Effects of atmospheric pollutants on human health and deterioration of medieval historical architecture (North Africa, Tunisia)
Air pollution is a factor of concern on a global scale, accelerating the deterioration of historic medieval architecture and having harmful effects on human health. The general objective of this study is to understand the risks of atmospheric contamination that contribute to the degradation of the m...
- Autores:
-
O. Silva, Luis F.
S. Oliveira, Marcos L.
Neckel, Alcindo
Stolfo Maculan, Laércio
Milanés Batista, Celene
Bodah, Brian W.
Cambrussi, Laura
Dotto, Guilherme Luiz
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9379
- Acceso en línea:
- https://hdl.handle.net/11323/9379
https://doi.org/10.1016/j.uclim.2021.101046
https://repositorio.cuc.edu.co/
- Palabra clave:
- Medieval architecture
Atmospheric pollutants
Ultrafine particles
Public policy
Human health
- Rights
- openAccess
- License
- © 2021 Elsevier B.V. All rights reserved.
id |
RCUC2_ef24a883e40243ac8e29280c3e57c552 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9379 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Effects of atmospheric pollutants on human health and deterioration of medieval historical architecture (North Africa, Tunisia) |
title |
Effects of atmospheric pollutants on human health and deterioration of medieval historical architecture (North Africa, Tunisia) |
spellingShingle |
Effects of atmospheric pollutants on human health and deterioration of medieval historical architecture (North Africa, Tunisia) Medieval architecture Atmospheric pollutants Ultrafine particles Public policy Human health |
title_short |
Effects of atmospheric pollutants on human health and deterioration of medieval historical architecture (North Africa, Tunisia) |
title_full |
Effects of atmospheric pollutants on human health and deterioration of medieval historical architecture (North Africa, Tunisia) |
title_fullStr |
Effects of atmospheric pollutants on human health and deterioration of medieval historical architecture (North Africa, Tunisia) |
title_full_unstemmed |
Effects of atmospheric pollutants on human health and deterioration of medieval historical architecture (North Africa, Tunisia) |
title_sort |
Effects of atmospheric pollutants on human health and deterioration of medieval historical architecture (North Africa, Tunisia) |
dc.creator.fl_str_mv |
O. Silva, Luis F. S. Oliveira, Marcos L. Neckel, Alcindo Stolfo Maculan, Laércio Milanés Batista, Celene Bodah, Brian W. Cambrussi, Laura Dotto, Guilherme Luiz |
dc.contributor.author.spa.fl_str_mv |
O. Silva, Luis F. S. Oliveira, Marcos L. Neckel, Alcindo Stolfo Maculan, Laércio Milanés Batista, Celene Bodah, Brian W. Cambrussi, Laura Dotto, Guilherme Luiz |
dc.subject.proposal.eng.fl_str_mv |
Medieval architecture Atmospheric pollutants Ultrafine particles Public policy Human health |
topic |
Medieval architecture Atmospheric pollutants Ultrafine particles Public policy Human health |
description |
Air pollution is a factor of concern on a global scale, accelerating the deterioration of historic medieval architecture and having harmful effects on human health. The general objective of this study is to understand the risks of atmospheric contamination that contribute to the degradation of the medieval historical heritage of (1) Bab El Bhar, (2) the Tunis Train Station and (3) the Bardo National Museum, in the City of Tunis, capital of Tunisia, located in North Africa. Sequentially, 64 samples were collected in SMPSs and 64 of dust particles in sites 1, 2 and 3, from 2015 to 2019. Field Emission Scanning Electron Microscopy (FE-SEM) was utilized together with High Resolution Transmission Electron Microscopy (HR-TEM) and the coupled with an Energy Dispersive X-ray (EDS), which allowed a better characterization and identification of NPs in images, using Energy Dispersive X-ray (EDS). The Bab El Bhar SMPS samples yielded a higher proportion of ultrafine and organic particles. Sedimented dusts showed high proportions of organometallic particles (Al, As, Ba, Ca, Cd, Co, Cr, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, S, Sb, Se, Si, Sn, Ti, V and Zn). The need to create public policies to protect both human health and physical historic infrastructure is noted, as this study identified dangerous elements harmful to human health in ultrafine particles, easily suspended by the wind and highly corrosive to historical buildings from the medieval period in the air of a busy metropolitan tourist site. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-12-02 |
dc.date.accessioned.none.fl_str_mv |
2022-07-19T13:11:39Z |
dc.date.available.none.fl_str_mv |
2022-07-19T13:11:39Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.spa.fl_str_mv |
2212-0955 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9379 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1016/j.uclim.2021.101046 |
dc.identifier.doi.spa.fl_str_mv |
