd030c
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5258
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Cyanobacterial biomass pigments as natural sensitizer for tio2 thin films
title Cyanobacterial biomass pigments as natural sensitizer for tio2 thin films
spellingShingle Cyanobacterial biomass pigments as natural sensitizer for tio2 thin films
Cyanobacterial
Biomass pigments
Natural sensitizer
title_short Cyanobacterial biomass pigments as natural sensitizer for tio2 thin films
title_full Cyanobacterial biomass pigments as natural sensitizer for tio2 thin films
title_fullStr Cyanobacterial biomass pigments as natural sensitizer for tio2 thin films
title_full_unstemmed Cyanobacterial biomass pigments as natural sensitizer for tio2 thin films
title_sort Cyanobacterial biomass pigments as natural sensitizer for tio2 thin films
dc.creator.fl_str_mv Patiño Camelo, Karen Lisana
Diaz-Uribe, Carlos
Gallego Cartagena, Euler
vallejo, william
Martinez, Vincent
Quiñones, Cesar
Hurtado, Mikel
Schott, E.
dc.contributor.author.spa.fl_str_mv Patiño Camelo, Karen Lisana
Diaz-Uribe, Carlos
Gallego Cartagena, Euler
vallejo, william
Martinez, Vincent
Quiñones, Cesar
Hurtado, Mikel
Schott, E.
dc.subject.spa.fl_str_mv Cyanobacterial
Biomass pigments
Natural sensitizer
topic Cyanobacterial
Biomass pigments
Natural sensitizer
description In this work, we studied the effect of TiO2 sensitization with dry biomass extracted of cyanobacteria on the degradation of methylene blue dye (AM). Cyanobacterial cultures isolated from water samples were collected from the swamp of Malambo in Colombia; two main genera of cyanobacteria were identified, and they were cultivated with BG-11 culture medium. The concentrations of chlorophyll a in the exponential and stationary phases of growth were measured; the phycobilin content was quantified by spectrophotometry. Thin films of TiO2 were deposited by a doctor blade method, and they were sensitized by wet impregnation. Furthermore, a methylene blue (MB) photodegradation process was studied under visible light irradiation on the cyanobacterial biomass sensitized TiO2 material (TiO2/sensitizer); besides, the pseudo-first-order model was used to obtain kinetic information about photocatalytic degradation. The results showed that the BG-11+ treatment reported a higher amount of dry biomass and phycobiliproteins. After the sensitization process, the TiO2/sensitizer thin films showed a significant red shift in the optical activity; besides the thin film roughness decreasing, the TiO2/sensitizer showed photocatalytic activity of 23.2% under visible irradiation, and besides, the kinetic () constant for TiO2/sensitizer thin films was 3.1 times greater than the value of TiO2 thin films. Finally, results indicated that cyanobacterial biomass is a suitable source of natural sensitizers to be used in semiconductor sensitization.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-09-11T15:31:11Z
dc.date.available.none.fl_str_mv 2019-09-11T15:31:11Z
dc.date.issued.none.fl_str_mv 2019
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1110-662X
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5258
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1110-662X
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/5258
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv https://doi.org/10.1155/2019/7184327
