Detection of variables for the diagnosis of overweight and obesity in young chileans using machine learning techniques

Overweight and obesity are considered epidemic problems. The number of factors involved in developing extra body fat makes harder the detection of this problem. Therefore, among the several variables and their levels presented in overweight and obese people, there is a need to improve the classifica...

Full description

Autores:
Calderón Díaz, Mailyn
Serey Castillo, Leonardo J.
Vallejos Cuevas, Esperanza A.
Espinoza, Alexis
Salas, Rodrigo
Macías Jiménez, Mayra A.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13825
Acceso en línea:
https://hdl.handle.net/11323/13825
https://repositorio.cuc.edu.co/
Palabra clave:
Machine learning
Biochemical profiles
Lipid profiles
Normal-weight
Overweight
Obesity
Classification
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_ef462bf59b370c49e4baf5f21c1728ea
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13825
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Detection of variables for the diagnosis of overweight and obesity in young chileans using machine learning techniques
title Detection of variables for the diagnosis of overweight and obesity in young chileans using machine learning techniques
spellingShingle Detection of variables for the diagnosis of overweight and obesity in young chileans using machine learning techniques
Machine learning
Biochemical profiles
Lipid profiles
Normal-weight
Overweight
Obesity
Classification
title_short Detection of variables for the diagnosis of overweight and obesity in young chileans using machine learning techniques
title_full Detection of variables for the diagnosis of overweight and obesity in young chileans using machine learning techniques
title_fullStr Detection of variables for the diagnosis of overweight and obesity in young chileans using machine learning techniques
title_full_unstemmed Detection of variables for the diagnosis of overweight and obesity in young chileans using machine learning techniques
title_sort Detection of variables for the diagnosis of overweight and obesity in young chileans using machine learning techniques
dc.creator.fl_str_mv Calderón Díaz, Mailyn
Serey Castillo, Leonardo J.
Vallejos Cuevas, Esperanza A.
Espinoza, Alexis
Salas, Rodrigo
Macías Jiménez, Mayra A.
dc.contributor.author.none.fl_str_mv Calderón Díaz, Mailyn
Serey Castillo, Leonardo J.
Vallejos Cuevas, Esperanza A.
Espinoza, Alexis
Salas, Rodrigo
Macías Jiménez, Mayra A.
dc.subject.proposal.eng.fl_str_mv Machine learning
Biochemical profiles
Lipid profiles
Normal-weight
Overweight
Obesity
Classification
topic Machine learning
Biochemical profiles
Lipid profiles
Normal-weight
Overweight
Obesity
Classification
description Overweight and obesity are considered epidemic problems. The number of factors involved in developing extra body fat makes harder the detection of this problem. Therefore, among the several variables and their levels presented in overweight and obese people, there is a need to improve the classification of people with these conditions. To this aim, in this paper, we conducted a variable analysis from biochemical and lipid profiles in young Chileans with normal weight, overweight, and obesity using machine learning techniques. XGBoost library was selected as the classifier. 21 variables (13 from biochemical and 8 from lipid profiles) were chosen as features. 100 iterations were conducted, and an 80% cross-validation was obtained. The variables with greater relevance in the classification task were total cholesterol, glycemia, LDH enzyme, bilirubin, and VLDL cholesterol. All of these, except bilirubin, are consistent with previous research in which these features have been used to assess risk factors for developing overweight or obesity. Then, further research must include a deep study regarding bilirubin's influence over these conditions.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-03-17
dc.date.accessioned.none.fl_str_mv 2024-11-25T18:01:39Z
dc.date.available.none.fl_str_mv 2024-11-25T18:01:39Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Mailyn Calderón-Díaz, Leonardo J. Serey-Castillo, Esperanza A. Vallejos-Cuevas, Alexis Espinoza, Rodrigo Salas, Mayra A. Macías-Jiménez, Detection of variables for the diagnosis of overweight and obesity in young Chileans using machine learning techniques., Procedia Computer Science, Volume 220, 2023, Pages 978-983, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2023.03.135.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13825
dc.identifier.doi.none.fl_str_mv 10.1016/j.procs.2023.03.135
dc.identifier.eissn.none.fl_str_mv 1877-0509
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Mailyn Calderón-Díaz, Leonardo J. Serey-Castillo, Esperanza A. Vallejos-Cuevas, Alexis Espinoza, Rodrigo Salas, Mayra A. Macías-Jiménez, Detection of variables for the diagnosis of overweight and obesity in young Chileans using machine learning techniques., Procedia Computer Science, Volume 220, 2023, Pages 978-983, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2023.03.135.