10.1016/j.uclim.2021.101046 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2212-0955 10.1016/j.uclim.2021.101046 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9379 https://doi.org/10.1016/j.uclim.2021.101046 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Urban Climate |
dc.relation.references.spa.fl_str_mv |
Alves, C., Evtyugina, M., Vicente, A., Conca, E., Amato, F., 2021. Organic profiles of brake wear particles. Atmos. Res. 255, 105557 https://doi.org/10.1016/j. atmosres.2021.105557. Amato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., Moreno, T., 2009. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos. Envirom. 43 (9), 1650–1659. https://doi.org/10.1016/j.atmosenv.2008.12.009 Azri, C., Mabrouk, C., Medhioub, K., 2009. Diurnal evolutions of nitrogen oxides (NOx), ozone (O3), and PM10 particles at a busy traffic cross-road in the city of Tunis. Environ. Prog. Sustain. Energy 28 (1), 143–154. https://doi.org/10.1002/ep.10315. Azzolin, M., Cattelan, G., Dugaria, S., Minetto, S., Calabrese, L., Col, D.D., 2021. Integrated CO2 systems for supermarkets: field measurements and assessment for alternative solutions in hot climate. Appl. Therm. Eng. 187, 116560 https://doi.org/10.1016/j.applthermaleng.2021.116560 Barhoumi, B., Tedetti, M., Heimbürger-Boavida, L.E., Onrubia, J.A.T., Dufour, A., Doan, Q.T., Boutaleb, S., Touil, S., Scippo, M.L., 2020. Chemical composition and in vitro aryl hydrocarbon receptor-mediated activity of atmospheric particulate matter at an urban, agricultural and industrial site in North Africa (Bizerte, Tunisia). Chemosphere 258, 127312. https://doi.org/10.1016/j.chemosphere.2020.12731 ayouli, I.T., Bayouli, H.T., Dell’oca, A., Meers, E., Sun, J., 2021. Ecological indicators and bioindicator plant species for biomonitoring industrial pollution: eco-based environmental assessment. Ecol. Indic. 125, 107508 https://doi.org/10.1016/j.ecolind.2021.107508 Bettaieb, J., Toumi, A., Leffondre, K., Chlif, S., Salah, A.B., 2020. High temperature effect on daily all-cause mortality in Tunis 2005–2007. Rev. Epidemiol. Sante Publique 68 (1), 37–43. https://doi.org/10.1016/j.respe.2019.09.007 Brodny, J., Tutak, M., 2021. The analysis of similarities between the European Union countries in terms of the level and structure of the emissions of selected gases and air pollutants into the atmosphere. J. Clean. Prod. 279, 123641 https://doi.org/10.1016/j.jclepro.2020.123641 Ellouz, F., Masmoudi, M., Medhioub, K., 2013. Study of the atmospheric turbidity over northern Tunisia. Renew. Energy 51, 513–517. https://doi.org/10.1016/j. renene.2008.04.035 Ernould, C., Beausir, B., Fundenberger, J.J., Taupin, V., Bouzy, E., 2020. Characterization at high spatial and angular resolutions of deformed nanostructures by on- axis HR-TKD. Scr. Mater. 185, 30–35. https://doi.org/10.1016/j.scriptamat.2020.04.005 Euchi, J., Kallel, A., 2021. Internalization of external congestion and CO2 emissions costs related to road transport: the case of Tunisia. Renew. Sust. Energ. Rev. 142, 110858 https://doi.org/10.1016/j.rser.2021.110858. L.F.O. Silva et al. Feki, H., Slimani, M., Cudennec, C., 2016. Geostatistically based optimization of a rainfall monitoring network extension: case of the climatically heterogeneous Tunisia. Hydrol. Res. 48 (2), 514–541. https://doi.org/10.2166/nh.2016.256. Findlay, A.M., Paddison, R., 1986. Planning the Arab city: the cases of Tunis and Rabat. Prog. Plan. 26, 1–82. https://doi.org/10.1016/0305-9006(86)90006-1 Gallego-Cartagena, E., Morillas, H., Maguregui, M., Pati ̃no-Camelo, K., Marcaida, I., Morgado-Gamero, W., Silva, L.F.O., Madariaga, J.M., 2020. A comprehensive study of biofilms growing on the built heritage of a Caribbean industrial city in correlation with construction materials. Int. Biodeterior. Biodegradation 147, 104874. https://doi.org/10.1016/j.ibiod.2019.104874. García-Florentino, C., Maguregui, M., Carrero, J.A., Morillas, H., Arana, G., Madariaga, J.M., 2020. Development of a cost effective passive sampler to quantify the particulate matter depositions on building materials over time. J. Clean. Prod. 268, 122134 https://doi.org/10.1016/j.jclepro.2020.122134 Gelhardt, L., Dittmer, U., Welker, A., 2021. Relationship of particle density and organic content in sieve fractions of road-deposited sediments from varying traffic sites based on a novel data set. Sci. Total Environ. 794, 148812 https://doi.org/10.1016/j.scitotenv.2021.148812 Gogoi, M., Boruah, P., Sengupta, P., Saikia, L., 2019. Separation of ultrafine chalcogenide particles using Fe3O4 magnetic nanoparticles and ligands with metal selectivity. Miner. Eng. 137, 147–156. https://doi.org/10.1016/j.mineng.2019.04.004 Hatđr, M.E., 2020. Determining the weathering classification of stone cultural heritage via the analytic hierarchy process and fuzzy inference system. J. Cult. Herit. 44, 120–134. https://doi.org/10.1016/j.culher.2020.02.011 Hodoroaba, V.D., 2020. Energy-dispersive X-ray spectroscopy (EDS). Characteriz. Nanopart. 