dc.relation.references.spa.fl_str_mv [1] G. S. Bullerjahn, R. M. McKay, T. W. Davis et al., “Global solutions to regional problems: collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study,” Harmful Algae, vol. 54, pp. 223–238, 2016. [2] E. Funari, M. Manganelli, F. M. Buratti, and E. Testai, “Cyanobacteria blooms in water: Italian guidelines to assess and manage the risk associated to bathing and recreational activities,” Science of the Total Environment, vol. 598, pp. 867–880, 2017. [3] H. W. Paerl, W. S. Gardner, K. E. Havens et al., “Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients,” Harmful Algae, vol. 54, pp. 213–222, 2016. [4] P. M. Visser, J. M. H. Verspagen, G. Sandrini et al., “How rising CO2 and global warming may stimulate harmful cyanobacterial blooms,” Harmful Algae, vol. 54, pp. 145–159, 2016. [5] Environmental Protection Agency, Cyanobacteria and cyanotoxins: information for drinking water systems, pp. 1–11, 2014, https://www.epa.gov/cyanobacteria_factsheet.pdf. [6] R. Dewil, D. Mantzavinos, I. Poulios, and M. A. Rodrigo, “New perspectives for advanced oxidation processes,” Journal of Environmental Management, vol. 195, Part 2, pp. 93–99, 2017. [7] V. Gitis and N. Hankins, “Water treatment chemicals: trends and challenges,” Journal of Water Process Engineering, vol. 25, pp. 34–38, 2018. [8] L. Wolski and M. Ziolek, “Insight into pathways of methylene blue degradation with H2O2 over mono and bimetallic Nb, Zn oxides,” Applied Catalysis B: Environmental, vol. 224, pp. 634–647, 2018. [9] D. Pathania, S. Sharma, and P. Singh, “Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast,” Arabian Journal of Chemistry, vol. 10, pp. S1445–S1451, 2017. [10] C. Díaz-Uribe, W. Vallejo, K. Campos et al., “Improvement of the photocatalytic activity of TiO2 using Colombian Caribbean species (Syzygium cumini) as natural sensitizers: experimental and theoretical studies,” Dyes and Pigments, vol. 150, pp. 370– 376, 2018. [11] D. Liu, R. Tian, J. Wang et al., “Photoelectrocatalytic degradation of methylene blue using F doped TiO2 photoelectrodeunder visible light irradiation,” Chemosphere, vol. 185, pp. 574–581, 2017. [12] W. Vallejo, C. Diaz-Uribe, and Á. Cantillo, “Methylene blue photocatalytic degradation under visible irradiation on TiO2 thin films sensitized with Cu and Zn tetracarboxyphthalocyanines,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 299, pp. 80–86, 2015. [13] M. A. M. Al-Alwani, A. B. Mohamad, A. A. H. Kadhum, and N. A. Ludin, “Effect of solvents on the extraction of natural pigments and adsorption onto TiO2 for dye-sensitized solar cell applications,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 138, pp. 130–137, 2015. [14] N.-S. Lau, M. Matsui, and A. A. A. Abdullah, “Cyanobacteria: photoautotrophic microbial factories for the sustainable synthesis of industrial products,” BioMed Research International, vol. 2015, Article ID 754934, 9 pages, 2015. [15] A. Kathiravan, M. Chandramohan, R. Renganathan, and S. Sekar, “Cyanobacterial chlorophyll as a sensitizer for colloidal TiO2,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 71, no. 5, pp. 1783–1787, 2009. [16] P. Enciso, M. Cabrerizo, J. Gancheff, P. Denis, and M. Cerda, “Phycocyanin assemblies onto nanostructured TiO2 for photovoltaic cells,” Journal of Applied Solution Chemistry and Modeling, vol. 2, pp. 225–233, 2013. [17] C. Xiang, C. A. Okonkwo, Q. Xiong, L. Wang, and L. Jia, “A novel TiO2 film photoanode decorated with spirulina-derived residual groups for enhanced photocurrent in dye-sensitized solar cells,” Solar Energy, vol. 134, pp. 461–467, 2016. [18] R. S. Gour, M. Bairagi, V. K. Garlapati, and A. Kant, “Enhanced microalgal lipid production with media engineering of potassium nitrate as a nitrogen source,” Bioengineered, vol. 9, no. 1, pp. 98–107, 2018. [19] J. Komárek, J. Kaštovský, J. Mareš, and J. R. Johansen, “Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach,” Preslia, vol. 86, pp. 295–335, 2014. [20] K. Anagnostidis and J. Komárek, “Modern approach to the classification system of the cyanophytes. 