10.1016/j.procs.2023.03.135
1877-0509
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13825
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Procedia computer science
dc.relation.references.none.fl_str_mv WHO. (2021). Obesity and overweight. WHO. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
Fan, H., & Zhang, X. (2022). "Influence of parental weight change on the incidence of overweight and obesity in offspring". BMC Pediatrics, 22(1). https://doi.org/10.1186/s12887-022-03399-8
Nelson, T. D., Haugen, K. A., Resetar Volz, J. L., Zhe, E. J., Axelrod, M. I., Spear Filigno, S., Stevens, A. L., & Lundahl, A. (2015). "Overweight and obesity among youth entering residential care: Prevalence and correlates". Residential Treatment for Children and Youth, 32(2), 99– 112. https://doi.org/10.1080/0886571X.2015.1043786
Lafontaine, T. (2008). "Physical Activity: The Epidemic of Obesity and Overweight Among Youth: Trends, Consequences, and Interventions". American Journal of Lifestyle Medicine, 2(1), 30–36. https://doi.org/10.1177/1559827607309688
Skogen, I. B., & Høydal, K. L. (2021). "Adolescents who are overweight or obese-the relevance of a social network to engaging in physical activity: a qualitative study". BMC Public Health, 21(701). https://doi.org/10.1186/s12889-021-10727-7
Banna, J. (2019). "Obesity Prevention in Children in Latin America Through Interventions Using Technology". American Journal of Lifestyle Medicine, 13(2), 138–141. https://doi.org/10.1177/1559827618823320
Cuevas, A., Alvarez, V., & Olivos, C. (2009). "The emerging obesity problem in Latin America". Expert Review of Cardiovascular Therapy, 7(3), 281–288. https://doi.org/10.1586/14779072.7.3.281
Corvalán, C., Garmendia, M. L., Jones-Smith, J., Lutter, C. K., Miranda, J. J., Pedraza, L. S., Popkin, B. M., Ramirez-Zea, M., Salvo, D., & Stein, A. D. (2017). "Nutrition status of children in Latin America". Obesity Reviews, 18, 7–18. https://doi.org/10.1111/OBR.12571
OECD. (2021). Overweight or obese population (indicator). https://www.oecd-ilibrary.org/social-issues-migration-health/overweight-or-obesepopulation/indicator/english_86583552-en
Vio, F., & Kain, J. (2019). "Descripción de la progresión de la obesidad y enfermedades relacionadas en Chile". Revista Médica de Chile, 147(9), 1114–1121. http://dx.doi.org/10.4067/s0034-98872019000901114
Alghamdi, A. S., Yahya, M. A., Alshammari, G. M., & Osman, M. A. (2017). "Prevalence of overweight and obesity among police officers in Riyadh City and risk factors for cardiovascular disease". Lipids in Health and Disease, 16(79). https://doi.org/10.1186/s12944-017-0467-9
Yin, R., Wang, X., Li, K., Yu, K., & Yang, L. (2021). "Lipidomic profiling reveals distinct differences in plasma lipid composition in overweight or obese adolescent students". BMC Endocrine Disorders, 21(201). https://doi.org/10.1186/s12902-021-00859-7