397-417 https://doi.org/10.1016/b978-0-12-814182-3.00021-3. Howard, J., Weyhrauch, J., Loriaux, G., Schultz, B., Baskaran, M., 2019. Contributions of artifactual materials to the toxicity of anthropogenic soils and street dusts in a highly urbanized terrain. Environ. Pollut. 255, 113350 https://doi.org/10.1016/j.envpol.2019.11335 Korkanç, M., Hüseyinca, M.Y., Hatđr, M.E., Tosunlar, M.B., Bozda ̆g, A., ̈Ozen, L., ̇Ince, ̇I., 2019. Interpreting sulfated crusts on natural building stones using sulfur contour maps and infrared thermography. Environ. Earth Sci. 78 (13), 1–14. https://doi.org/10.1007/s12665-019-8377-y arbi, H., Leitmann, J., 1994. Tunis. Cities 11 (5), 292–296. https://doi.org/10.1016/0264-2751(94)90081-7 Li, Y., Shao, L., Wang, W., Zhang, M., Feng, X., Li, W., Zhang, D., 2020. Airborne fiber particles: types, size and concentration observed in Beijing. Sci. Total Environ. 705, 135967 https://doi.org/10.1016/j.scitotenv.2019.135967. Lima, B.D., Teixeira, E.C., Hower, J.C., Civeira, M.S., Ramírez, O., Yang, C.X., Oliveira, M.L.S., Silva, L.F.O., 2021. Metal-enriched nanoparticles and black carbon: a perspective from the Brazil railway system air pollution. Geosci. Front. 12 (3), 101129 https://doi.org/10.1016/j.gsf.2020.12.010 Liu, L., Kong, S., Zhang, Y., Wang, Y., Xu, L., Yan, Q., Lingaswamy, A.P., Shi, Z., Lv, S., Niu, H., 2017. Morphology, composition, and mixing state of primary particles from combustion sources - crop residue, wood, and solid waste. Sci. Rep. 7 (1), 1–15. https://doi.org/10.1038/s41598-017-05357-2 Liu, H., Yin, S., Chen, C., Duan, Z., 2020. Data multi-scale decomposition strategies for air pollution forecasting: a comprehensive review. J. Clean. Prod. 277, 124023 https://doi.org/10.1016/j.jclepro.2020.124023 Liu, G., Xia, X., Zhao, C., Zhang, X., Zhang, W., 2021. Ultrafine Ni nanoparticles anchored on carbon nanofibers as highly efficient bifunctional air electrodes for flexible solid-state zinc-air batteries. J. Colloid Interface Sci. 588, 627–636. https://doi.org/10.1016/j.jcis.2020.11.053. Mahroug, E., Belakehal, A., 2016. The evolution of heritage atmospheres in the medina of Tunis since the 19th century. In: Islamic Heritage Architecture And Art 159. WIT Press, pp. 161–169. https://doi.org/10.2495/iha160141. Morillas, H., Marcaida, I., Maguregui, M., Upasen, S., Gallego-Cartagena, E., Madariaga, J.M., 2019. Identification of metals and metalloids as hazardous elements in PM2.5 and PM10 collected in a coastal environment affected by diffuse contamination. J. Clean. Prod. 226, 369–378. https://doi.org/10.1016/j. jclepro.2019.04.063. Morillas, H., de Mendonça, F.F.F., Derluyn, H., Maguregui, M., Gr ́egoire, D., Madariaga, J.M., 2020. Decay processes in buildings close to the sea induced by marine aerosol: salt depositions inside construction materials. Sci. Total Environ. 721, 1–9. https://doi.org/10.1016/j.scitotenv.2020.137687 Mraihi, R., Harizi, R., Mraihi, T., Bouzidi, M.T., 2015. Urban air pollution and urban daily mobility in large Tunisia’s cities. Renew. Sust. Energ. Rev. 43, 315–320. https://doi.org/10.1016/j.rser.2014.11.022 Neckel, A., da Silva, J.L., Saraiva, P.P., Kujawa, H.A., Araldi, J., Paladini, E.P., 2020. Estimation of the economic value of urban parks in Brazil, the case of the City of Passo Fundo. J. Clean. Prod. 264, 121369 https://doi.org/10.1016/j.jclepro.2020.121369 Neckel, A., Korcelski, C., Kujawa, H.A., da Silva, I.S., Prezoto, F., Amorin, A.L.W., Maculan, L.S., Gonçalves, A.C., Bodah, E.T., Bodah, B.W., Dotto, G.L., Silva, L.F.O., 2021. Hazardous elements in the soil of urban cemeteries; constructive solutions aimed at sustainability. Chemosphere 262, 128248. https://doi.org/10.1016/j. chemosphere.2020.128248 Nizar, O., Jean-Pierre, G., Habib, B., 2021. Significance of 2-methylhopane and 22,29,30 Trisnorhop 17(21)-ene biomarkers in holocene sediments from the Gulf of Tunis - Southern Mediterranean Sea. J. Afr. Earth Sci. 173, 104043 https://doi.org/10.1016/j.jafrearsci.2020.104043 Oliveira, M.L.S., Tutikian, B.F., Milanes, C., Silva, L.F.O., 2020. Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica. J. Clean. Prod. 248, 119250 https://doi.org/10.1016/j.jclepro.2019.119250. Oliveira, M.L.S., Flores, E.M.M., Dotto, G.L., Neckel, A., Silva, L.F.O., 2021a. Nanomineralogy of mortars and ceramics from the forum of Caesar and Nerva (Rome, Italy): the protagonist of black crusts produced on historic buildings. J. Clean. Prod. 278, 123982 https://doi.org/10.1016/j.jclepro.2020.123982. Oliveira, M.L.S., Neckel, A., Silva, L.F.O., Dotto, G.L., Maculan, L.S., 2021b. Environmental aspects of the depreciation of the culturally significant Wall of Cartagena de Indias – Colombia. Chemosphere 265, 129119. https://doi.org/10.1016/j.chemosphere.2020.129119 Ouyang, X., Wei, X., Li, Y., Wang, X.C., Klemeˇs, J.J., 2021. Impacts of urban land morphology on PM2.5 concentration in the urban agglomerations of China. J. Environ. Manag. 