3-Oscillatoriales,” Algological Studies, vol. 50-53, pp. 327–472, 1988. [21] S. Cirés and A. Quesada, Catálogo de cianobacterias planctónicas potencialmente tóxicas de las aguas continentales españolas, Ministerio de Medio Ambiente y Medio Rural y Marino, 2011. [22] AlgaeBase, “M.D. Guiry,” 2019, http://www.algaebase.org/. [23] J. A. Fernández, A. Suan, J. C. Ramírez et al., “Treatment of real wastewater with TiO2-films sensitized by a natural-dye obtained from Picramnia sellowii,” Journal of Environmental Chemical Engineering, vol. 4, no. 3, pp. 2848–2856, 2016. [24] E. Rice, R. Baird, A. Eaton, and L. Clescerl, Standard Methods for Examination of Water and Wastewater, American Public Health Association, Washington DC, USA, 22a edition, 2012. [25] C. Quiñones, Y. Ayala, and W. Vallejo, “Methylene blue photoelectrodegradation under UV irradiation on Au/Pdmodified TiO2 films,” Applied Surface Science, vol. 257, no. 2, pp. 367–371, 2010. [26] F. E. Fritsch and F. Rich, “Freshwater algae from Griqualand West,” Transactions of the Royal Society of South Africa, vol. 18, no. 1, pp. 1–92, 1929. [27] M. Gomont, “Monographie des Oscillariées (Nostocacées Homocystées). Deuxième partie. - Lyngbyées,” Annales des sciences Naturelles, Botanique, Série, vol. 7, no. 16, pp. 91–264, 1892, pls 1-7. [28] M. Hamadanian, J. Safaei-Ghomi, M. Hosseinpour, R. Masoomi, and V. Jabbari, “Uses of new natural dye photosensitizers in fabrication of high potential dye-sensitized solar cells (DSSCs),” Materials Science in semiconductor Processing, vol. 27, pp. 733–739, 2014. [29] Ü. İşci, M. Beyreis, N. Tortik et al., “Methylsulfonyl Zn phthalocyanine: a polyvalent and powerful hydrophobic photosensitizer with a wide spectrum of photodynamic applications,” Photodiagnosis and Photodynamic Therapy, vol. 13, pp. 40–47, 2016. [30] T. Phongamwong, M. Chareonpanich, and J. Limtrakul, “Role of chlorophyll in spirulina on photocatalytic activity of CO2 reduction under visible light over modified N-doped TiO2 photocatalysts,” Applied Catalysis B: Environmental, vol. 168- 169, pp. 114–124, 2015. [31] J. Lim, A. D. Bokare, and W. Choi, “Visible light sensitization of TiO2 nanoparticles by a dietary pigment, curcumin, for environmental photochemical transformations,” RSC Advances, vol. 7, no. 52, pp. 32488–32495, 2017. [32] P. Enciso, F. M. Cabrerizo, J. S. Gancheff, P. A. Denis, and M. F. Cerdá, “Phycocyanin as potential natural dye for its use in photovoltaic cells,” Journal of Applied Solution Chemistry and Modeling, vol. 2, pp. 225–233, 2013. [33] E. L. Simmons, “Relation of the diffuse reflectance remission function to the fundamental optical parameters,” Optica Acta: International Journal of Optics, vol. 19, no. 10, pp. 845–851, 1972. [34] J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Physica Status Solidi (b), vol. 15, no. 2, pp. 627–637, 1966. [35] B. D. Viezbicke, S. Patel, B. E. Davis, and D. P. Birnie III, “Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system,” Physica Status Solidi (b), vol. 252, no. 8, pp. 1700–1710, 2015. [36] W. Vallejo, A. Rueda, C. Díaz-Uribe, C. Grande, and P. Quintana, “Photocatalytic activity of graphene oxide–TiO2 thin films sensitized by natural dyes extracted from Bactris