Pengpid, S., & Peltzer, K. (2015). "Overweight and obesity and associated factors among school-aged adolescents in six pacific island countries in Oceania". International Journal of Environmental Research and Public Health, 12(11), 14505–14518. https://doi.org/10.3390/ijerph121114505
Dunstan, J., Aguirre, M., Bastías, M., Nau, C., Glass, T. A., & Tobar, F. (2020). "Predicting nationwide obesity from food sales using machine learning". Health Informatics Journal, 26(1), 652–663. https://doi.org/10.1177/1460458219845959
Jayatilake, S. M. D. A. C., & Ganegoda, G. U. (2021). "Involvement of Machine Learning Tools in Healthcare Decision Making". Journal of Healthcare Engineering, 2021, 1–20. https://doi.org/10.1155/2021/6679512
Fernández-Juan, A., Ramírez-Gil, C., & van der Werf, L. (2016). "La valoración antropométrica en el contexto de la escuela como medida para detectar y prevenir efectos a largo plazo de la obesidad y del sobrepeso en niños en edad escolar". Revista Colombiana de Cardiologia, 23(5), 435–442. https://doi.org/10.1016/j.rccar.2016.06.007
Babajide, O., Tawfik, H., Palczewska, A., Gorbenko, A., Astrup, A., Martínez, A., Oppert, J. M., & Sørensen, T. I. A. (2020). "A machine learning approach to short-term body weight prediction in a dietary intervention program". Computational Science – ICCS 2020, 12140 LNCS, 441–455. https://doi.org/10.1007/978-3-030-50423-6_33
Du, Y., Rafferty, A. R., McAuliffe, F. M., Wei, L., & Mooney, C. (2022). "An explainable machine learning-based clinical decision support system for prediction of gestational diabetes mellitus". Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-05112-2
Mahadevaswamy, U. B., Keerthana, R., Pooja, B. B., Sangatya, V., & Supritha, S. (2022). "A Hybrid Model approach for Heart Disease Prediction". 2022 IEEE 2nd Mysore Sub Section International Conference, 1–6. https://doi.org/10.1109/MysuruCon55714.2022.9972516
Omkar, M., & Nimala, K. (2022). "Machine Learning based Diabetes Prediction using with AWS cloud". 2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), 1–7. https://doi.org/10.1109/icses55317.2022.9914160
Chen, T., & Guestrin, C. (2016). "XGBoost: A scalable tree boosting system". KDD ’16: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-August-2016, 785–794. https://doi.org/10.1145/2939672.2939785
Chen, T., & Guestrin, C. (2016). "XGBoost: A Scalable Tree Boosting System". Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785
Likitha, B., Nakka, J., Verma, J., & Naik, N. S. (2021). "Prediction of Breast Cancer Analysis Using Machine Learning Algorithms and XGBoost Technique". In K. R. Venugopal, P. D. Shenoy, R. Buyya, L. M. Patnaik, & S. S. Iyengar (Eds.), Data Science and Computational Intelligence (pp. 298–313). Springer International Publishing.
Huo, L., Tan, Y., Wang, S., Geng, C., Li, Y., Ma, X., Wang, B., He, Y., Yao, C., & Ouyang, T. (2021). "Machine learning models to improve the differentiation between benign and malignant breast lesions on ultrasound: A multicenter external validation study". Cancer Management and Research, 13, 3367–3379. https://doi.org/10.2147/CMAR.S297794.