283, 112000 https://doi.org/10.1016/j.jenvman.2021.112000. Palisoc, S., Santos, D.J., Natividad, M., 2021. Borohydride-based electrolyte system for magnesium-persulfate (mg||MgS2O8) rechargeable battery. Ain Shams Eng. J. 1–10. https://doi.org/10.1016/j.asej.2020.09.032 Petkus, A.J., Wang, X., Beavers, D.P., Chui, H.C., Espeland, M.A., Gatz, M., Gruenewald, T., Kaufman, J.D., Manson, J.E., Resnick, S.M., 2021. Outdoor air pollution exposure and inter-relation of global cognitive performance and emotional distress in older women. Environ. Pollut. 271, 116282 https://doi.org/10.1016/j. envpol.2020.116282 Prasad, S.V.S., Prasad, S.B., Verma, K., Mishra, R.K., Kumar, V., Singh, S., 2021. The role and significance of magnesium in modern day research-a review. J. Magnes. Alloys 1-61. https://doi.org/10.1016/j.jma.2021.05.012 Rajput, V., Minkina, T., Mazarji, M., Shende, S., Sushkova, S., Mandzhieva, S., Burachevskaya, M., Chaplygin, V., Singh, A., Jatav, H., 2020. Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Ann. Agric. Sci. 65 (2), 137–143. https://doi.org/10.1016/j.aoas.2020.08.001 Robe, M.C., Carbonnelle, J., 1982. Study of atmospheric pollution in an urban zone deprived of measurement systems, for purposes of legislation application to the city of Tunis. Sci. Total Environ. 23, 61–67. https://doi.org/10.1016/0048-9697(82)90122-x Saidi, O., Malouche, D., Saksena, P., Arfaoui, L., Talmoudi, K., Hchaichi, A., Bouguerra, H., Romdhane, H.B., Hsairi, M., Ouhichi, R., 2021. Impact of contact tracing, respect of isolation and lockdown in reducing the number of cases infected with COVID-19: case study. Int. J. Infect. Dis. 1-34 https://doi.org/10.1016/j. ijid.2021.02.010 Saini, A., Harner, T., Chinnadhurai, S., Schuster, J.K., Yates, A., Sweetman, A., Aristizabal-Zuluaga, B.H., Jim ́enez, B., Manzano, C.A., Gaga, E.O., 2020. GAPS- megacities: a new global platform for investigating persistent organic pollutants and chemicals of emerging concern in urban air. Environ. Pollut. 267, 115416 https://doi.org/10.1016/j.envpol.2020.115416 Salyer, S.J., Maeda, J., Sembuche, S., Kebede, Y., Tshangela, A., Moussif, M., Ihekweazu, C., Mayet, N., Abate, E., Ouma, A.O., 2021. The first and second waves of the COVID-19 pandemic in Africa: a cross-sectional study. Lancet 397 (10281), 1265–1275. https://doi.org/10.1016/s0140-6736(21)00632-2. Samara, C., Melfos, V., Kouras, A., Karali, E., Zacharopoulou, G., Kyranoudi, M., Papadopoulou, L., Pavlidou, E., 2020. Morphological and geochemical characterization of the particulate deposits and the black crust from the Triumphal Arch of Galerius in Thessaloniki, Greece: implications for deterioration assessment. Sci. Total Environ. 734, 139455 https://doi.org/10.1016/j.scitotenv.2020.139455. Schembari, C., Bove, M.C., Cuccia, E., Cavalli, F., Hjorth, J., Massabo, ` D., Nava, S., Udisti, R., Prati, P., 2014. Source apportionment of PM10 in the Western Mediterranean based on observations from a cruise ship. Atmos. Environ. 98, 510–518. https://doi.org/10.1016/j.atmosenv.2014.09.015. Silva, L.F.O., Pinto, D., Neckel, A., Dotto, G.L., Oliveira, M.L.S., 2020a. The impact of air pollution on the rate of degradation of the fortress of Florianopolis Island, Brazil. Chemosphere 251, 126838. https://doi.org/10.1016/j.chemosphere.2020.126838. Silva, L.F.O., Pinto, D., Neckel, A., Oliveira, M.L.S., 2020b. An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces. Geosci. Front. 11 (6), 2053–2060. https://doi.org/10.1016/j.gsf.2020.07.003. Silva, L.F.O., Lozano, L.P., Oliveira, M.L.S., da Boit, K., Gonçalves, J.O., Neckel, A., 2021. Identification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects. Mar. Pollut. Bull. 168, 112425 https://doi.org/10.1016/j.marpolbul.2021.112425. Stambouli, F., 1996. Tunis city in transition. Environ. Urban. 8 (1), 51–63. https://doi.org/10.1177/095624789600800117. Trejos, E.M., Silva, L.F.O., Hower, J.C., de Flores, E.M.M., Gonz´ alez, C.M., Pachon, ´ J.E., Aristiz´ abal, B.H., 2021. Volcanic emissions and atmospheric pollution: a study of nanoparticles. Geosci. Front. 12 (2), 746–755. https://doi.org/10.1016/j.gsf.2020.08.013. Tunisia Population, 2021. Tunisia Population Estimator. Demographic Data. https://worldpopulationreview.com/countries/tunisia-population (Accessed 4 August 2021). Wang, J., Zhang, P., Wang, S., Yang, L., Luo, J., Shen, B., 2021. Mechanisms and kinetics of a new cleaner single cyclic roasting-leaching process for the extraction of vanadium from Linz–Donawitz converter slag using CaCO3 and H2SO4. Cleaner Eng. Technol. 