guineensis,” Royal Society Open Science, vol. 6, no. 3, article 181824, 2019. [37] S. Khaleghi,“Calculation of electronic and optical properties of doped titanium dioxide nanostructure,” Journal of Nanostructures, vol. 2, no. 2, pp. 157–161, 2012. [38] T. S. Senthil, N. Muthukumarasamy, S. Agilan, R. Balasundaraprabhu, and C. K. Senthil Kumaran, “Effect of surface morphology on the performance of natural dye sensitized TiO2 thin film solar cell,” Advanced Materials Research, vol. 678, pp. 326–330, 2013. [39] I. K. Konstantinou and T. A. Albanis, “TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review,” Applied Catalysis B: Environmental, vol. 49, no. 1, pp. 1–14, 2004. [40] S. Wang, H. Yang, X. Wang, and W. Feng, “Surface disorder engineering of flake-like Bi2WO6 crystals for enhanced photocatalytic activity,”Journal of Electronic Materials, vol. 48, no. 4, pp. 2067–2076, 2019. [41] X. Zhao, H. Yang, H. Zhang, Z. Cui, and W. Feng, “Surfacedisorder-engineering-induced enhancement in the photocatalytic activity of Bi4Ti3O12 nanosheets,” Desalination and Water Treatment, vol. 145, pp. 326–336, 2019.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv International Journal of Photoenergy
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/7a8960cb-21a3-4068-9a99-2e29346c7b7a/download
https://repositorio.cuc.edu.co/bitstreams/d48ccd02-1df4-4c98-abdc-d6b183613b38/download
https://repositorio.cuc.edu.co/bitstreams/8e1eaaba-d0cb-4fdd-9128-7a32da5393dd/download
https://repositorio.cuc.edu.co/bitstreams/6aa222cb-e62b-41d0-94fe-b922b7a64d1b/download
https://repositorio.cuc.edu.co/bitstreams/35a0febf-1307-4a8d-9157-4e48854f1038/download
bitstream.checksum.fl_str_mv 95dbb5f5a14fe87e011b838c404cae38
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
3a8256aaf88065992d60e8f4cb86beae
95268a427d2a1c62208af14c43694e74
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760804032151552
spelling Patiño Camelo, Karen LisanaDiaz-Uribe, CarlosGallego Cartagena, Eulervallejo, williamMartinez, VincentQuiñones, CesarHurtado, MikelSchott, E.2019-09-11T15:31:11Z2019-09-11T15:31:11Z20191110-662Xhttps://hdl.handle.net/11323/5258Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this work, we studied the effect of TiO2 sensitization with dry biomass extracted of cyanobacteria on the degradation of methylene blue dye (AM). Cyanobacterial cultures isolated from water samples were collected from the swamp of Malambo in Colombia; two main genera of cyanobacteria were identified, and they were cultivated with BG-11 culture medium. The concentrations of chlorophyll a in the exponential and stationary phases of growth were measured; the phycobilin content was quantified by spectrophotometry. Thin films of TiO2 were deposited by a doctor blade method, and they were sensitized by wet impregnation. Furthermore, a methylene blue (MB) photodegradation process was studied under visible light irradiation on the cyanobacterial biomass sensitized TiO2 material (TiO2/sensitizer); besides, the pseudo-first-order model was used to obtain kinetic information about photocatalytic degradation. The results showed that the BG-11+ treatment reported a higher amount of dry biomass and phycobiliproteins. After the sensitization process, the TiO2/sensitizer thin films showed a significant red shift in the optical activity; besides the thin film roughness decreasing, the TiO2/sensitizer showed photocatalytic activity of 23.2% under visible irradiation, and besides, the kinetic () constant for TiO2/sensitizer thin films was 3.1 times greater than the