Chilyabanyama, O. N., Chilengi, R., Simuyandi, M., Chisenga, C. C., Chirwa, M., Hamusonde, K., Saroj, R. K., Iqbal, N. T., Ngaruye, I., & Bosomprah, S. (2022). "Performance of Machine Learning Classifiers in Classifying Stunting among Under-Five Children in Zambia". Children, 9(7). https://doi.org/10.3390/children9071082
Santisteban Quiroz, J. P. (2022). "Estimation of obesity levels based on dietary habits and condition physical using computational intelligence". Informatics in Medicine Unlocked, 29. https://doi.org/10.1016/j.imu.2022.100901
Xia, Y., Liu, C., Li, Y. Y., & Liu, N. (2017). "A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring". Expert Systems with Applications, 78, 225–241. https://doi.org/10.1016/j.eswa.2017.02.017
Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., Das, S. R., Ferranti, S. de, Després, J. P., Fullerton, H. J., Howard, V. J., Huffman, M. D., Isasi, C. R., Jiménez, M. C., Judd, S. E., Kissela, B. M., Lichtman, J. H., Lisabeth, L. D., Liu, S., … Turner, M. B. (2016). "Heart Disease and Stroke Statistics—2016 Update". Circulation, 133(4), e38–e48. https://doi.org/10.1161/CIR.0000000000000350
Hwang, S., Kim, H.-E., M.D., J. J., & Kim, H.-J. (2016). "A novel approach for tuberculosis screening based on deep convolutional neural networks". Proc. SPIE 9785, Medical Imaging 2016: Computer-Aided Diagnosis, 9785, 750–757. https://doi.org/10.1117/12.2216198
Hjorth, M. F., Zohar, Y., Hill, J. O., & Astrup, A. (2018). "Personalized Dietary Management of Overweight and Obesity Based on Measures of Insulin and Glucose". Annual Review of Nutrition. https://doi.org/10.1146/annurev-nutr-082117
Chatterjee, A., Gerdes, M. W., & Martinez, S. G. (2020). "Identification of risk factors associated with obesity and overweight—a machine learning overview". Sensors (Switzerland), 20(9). https://doi.org/10.3390/s20092734
Kwon, Y. J., Lee, H. S., & Lee, J. W. (2018). "Direct bilirubin is associated with low-density lipoprotein subfractions and particle size in overweight and centrally obese women". Nutrition, Metabolism and Cardiovascular Diseases, 28(10), 1021–1028. https://doi.org/10.1016/j.numecd.2018.05.013
Nascimento, H., Alves, A. I., Coimbra, S., Catarino, C., Gomes, D., Bronze-Da-Rocha, E., Costa, E., Rocha-Pereira, P., Aires, L., Mota, J., Ferreira Mansilha, H., Rêgo, C., Santos-Silva, A., & Belo, L. (2015). "Bilirubin is independently associated with oxidized LDL levels in young obese patients". Diabetology and Metabolic Syndrome, 7(1), 1–5. https://doi.org/10.1186/1758-5996-7-4/TABLES/2
dc.relation.citationendpage.none.fl_str_mv 983
dc.relation.citationstartpage.none.fl_str_mv 978
dc.relation.citationvolume.none.fl_str_mv 220
dc.rights.none.fl_str_mv © 2023 The Authors.
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2023 The Authors.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 6 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.place.none.fl_str_mv Netherlands
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1877050923006701?via%3Dihub#keys0001
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/9d7feb94-6ef8-456f-9174-f1a41dad0d62/download
https://repositorio.cuc.edu.co/bitstreams/b8faa596-7a39-47e3-9d93-da07db821e45/download
https://repositorio.cuc.edu.co/bitstreams/dbcd44d9-ecb5-43e3-b36a-f3bd24e9a4c1/download
https://repositorio.cuc.edu.co/bitstreams/089d3027-f6f9-4ced-b629-1cfbb0e2cebf/download
bitstream.checksum.fl_str_mv c439bd3a2e9f08de942f3f3d2026b1fa
73a5432e0b76442b22b026844140d683
9a3645a28a3dd5d4c8172bed300f0569
bfe5bb6e5ce259a7a48d8b1a28dd64ca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166904265572352