4, 100204 https://doi.org/10.1016/j.clet.2021.100204 Wen, Z.Y., Tang, X.F., Wang, T., Gu, X.J., Zhang, W.J., 2020. Detection of chemical compositions of ultrafine nanoparticles by a vacuum ultraviolet photoionization nucleation aerosol mass spectrometer. Chin. J. Anal. Chem. 48 (4), 491–497. https://doi.org/10.1016/s1872-2040(20)60009-3. Wu, R., Zhao, X., Liu, Y., 2021. Atomic insights of Cu nanoparticles melting and sintering behavior in Cu Cu direct bonding. Mater. Des. 197, 109240 https://doi.org/ 10.1016/j.matdes.2020.109240. Zahmatkesh, I., Sheremet, M., Yang, L., Heris, S.Z., Sharifpur, M., Meyer, J.P., Ghalambaz, M., Wongwises, S., Jing, D., Mahian, O., 2020. Effect of nanoparticle shape on the performance of thermal systems utilizing nanofluids: a critical review. J. Mol. Liq. 114430 https://doi.org/10.1016/j.molliq.2020.114430. Zhang, Z., Xie, Y.H., Huo, X.Y., Chan, S.L.I., Liang, J.M., Luo, Y.F., Mu, D.K.Q., Ju, J., Sun, J., Wang, J., 2021. Microstructure and mechanical properties of ultrafine grained CoCrFeNi and CoCrFeNiAl0.3 high entropy alloys reinforced with Cr2O3/Al2O3 nanoparticles. Mater. Sci. Eng. A 816, 141313. https://doi.org/10.1016/j. msea.2021.141313. Zhou, J., Wang, C., Song, M., Chen, X., Xia, W., 2021. Simple synthesis of ultrafine amorphous silicon carbide nanoparticles by atmospheric plasmas. Mater. Lett. 299, 130072 https://doi.org/10.1016/j.matlet.2021.130072. |
dc.relation.citationendpage.spa.fl_str_mv |
13 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
41 |
dc.rights.spa.fl_str_mv |
© 2021 Elsevier B.V. All rights reserved. Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
© 2021 Elsevier B.V. All rights reserved. Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
13 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.city.none.fl_str_mv |
Tunisia |
dc.coverage.region.none.fl_str_mv |
North Africa |
dc.publisher.spa.fl_str_mv |
Elsevier BV |
dc.publisher.place.spa.fl_str_mv |
Netherlands |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2212095521002765?pes=vor#! |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/c962be9a-3e13-4f01-a715-4b93e670f6f0/download https://repositorio.cuc.edu.co/bitstreams/74749715-44df-4ec0-9e78-519b31668f3f/download https://repositorio.cuc.edu.co/bitstreams/c43d572e-4785-4e25-a094-a1f3f1a6ce3b/download https://repositorio.cuc.edu.co/bitstreams/4ffbdc1b-63c8-49a8-8684-84165b41e0af/download |
bitstream.checksum.fl_str_mv |
2b999c2973b7bfe494b99c7442f25647 e30e9215131d99561d40d6b0abbe9bad fe764140abe7dcb6711dff2e1f5178c6 8d756b567d3830b7ea1efb1c9d55b5c0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166836367130624 |
spelling |
O. Silva, Luis F.S. Oliveira, Marcos L.Neckel, AlcindoStolfo Maculan, LaércioMilanés Batista, CeleneBodah, Brian W.Cambrussi, LauraDotto, Guilherme Luiz2022-07-19T13:11:39Z2022-07-19T13:11:39Z2021-12-022212-0955https://hdl.handle.net/11323/9379https://doi.org/10.1016/j.uclim.2021.10104610.1016/j.uclim.2021.101046Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Air pollution is a factor of concern on a global scale, accelerating the deterioration of historic medieval architecture and having harmful effects on human health. The general objective of this study is to understand the risks of atmospheric contamination that contribute to the degradation of the medieval historical heritage of (1) Bab El Bhar, (2) the Tunis Train Station and (3) the Bardo National Museum, in the City of Tunis, capital of Tunisia, located in North Africa. Sequentially, 64 samples were collected in SMPSs and 64 of dust particles in sites 1, 2 and 3, from 2015 to 2019. Field Emission Scanning Electron Microscopy (FE-SEM) was utilized together with High Resolution Transmission Electron Microscopy (HR-TEM) and the coupled with an Energy Dispersive X-ray (EDS), which allowed a better characterization and identification of NPs in images, using Energy Dispersive X-ray (EDS). The Bab El Bhar SMPS samples yielded a higher proportion of ultrafine and organic particles. Sedimented dusts showed high proportions of organometallic particles (Al, As, Ba, Ca, Cd, Co, Cr, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, S, Sb, Se, Si, Sn, Ti, V and Zn). The need to create public policies to protect both human health and physical historic infrastructure is noted, as this study identified dangerous elements harmful to human health in ultrafine particles, easily suspended by the wind and highly corrosive to historical buildings from the medieval period in the air of a busy metropolitan tourist site.13 páginasapplication/pdfengElsevier BVNetherlands© 2021 Elsevier B.V. All rights reserved.Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Effects of atmospheric pollutants on human health and deterioration of medieval historical architecture (North Africa, Tunisia)Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.sciencedirect.com/science/article/pii/S2212095521002765?pes=vor#!TunisiaNorth AfricaUrban ClimateAlves, C., Evtyugina, M., Vicente, A., Conca, E., Amato, F., 2021. Organic profiles of brake wear particles. Atmos. Res. 255, 105557 https://doi.org/10.1016/j. atmosres.2021.105557.Amato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., Moreno, T., 2009. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos. Envirom. 