value of TiO2 thin films. Finally, results indicated that cyanobacterial biomass is a suitable source of natural sensitizers to be used in semiconductor sensitization.Universidad del Atlántico, Universidad de la Costa, Institución Universitaria Politécnico Gran Colombiano, Universidad Central, Universidad Minuto de Dios, Pontificia Universidad Católica de Chile, Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry.Patiño Camelo, Karen Lisana-will be generated-orcid-0000-0002-0195-2332-600Diaz-Uribe, Carlos-will be generated-orcid-0000-0003-3208-1696-600Gallego Cartagena, Euler-will be generated-orcid-0000-0003-3316-5007-600vallejo, william-will be generated-orcid-0000-0003-0181-1633-600Martinez, VincentQuiñones, CesarHurtado, Mikel-will be generated-orcid-0000-0002-7588-9313-600Schott, E.engInternational Journal of Photoenergyhttps://doi.org/10.1155/2019/7184327[1] G. S. Bullerjahn, R. M. McKay, T. W. Davis et al., “Global solutions to regional problems: collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study,” Harmful Algae, vol. 54, pp. 223–238, 2016. [2] E. Funari, M. Manganelli, F. M. Buratti, and E. Testai, “Cyanobacteria blooms in water: Italian guidelines to assess and manage the risk associated to bathing and recreational activities,” Science of the Total Environment, vol. 598, pp. 867–880, 2017. [3] H. W. Paerl, W. S. Gardner, K. E. Havens et al., “Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients,” Harmful Algae, vol. 54, pp. 213–222, 2016. [4] P. M. Visser, J. M. H. Verspagen, G. Sandrini et al., “How rising CO2 and global warming may stimulate harmful cyanobacterial blooms,” Harmful Algae, vol. 54, pp. 145–159, 2016. [5] Environmental Protection Agency, Cyanobacteria and cyanotoxins: information for drinking water systems, pp. 1–11, 2014, https://www.epa.gov/cyanobacteria_factsheet.pdf. [6] R. Dewil, D. Mantzavinos, I. Poulios, and M. A. Rodrigo, “New perspectives for advanced oxidation processes,” Journal of Environmental Management, vol. 195, Part 2, pp. 93–99, 2017. [7] V. Gitis and N. Hankins, “Water treatment chemicals: trends and challenges,” Journal of Water Process Engineering, vol. 25, pp. 34–38, 2018. [8] L. Wolski and M. Ziolek, “Insight into pathways of methylene blue degradation with H2O2 over mono and bimetallic Nb, Zn oxides,” Applied Catalysis B: Environmental, vol. 224, pp. 634–647, 2018. [9] D. Pathania, S. Sharma, and P. Singh, “Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast,” Arabian Journal of Chemistry, vol. 10, pp. S1445–S1451, 2017. [10] C. Díaz-Uribe, W. Vallejo, K. Campos et al., “Improvement of the photocatalytic activity of TiO2 using Colombian Caribbean species (Syzygium cumini) as natural sensitizers: experimental and theoretical studies,” Dyes and Pigments, vol. 150, pp. 370– 376, 2018. [11] D. Liu, R. Tian, J. Wang et al., “Photoelectrocatalytic degradation of methylene blue using F doped TiO2 photoelectrodeunder visible light irradiation,” Chemosphere, vol. 185, pp. 574–581, 2017. [12] W. Vallejo, C. Diaz-Uribe, and Á. Cantillo, “Methylene blue photocatalytic degradation under visible irradiation on TiO2 thin films sensitized with Cu and Zn tetracarboxyphthalocyanines,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 299, pp. 80–86, 2015. [13] M. A. M. Al-Alwani, A. B. Mohamad, A. A. H. Kadhum, and N. A. Ludin, “Effect of solvents on the extraction of natural pigments and adsorption onto TiO2 for dye-sensitized solar cell applications,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 138, pp. 130–137, 2015. [14] N.