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2023 The Authors.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Calderón Díaz, MailynSerey Castillo, Leonardo J.Vallejos Cuevas, Esperanza A.Espinoza, AlexisSalas, RodrigoMacías Jiménez, Mayra A.2024-11-25T18:01:39Z2024-11-25T18:01:39Z2023-03-17Mailyn Calderón-Díaz, Leonardo J. Serey-Castillo, Esperanza A. Vallejos-Cuevas, Alexis Espinoza, Rodrigo Salas, Mayra A. Macías-Jiménez, Detection of variables for the diagnosis of overweight and obesity in young Chileans using machine learning techniques., Procedia Computer Science, Volume 220, 2023, Pages 978-983, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2023.03.135.https://hdl.handle.net/11323/1382510.1016/j.procs.2023.03.1351877-0509Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Overweight and obesity are considered epidemic problems. The number of factors involved in developing extra body fat makes harder the detection of this problem. Therefore, among the several variables and their levels presented in overweight and obese people, there is a need to improve the classification of people with these conditions. To this aim, in this paper, we conducted a variable analysis from biochemical and lipid profiles in young Chileans with normal weight, overweight, and obesity using machine learning techniques. XGBoost library was selected as the classifier. 21 variables (13 from biochemical and 8 from lipid profiles) were chosen as features. 100 iterations were conducted, and an 80% cross-validation was obtained. The variables with greater relevance in the classification task were total cholesterol, glycemia, LDH enzyme, bilirubin, and VLDL cholesterol. All of these, except bilirubin, are consistent with previous research in which these features have been used to assess risk factors for developing overweight or obesity. Then, further research must include a deep study regarding bilirubin's influence over these conditions.6 páginasapplication/pdfengElsevier B.V.Netherlandshttps://www.sciencedirect.com/science/article/pii/S1877050923006701?via%3Dihub#keys0001Detection of variables for the diagnosis of overweight and obesity in young chileans using machine learning techniquesArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Procedia computer scienceWHO. (2021). Obesity and overweight. WHO. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweightFan, H., & Zhang, X. (2022). "Influence of parental weight change on the incidence of overweight and obesity in offspring". BMC Pediatrics, 22(1). https://doi.org/10.1186/s12887-022-03399-8Nelson, T. D., Haugen, K. A., Resetar Volz, J. L., Zhe, E. J., Axelrod, M. I., Spear Filigno, S., Stevens, A. L., & Lundahl, A. (2015). "Overweight and obesity among youth entering residential care: Prevalence and correlates". Residential Treatment for Children and Youth, 32(2), 99– 112. https://doi.org/10.1080/0886571X.2015.1043786Lafontaine, T. (2008). "Physical Activity: The Epidemic of Obesity and Overweight Among Youth: Trends, Consequences, and Interventions". American Journal of Lifestyle Medicine, 2(1), 30–36. https://doi.org/10.1177/1559827607309688Skogen, I. B., & Høydal, K. L. (2021). "Adolescents who are overweight or obese-the relevance of a social network to engaging in physical activity: a qualitative study". BMC Public Health, 21(701). https://doi.org/10.1186/s12889-021-10727-7Banna, J. (2019). "Obesity Prevention in Children in Latin America Through Interventions Using Technology". American Journal of Lifestyle Medicine, 13(2), 138–141. https://doi.org/10.1177/1559827618823320Cuevas, A., Alvarez, V., & Olivos, C. (2009). "The emerging obesity problem in Latin America". Expert Review of Cardiovascular Therapy, 7(3), 281–288. https://doi.org/10.1586/14779072.7.3.281Corvalán, C., Garmendia, M. L., Jones-Smith, J., Lutter, C. K., Miranda, J. J., Pedraza, L. S., Popkin, B. M., Ramirez-Zea, M., Salvo, D., & Stein, A. D. (2017). "Nutrition status of children in Latin America". Obesity Reviews, 18, 7–18. https://doi.org/10.1111/OBR.12571OECD. (2021). Overweight or obese population (indicator). https://www.oecd-ilibrary.org/social-issues-migration-health/overweight-or-obesepopulation/indicator/english_86583552-enVio, F., & Kain, J. (2019). "Descripción de la progresión de la obesidad y enfermedades relacionadas en Chile". Revista Médica de Chile, 147(9), 1114–1121. http://dx.doi.org/10.4067/s0034-98872019000901114Alghamdi, A. S., Yahya, M. A., Alshammari, G. M., & Osman, M. A. (2017). "Prevalence of overweight and obesity among police officers in Riyadh City and risk factors for cardiovascular disease". Lipids in Health and Disease, 16(79). https://doi.org/10.1186/s12944-017-0467-9Yin, R., Wang, X., Li, K., Yu, K., & Yang, L. (2021). "Lipidomic profiling reveals distinct differences in plasma lipid composition in overweight or obese adolescent students". BMC Endocrine Disorders, 21(201). https://doi.org/10.1186/s12902-021-00859-7Pengpid, S., & Peltzer, K. (2015). "Overweight and obesity and associated factors among school-aged adolescents in six pacific island countries in Oceania". International Journal of Environmental Research and Public Health, 12(11), 14505–14518. https://doi.org/10.3390/ijerph121114505Dunstan, J., Aguirre, M., Bastías, M., Nau, C., Glass, T. A., & Tobar, F. (2020). "Predicting nationwide obesity from food sales using machine learning". Health Informatics Journal, 26(1), 652–663. https://doi.org/10.1177/1460458219845959Jayatilake, S. M. D. A. C., & Ganegoda, G. U. (2021). "Involvement of Machine Learning Tools in Healthcare Decision Making". Journal of Healthcare Engineering, 2021, 1–20. https://doi.org/10.1155/2021/6679512Fernández-Juan, A., Ramírez-Gil, C., & van der Werf, L. (2016). "La valoración antropométrica en el contexto de la escuela como medida para detectar y prevenir efectos a largo plazo de la obesidad y del sobrepeso en niños en edad escolar". Revista Colombiana de Cardiologia, 23(5), 435–442. https://doi.org/10.1016/j.rccar.2016.06.007Babajide, O., Tawfik, H., Palczewska, A., Gorbenko, A., Astrup, A., Martínez, A., Oppert, J. M., & Sørensen, T. I. A. (2020). "A machine learning approach to short-term body weight prediction in a dietary intervention program". Computational Science – ICCS 2020, 12140 LNCS, 441–455. https://doi.org/10.1007/978-3-030-50423-6_33Du, Y., Rafferty, A. R., McAuliffe, F. M., Wei, L., & Mooney, C. (2022). "An explainable machine learning-based clinical decision support system for prediction of gestational diabetes mellitus". Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-05112-2Mahadevaswamy, U. B., Keerthana, R., Pooja, B. B., Sangatya, V., & Supritha, S. (2022). "A Hybrid Model approach for Heart Disease Prediction". 2022 IEEE 2nd Mysore Sub Section International Conference, 1–6. https://doi.org/10.1109/MysuruCon55714.2022.9972516Omkar, M., & Nimala, K. (2022). "Machine Learning based Diabetes Prediction using with AWS cloud". 2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), 1–7. https://doi.org/10.1109/icses55317.2022.9914160Chen, T., & Guestrin, C. (2016). "XGBoost: A scalable tree boosting system". KDD ’16: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-August-2016, 785–794. https://doi.org/10.1145/2939672.2939785Chen, T., & Guestrin, C. (2016). "XGBoost: A Scalable Tree Boosting System". Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785Likitha, B., Nakka, J., Verma, J., & Naik, N. S. (2021). "Prediction of Breast Cancer Analysis Using Machine Learning Algorithms and XGBoost Technique". In K. R. Venugopal, P. D. Shenoy, R. Buyya, L. M. Patnaik, & S. S. Iyengar (Eds.), Data Science and Computational Intelligence (pp. 298–313). Springer International Publishing.Huo, L., Tan, Y., Wang, S., Geng, C., Li, Y., Ma, X., Wang, B., He, Y., Yao, C., & Ouyang, T. (2021). "Machine learning models to improve the differentiation between benign and malignant breast lesions on ultrasound: A multicenter external validation study". Cancer Management and Research, 13, 