43 (9), 1650–1659. https://doi.org/10.1016/j.atmosenv.2008.12.009Azri, C., Mabrouk, C., Medhioub, K., 2009. Diurnal evolutions of nitrogen oxides (NOx), ozone (O3), and PM10 particles at a busy traffic cross-road in the city of Tunis. Environ. Prog. Sustain. Energy 28 (1), 143–154. https://doi.org/10.1002/ep.10315.Azzolin, M., Cattelan, G., Dugaria, S., Minetto, S., Calabrese, L., Col, D.D., 2021. Integrated CO2 systems for supermarkets: field measurements and assessment for alternative solutions in hot climate. Appl. Therm. Eng. 187, 116560 https://doi.org/10.1016/j.applthermaleng.2021.116560Barhoumi, B., Tedetti, M., Heimbürger-Boavida, L.E., Onrubia, J.A.T., Dufour, A., Doan, Q.T., Boutaleb, S., Touil, S., Scippo, M.L., 2020. Chemical composition and in vitro aryl hydrocarbon receptor-mediated activity of atmospheric particulate matter at an urban, agricultural and industrial site in North Africa (Bizerte, Tunisia). Chemosphere 258, 127312. https://doi.org/10.1016/j.chemosphere.2020.12731ayouli, I.T., Bayouli, H.T., Dell’oca, A., Meers, E., Sun, J., 2021. Ecological indicators and bioindicator plant species for biomonitoring industrial pollution: eco-based environmental assessment. Ecol. Indic. 125, 107508 https://doi.org/10.1016/j.ecolind.2021.107508Bettaieb, J., Toumi, A., Leffondre, K., Chlif, S., Salah, A.B., 2020. High temperature effect on daily all-cause mortality in Tunis 2005–2007. Rev. Epidemiol. Sante Publique 68 (1), 37–43. https://doi.org/10.1016/j.respe.2019.09.007Brodny, J., Tutak, M., 2021. The analysis of similarities between the European Union countries in terms of the level and structure of the emissions of selected gases and air pollutants into the atmosphere. J. Clean. Prod. 279, 123641 https://doi.org/10.1016/j.jclepro.2020.123641Ellouz, F., Masmoudi, M., Medhioub, K., 2013. Study of the atmospheric turbidity over northern Tunisia. Renew. Energy 51, 513–517. https://doi.org/10.1016/j. renene.2008.04.035Ernould, C., Beausir, B., Fundenberger, J.J., Taupin, V., Bouzy, E., 2020. Characterization at high spatial and angular resolutions of deformed nanostructures by on- axis HR-TKD. Scr. Mater. 185, 30–35. https://doi.org/10.1016/j.scriptamat.2020.04.005Euchi, J., Kallel, A., 2021. Internalization of external congestion and CO2 emissions costs related to road transport: the case of Tunisia. Renew. Sust. Energ. Rev. 142, 110858 https://doi.org/10.1016/j.rser.2021.110858. L.F.O. Silva et al.Feki, H., Slimani, M., Cudennec, C., 2016. Geostatistically based optimization of a rainfall monitoring network extension: case of the climatically heterogeneous Tunisia. Hydrol. Res. 48 (2), 514–541. https://doi.org/10.2166/nh.2016.256.Findlay, A.M., Paddison, R., 1986. Planning the Arab city: the cases of Tunis and Rabat. Prog. Plan. 26, 1–82. https://doi.org/10.1016/0305-9006(86)90006-1Gallego-Cartagena, E., Morillas, H., Maguregui, M., Pati ̃no-Camelo, K., Marcaida, I., Morgado-Gamero, W., Silva, L.F.O., Madariaga, J.M., 2020. A comprehensive study of biofilms growing on the built heritage of a Caribbean industrial city in correlation with construction materials. Int. Biodeterior. Biodegradation 147, 104874. https://doi.org/10.1016/j.ibiod.2019.104874.García-Florentino, C., Maguregui, M., Carrero, J.A., Morillas, H., Arana, G., Madariaga, J.M., 2020. Development of a cost effective passive sampler to quantify the particulate matter depositions on building materials over time. J. Clean. Prod. 268, 122134 https://doi.org/10.1016/j.jclepro.2020.122134Gelhardt, L., Dittmer, U., Welker, A., 2021. Relationship of particle density and organic content in sieve fractions of road-deposited sediments from varying traffic sites based on a novel data set. Sci. Total Environ. 794, 148812 https://doi.org/10.1016/j.scitotenv.2021.148812Gogoi, M., Boruah, P., Sengupta, P., Saikia, L., 2019. Separation of ultrafine chalcogenide particles using Fe3O4 magnetic nanoparticles and ligands with metal selectivity. Miner. Eng. 137, 147–156. https://doi.org/10.1016/j.mineng.2019.04.004Hatđr, M.E., 2020. Determining the weathering classification of stone cultural heritage via the analytic hierarchy process and fuzzy inference system. J. Cult. Herit. 44, 120–134. https://doi.org/10.1016/j.culher.2020.02.011Hodoroaba, V.D., 2020. Energy-dispersive X-ray spectroscopy (EDS). Characteriz. Nanopart. 397-417 https://doi.org/10.1016/b978-0-12-814182-3.00021-3.Howard, J., Weyhrauch, J., Loriaux, G., Schultz, B., Baskaran, M., 2019. Contributions of artifactual materials to the toxicity of anthropogenic soils and street dusts in a highly urbanized terrain. Environ. Pollut. 255, 113350 https://doi.org/10.1016/j.envpol.2019.11335Korkanç, M., Hüseyinca, M.Y., Hatđr, M.E., Tosunlar, M.B., Bozda ̆g, A., ̈Ozen, L., ̇Ince, ̇I., 2019. Interpreting sulfated crusts on natural building stones using sulfur contour maps and infrared thermography. Environ. Earth Sci. 78 (13), 1–14. https://doi.org/10.1007/s12665-019-8377-yarbi, H., Leitmann, J., 1994. Tunis. Cities 11 (5), 292–296. https://doi.org/10.1016/0264-2751(94)90081-7Li, Y., Shao, L., Wang, W., Zhang, M., Feng, X., Li, W., Zhang, D., 2020. Airborne fiber particles: types, size and concentration observed in Beijing. Sci. Total Environ. 