-S. Lau, M. Matsui, and A. A. A. Abdullah, “Cyanobacteria: photoautotrophic microbial factories for the sustainable synthesis of industrial products,” BioMed Research International, vol. 2015, Article ID 754934, 9 pages, 2015. [15] A. Kathiravan, M. Chandramohan, R. Renganathan, and S. Sekar, “Cyanobacterial chlorophyll as a sensitizer for colloidal TiO2,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 71, no. 5, pp. 1783–1787, 2009. [16] P. Enciso, M. Cabrerizo, J. Gancheff, P. Denis, and M. Cerda, “Phycocyanin assemblies onto nanostructured TiO2 for photovoltaic cells,” Journal of Applied Solution Chemistry and Modeling, vol. 2, pp. 225–233, 2013. [17] C. Xiang, C. A. Okonkwo, Q. Xiong, L. Wang, and L. Jia, “A novel TiO2 film photoanode decorated with spirulina-derived residual groups for enhanced photocurrent in dye-sensitized solar cells,” Solar Energy, vol. 134, pp. 461–467, 2016. [18] R. S. Gour, M. Bairagi, V. K. Garlapati, and A. Kant, “Enhanced microalgal lipid production with media engineering of potassium nitrate as a nitrogen source,” Bioengineered, vol. 9, no. 1, pp. 98–107, 2018. [19] J. Komárek, J. Kaštovský, J. Mareš, and J. R. Johansen, “Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach,” Preslia, vol. 86, pp. 295–335, 2014. [20] K. Anagnostidis and J. Komárek, “Modern approach to the classification system of the cyanophytes. 3-Oscillatoriales,” Algological Studies, vol. 50-53, pp. 327–472, 1988. [21] S. Cirés and A. Quesada, Catálogo de cianobacterias planctónicas potencialmente tóxicas de las aguas continentales españolas, Ministerio de Medio Ambiente y Medio Rural y Marino, 2011. [22] AlgaeBase, “M.D. Guiry,” 2019, http://www.algaebase.org/. [23] J. A. Fernández, A. Suan, J. C. Ramírez et al., “Treatment of real wastewater with TiO2-films sensitized by a natural-dye obtained from Picramnia sellowii,” Journal of Environmental Chemical Engineering, vol. 4, no. 3, pp. 2848–2856, 2016. [24] E. Rice, R. Baird, A. Eaton, and L. Clescerl, Standard Methods for Examination of Water and Wastewater, American Public Health Association, Washington DC, USA, 22a edition, 2012. [25] C. Quiñones, Y. Ayala, and W. Vallejo, “Methylene blue photoelectrodegradation under UV irradiation on Au/Pdmodified TiO2 films,” Applied Surface Science, vol. 257, no. 2, pp. 367–371, 2010. [26] F. E. Fritsch and F. Rich, “Freshwater algae from Griqualand West,” Transactions of the Royal Society of South Africa, vol. 18, no. 1, pp. 1–92, 1929. [27] M. Gomont, “Monographie des Oscillariées (Nostocacées Homocystées). Deuxième partie. - Lyngbyées,” Annales des sciences Naturelles, Botanique, Série, vol. 7, no. 16, pp. 91–264, 1892, pls 1-7. [28] M. Hamadanian, J. Safaei-Ghomi, M. Hosseinpour, R. Masoomi, and V. Jabbari, “Uses of new natural dye photosensitizers in fabrication of high potential dye-sensitized solar cells (DSSCs),” Materials Science in semiconductor Processing, vol. 27, pp. 733–739, 2014. [29] Ü. İşci, M. Beyreis, N. Tortik et al., “Methylsulfonyl Zn phthalocyanine: a polyvalent and powerful hydrophobic photosensitizer with a wide spectrum of photodynamic applications,” Photodiagnosis and Photodynamic Therapy, vol. 13, pp. 40–47, 2016. [30] T. Phongamwong, M. Chareonpanich, and J. Limtrakul, “Role of chlorophyll in spirulina on photocatalytic activity of CO2 reduction under visible light over modified N-doped TiO2 photocatalysts,” Applied Catalysis B: Environmental, vol. 168- 169, pp. 114–124, 2015. [31] J. Lim, A. D. Bokare, and W. Choi, “Visible light sensitization of TiO2 nanoparticles by a dietary pigment, curcumin, for