3367–3379. https://doi.org/10.2147/CMAR.S297794.Chilyabanyama, O. N., Chilengi, R., Simuyandi, M., Chisenga, C. C., Chirwa, M., Hamusonde, K., Saroj, R. K., Iqbal, N. T., Ngaruye, I., & Bosomprah, S. (2022). "Performance of Machine Learning Classifiers in Classifying Stunting among Under-Five Children in Zambia". Children, 9(7). https://doi.org/10.3390/children9071082Santisteban Quiroz, J. P. (2022). "Estimation of obesity levels based on dietary habits and condition physical using computational intelligence". Informatics in Medicine Unlocked, 29. https://doi.org/10.1016/j.imu.2022.100901Xia, Y., Liu, C., Li, Y. Y., & Liu, N. (2017). "A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring". Expert Systems with Applications, 78, 225–241. https://doi.org/10.1016/j.eswa.2017.02.017Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., Das, S. R., Ferranti, S. de, Després, J. P., Fullerton, H. J., Howard, V. J., Huffman, M. D., Isasi, C. R., Jiménez, M. C., Judd, S. E., Kissela, B. M., Lichtman, J. H., Lisabeth, L. D., Liu, S., … Turner, M. B. (2016). "Heart Disease and Stroke Statistics—2016 Update". Circulation, 133(4), e38–e48. https://doi.org/10.1161/CIR.0000000000000350Hwang, S., Kim, H.-E., M.D., J. J., & Kim, H.-J. (2016). "A novel approach for tuberculosis screening based on deep convolutional neural networks". Proc. SPIE 9785, Medical Imaging 2016: Computer-Aided Diagnosis, 9785, 750–757. https://doi.org/10.1117/12.2216198Hjorth, M. F., Zohar, Y., Hill, J. O., & Astrup, A. (2018). "Personalized Dietary Management of Overweight and Obesity Based on Measures of Insulin and Glucose". Annual Review of Nutrition. https://doi.org/10.1146/annurev-nutr-082117Chatterjee, A., Gerdes, M. W., & Martinez, S. G. (2020). "Identification of risk factors associated with obesity and overweight—a machine learning overview". Sensors (Switzerland), 20(9). https://doi.org/10.3390/s20092734Kwon, Y. J., Lee, H. S., & Lee, J. W. (2018). "Direct bilirubin is associated with low-density lipoprotein subfractions and particle size in overweight and centrally obese women". Nutrition, Metabolism and Cardiovascular Diseases, 28(10), 1021–1028. https://doi.org/10.1016/j.numecd.2018.05.013Nascimento, H., Alves, A. I., Coimbra, S., Catarino, C., Gomes, D., Bronze-Da-Rocha, E., Costa, E., Rocha-Pereira, P., Aires, L., Mota, J., Ferreira Mansilha, H., Rêgo, C., Santos-Silva, A., & Belo, L. (2015). "Bilirubin is independently associated with oxidized LDL levels in young obese patients". Diabetology and Metabolic Syndrome, 7(1), 1–5. https://doi.org/10.1186/1758-5996-7-4/TABLES/2983978220Machine learningBiochemical profilesLipid profilesNormal-weightOverweightObesityClassificationPublicationORIGINALDetection of variables for the diagnosis of overweight and obesity in.pdfDetection of variables for the diagnosis of overweight and obesity in.pdfapplication/pdf646486https://repositorio.cuc.edu.co/bitstreams/9d7feb94-6ef8-456f-9174-f1a41dad0d62/downloadc439bd3a2e9f08de942f3f3d2026b1faMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/b8faa596-7a39-47e3-9d93-da07db821e45/download73a5432e0b76442b22b026844140d683MD52TEXTDetection of variables for the diagnosis of overweight and obesity in.pdf.txtDetection of variables for the diagnosis of overweight and obesity in.pdf.txtExtracted texttext/plain49621https://repositorio.cuc.edu.co/bitstreams/dbcd44d9-ecb5-43e3-b36a-f3bd24e9a4c1/download9a3645a28a3dd5d4c8172bed300f0569MD53THUMBNAILDetection of variables for the diagnosis of overweight and obesity in.pdf.jpgDetection of variables for the diagnosis of overweight and obesity in.pdf.jpgGenerated Thumbnailimage/jpeg13179https://repositorio.cuc.edu.co/bitstreams/089d3027-f6f9-4ced-b629-1cfbb0e2cebf/downloadbfe5bb6e5ce259a7a48d8b1a28dd64caMD5411323/13825oai:repositorio.cuc.edu.co:11323/138252024-11-26 04:03:36.987https://creativecommons.org/licenses/by-nc-nd/4.0/© 2023 The Authors.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K