705, 135967 https://doi.org/10.1016/j.scitotenv.2019.135967.Lima, B.D., Teixeira, E.C., Hower, J.C., Civeira, M.S., Ramírez, O., Yang, C.X., Oliveira, M.L.S., Silva, L.F.O., 2021. Metal-enriched nanoparticles and black carbon: a perspective from the Brazil railway system air pollution. Geosci. Front. 12 (3), 101129 https://doi.org/10.1016/j.gsf.2020.12.010Liu, L., Kong, S., Zhang, Y., Wang, Y., Xu, L., Yan, Q., Lingaswamy, A.P., Shi, Z., Lv, S., Niu, H., 2017. Morphology, composition, and mixing state of primary particles from combustion sources - crop residue, wood, and solid waste. Sci. Rep. 7 (1), 1–15. https://doi.org/10.1038/s41598-017-05357-2Liu, H., Yin, S., Chen, C., Duan, Z., 2020. Data multi-scale decomposition strategies for air pollution forecasting: a comprehensive review. J. Clean. Prod. 277, 124023 https://doi.org/10.1016/j.jclepro.2020.124023Liu, G., Xia, X., Zhao, C., Zhang, X., Zhang, W., 2021. Ultrafine Ni nanoparticles anchored on carbon nanofibers as highly efficient bifunctional air electrodes for flexible solid-state zinc-air batteries. J. Colloid Interface Sci. 588, 627–636. https://doi.org/10.1016/j.jcis.2020.11.053.Mahroug, E., Belakehal, A., 2016. The evolution of heritage atmospheres in the medina of Tunis since the 19th century. In: Islamic Heritage Architecture And Art 159. WIT Press, pp. 161–169. https://doi.org/10.2495/iha160141.Morillas, H., Marcaida, I., Maguregui, M., Upasen, S., Gallego-Cartagena, E., Madariaga, J.M., 2019. Identification of metals and metalloids as hazardous elements in PM2.5 and PM10 collected in a coastal environment affected by diffuse contamination. J. Clean. Prod. 226, 369–378. https://doi.org/10.1016/j. jclepro.2019.04.063.Morillas, H., de Mendonça, F.F.F., Derluyn, H., Maguregui, M., Gr ́egoire, D., Madariaga, J.M., 2020. Decay processes in buildings close to the sea induced by marine aerosol: salt depositions inside construction materials. Sci. Total Environ. 721, 1–9. https://doi.org/10.1016/j.scitotenv.2020.137687Mraihi, R., Harizi, R., Mraihi, T., Bouzidi, M.T., 2015. Urban air pollution and urban daily mobility in large Tunisia’s cities. Renew. Sust. Energ. Rev. 43, 315–320. https://doi.org/10.1016/j.rser.2014.11.022Neckel, A., da Silva, J.L., Saraiva, P.P., Kujawa, H.A., Araldi, J., Paladini, E.P., 2020. Estimation of the economic value of urban parks in Brazil, the case of the City of Passo Fundo. J. Clean. Prod. 264, 121369 https://doi.org/10.1016/j.jclepro.2020.121369Neckel, A., Korcelski, C., Kujawa, H.A., da Silva, I.S., Prezoto, F., Amorin, A.L.W., Maculan, L.S., Gonçalves, A.C., Bodah, E.T., Bodah, B.W., Dotto, G.L., Silva, L.F.O., 2021. Hazardous elements in the soil of urban cemeteries; constructive solutions aimed at sustainability. Chemosphere 262, 128248. https://doi.org/10.1016/j. chemosphere.2020.128248Nizar, O., Jean-Pierre, G., Habib, B., 2021. Significance of 2-methylhopane and 22,29,30 Trisnorhop 17(21)-ene biomarkers in holocene sediments from the Gulf of Tunis - Southern Mediterranean Sea. J. Afr. Earth Sci. 173, 104043 https://doi.org/10.1016/j.jafrearsci.2020.104043Oliveira, M.L.S., Tutikian, B.F., Milanes, C., Silva, L.F.O., 2020. Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica. J. Clean. Prod. 248, 119250 https://doi.org/10.1016/j.jclepro.2019.119250.Oliveira, M.L.S., Flores, E.M.M., Dotto, G.L., Neckel, A., Silva, L.F.O., 2021a. Nanomineralogy of mortars and ceramics from the forum of Caesar and Nerva (Rome, Italy): the protagonist of black crusts produced on historic buildings. J. Clean. Prod. 278, 123982 https://doi.org/10.1016/j.jclepro.2020.123982.Oliveira, M.L.S., Neckel, A., Silva, L.F.O., Dotto, G.L., Maculan, L.S., 2021b. Environmental aspects of the depreciation of the culturally significant Wall of Cartagena de Indias – Colombia. Chemosphere 265, 129119. https://doi.org/10.1016/j.chemosphere.2020.129119Ouyang, X., Wei, X., Li, Y., Wang, X.C., Klemeˇs, J.J., 2021. Impacts of urban land morphology on PM2.5 concentration in the urban agglomerations of China. J. Environ. Manag. 283, 112000 https://doi.org/10.1016/j.jenvman.2021.112000.Palisoc, S., Santos, D.J., Natividad, M., 2021. Borohydride-based electrolyte system for magnesium-persulfate (mg||MgS2O8) rechargeable battery. Ain Shams Eng. J. 1–10. https://doi.org/10.1016/j.asej.2020.09.032Petkus, A.J., Wang, X., Beavers, D.P., Chui, H.C., Espeland, M.A., Gatz, M., Gruenewald, T., Kaufman, J.D., Manson, J.E., Resnick, S.M., 2021. Outdoor air pollution exposure and inter-relation of global cognitive performance and emotional distress in older women. Environ. Pollut. 