environmental photochemical transformations,” RSC Advances, vol. 7, no. 52, pp. 32488–32495, 2017. [32] P. Enciso, F. M. Cabrerizo, J. S. Gancheff, P. A. Denis, and M. F. Cerdá, “Phycocyanin as potential natural dye for its use in photovoltaic cells,” Journal of Applied Solution Chemistry and Modeling, vol. 2, pp. 225–233, 2013. [33] E. L. Simmons, “Relation of the diffuse reflectance remission function to the fundamental optical parameters,” Optica Acta: International Journal of Optics, vol. 19, no. 10, pp. 845–851, 1972. [34] J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Physica Status Solidi (b), vol. 15, no. 2, pp. 627–637, 1966. [35] B. D. Viezbicke, S. Patel, B. E. Davis, and D. P. Birnie III, “Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system,” Physica Status Solidi (b), vol. 252, no. 8, pp. 1700–1710, 2015. [36] W. Vallejo, A. Rueda, C. Díaz-Uribe, C. Grande, and P. Quintana, “Photocatalytic activity of graphene oxide–TiO2 thin films sensitized by natural dyes extracted from Bactris guineensis,” Royal Society Open Science, vol. 6, no. 3, article 181824, 2019. [37] S. Khaleghi,“Calculation of electronic and optical properties of doped titanium dioxide nanostructure,” Journal of Nanostructures, vol. 2, no. 2, pp. 157–161, 2012. [38] T. S. Senthil, N. Muthukumarasamy, S. Agilan, R. Balasundaraprabhu, and C. K. Senthil Kumaran, “Effect of surface morphology on the performance of natural dye sensitized TiO2 thin film solar cell,” Advanced Materials Research, vol. 678, pp. 326–330, 2013. [39] I. K. Konstantinou and T. A. Albanis, “TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review,” Applied Catalysis B: Environmental, vol. 49, no. 1, pp. 1–14, 2004. [40] S. Wang, H. Yang, X. Wang, and W. Feng, “Surface disorder engineering of flake-like Bi2WO6 crystals for enhanced photocatalytic activity,”Journal of Electronic Materials, vol. 48, no. 4, pp. 2067–2076, 2019. [41] X. Zhao, H. Yang, H. Zhang, Z. Cui, and W. Feng, “Surfacedisorder-engineering-induced enhancement in the photocatalytic activity of Bi4Ti3O12 nanosheets,” Desalination and Water Treatment, vol. 145, pp. 326–336, 2019.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2CyanobacterialBiomass pigmentsNatural sensitizerCyanobacterial biomass pigments as natural sensitizer for tio2 thin filmsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALCyanobacterial Biomass Pigments as Natural Sensitizer for TiO2.pdfCyanobacterial Biomass Pigments as Natural Sensitizer for TiO2.pdfapplication/pdf3868508https://repositorio.cuc.edu.co/bitstreams/7a8960cb-21a3-4068-9a99-2e29346c7b7a/download95dbb5f5a14fe87e011b838c404cae38MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/d48ccd02-1df4-4c98-abdc-d6b183613b38/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/8e1eaaba-d0cb-4fdd-9128-7a32da5393dd/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILCyanobacterial Biomass Pigments as Natural Sensitizer for TiO2.pdf.jpgCyanobacterial Biomass Pigments as Natural Sensitizer for TiO2.pdf.jpgimage/jpeg54983https://repositorio.cuc.edu.co/bitstreams/6aa222cb-e62b-41d0-94fe-b922b7a64d1b/download3a8256aaf88065992d60e8f4cb86beaeMD55TEXTCyanobacterial Biomass Pigments as Natural Sensitizer for TiO2.pdf.txtCyanobacterial Biomass Pigments as Natural Sensitizer for TiO2.pdf.txttext/plain38987https://repositorio.cuc.edu.co/bitstreams/35a0febf-1307-4a8d-9157-4e48854f1038/download95268a427d2a1c62208af14c43694e74MD5611323/5258oai:repositorio.cuc.edu.co:11323/52582024-09-17 12:46:36.854http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=