271, 116282 https://doi.org/10.1016/j. envpol.2020.116282Prasad, S.V.S., Prasad, S.B., Verma, K., Mishra, R.K., Kumar, V., Singh, S., 2021. The role and significance of magnesium in modern day research-a review. J. Magnes. Alloys 1-61. https://doi.org/10.1016/j.jma.2021.05.012Rajput, V., Minkina, T., Mazarji, M., Shende, S., Sushkova, S., Mandzhieva, S., Burachevskaya, M., Chaplygin, V., Singh, A., Jatav, H., 2020. Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Ann. Agric. Sci. 65 (2), 137–143. https://doi.org/10.1016/j.aoas.2020.08.001Robe, M.C., Carbonnelle, J., 1982. Study of atmospheric pollution in an urban zone deprived of measurement systems, for purposes of legislation application to the city of Tunis. Sci. Total Environ. 23, 61–67. https://doi.org/10.1016/0048-9697(82)90122-xSaidi, O., Malouche, D., Saksena, P., Arfaoui, L., Talmoudi, K., Hchaichi, A., Bouguerra, H., Romdhane, H.B., Hsairi, M., Ouhichi, R., 2021. Impact of contact tracing, respect of isolation and lockdown in reducing the number of cases infected with COVID-19: case study. Int. J. Infect. Dis. 1-34 https://doi.org/10.1016/j. ijid.2021.02.010Saini, A., Harner, T., Chinnadhurai, S., Schuster, J.K., Yates, A., Sweetman, A., Aristizabal-Zuluaga, B.H., Jim ́enez, B., Manzano, C.A., Gaga, E.O., 2020. GAPS- megacities: a new global platform for investigating persistent organic pollutants and chemicals of emerging concern in urban air. Environ. Pollut. 267, 115416 https://doi.org/10.1016/j.envpol.2020.115416Salyer, S.J., Maeda, J., Sembuche, S., Kebede, Y., Tshangela, A., Moussif, M., Ihekweazu, C., Mayet, N., Abate, E., Ouma, A.O., 2021. The first and second waves of the COVID-19 pandemic in Africa: a cross-sectional study. Lancet 397 (10281), 1265–1275. https://doi.org/10.1016/s0140-6736(21)00632-2.Samara, C., Melfos, V., Kouras, A., Karali, E., Zacharopoulou, G., Kyranoudi, M., Papadopoulou, L., Pavlidou, E., 2020. Morphological and geochemical characterization of the particulate deposits and the black crust from the Triumphal Arch of Galerius in Thessaloniki, Greece: implications for deterioration assessment. Sci. Total Environ. 734, 139455 https://doi.org/10.1016/j.scitotenv.2020.139455.Schembari, C., Bove, M.C., Cuccia, E., Cavalli, F., Hjorth, J., Massabo, ` D., Nava, S., Udisti, R., Prati, P., 2014. Source apportionment of PM10 in the Western Mediterranean based on observations from a cruise ship. Atmos. Environ. 98, 510–518. https://doi.org/10.1016/j.atmosenv.2014.09.015.Silva, L.F.O., Pinto, D., Neckel, A., Dotto, G.L., Oliveira, M.L.S., 2020a. The impact of air pollution on the rate of degradation of the fortress of Florianopolis Island, Brazil. Chemosphere 251, 126838. https://doi.org/10.1016/j.chemosphere.2020.126838.Silva, L.F.O., Pinto, D., Neckel, A., Oliveira, M.L.S., 2020b. An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces. Geosci. Front. 11 (6), 2053–2060. https://doi.org/10.1016/j.gsf.2020.07.003.Silva, L.F.O., Lozano, L.P., Oliveira, M.L.S., da Boit, K., Gonçalves, J.O., Neckel, A., 2021. Identification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects. Mar. Pollut. Bull. 168, 112425 https://doi.org/10.1016/j.marpolbul.2021.112425.Stambouli, F., 1996. Tunis city in transition. Environ. Urban. 8 (1), 51–63. https://doi.org/10.1177/095624789600800117.Trejos, E.M., Silva, L.F.O., Hower, J.C., de Flores, E.M.M., Gonz´ alez, C.M., Pachon, ´ J.E., Aristiz´ abal, B.H., 2021. Volcanic emissions and atmospheric pollution: a study of nanoparticles. Geosci. Front. 12 (2), 746–755. https://doi.org/10.1016/j.gsf.2020.08.013.Tunisia Population, 2021. Tunisia Population Estimator. Demographic Data. https://worldpopulationreview.com/countries/tunisia-population (Accessed 4 August 2021).Wang, J., Zhang, P., Wang, S., Yang, L., Luo, J., Shen, B., 2021. Mechanisms and kinetics of a new cleaner single cyclic roasting-leaching process for the extraction of vanadium from Linz–Donawitz converter slag using CaCO3 and H2SO4. Cleaner Eng. Technol. 4, 100204 https://doi.org/10.1016/j.clet.2021.100204Wen, Z.Y., Tang, X.F., Wang, T., Gu, X.J., Zhang, W.J., 2020. Detection of chemical compositions of ultrafine nanoparticles by a vacuum ultraviolet photoionization nucleation aerosol mass spectrometer. Chin. J. Anal. Chem. 48 (4), 491–497. https://doi.org/10.1016/s1872-2040(20)60009-3.Wu, R., Zhao, X., Liu, Y., 2021. Atomic insights of Cu nanoparticles melting and sintering behavior in Cu Cu direct bonding. Mater. Des. 197, 109240 https://doi.org/ 10.1016/j.matdes.2020.109240.Zahmatkesh, I., Sheremet, M., Yang, L., Heris, S.Z., Sharifpur, M., Meyer, J.P., Ghalambaz, M., Wongwises, S., Jing, D., Mahian, O., 2020. Effect of nanoparticle shape on the performance of thermal systems utilizing nanofluids: a critical review. J. Mol. Liq. 114430 https://doi.org/10.1016/j.molliq.2020.114430.Zhang, Z., Xie, Y.H., Huo, X.Y., Chan, S.L.I., Liang, J.M., Luo, Y.F., Mu, D.K.Q., Ju, J., Sun, J., Wang, J., 2021. Microstructure and mechanical properties of ultrafine grained CoCrFeNi and CoCrFeNiAl0.3 high entropy alloys reinforced with Cr2O3/Al2O3 nanoparticles. Mater. Sci. Eng. A 816, 141313. https://doi.org/10.1016/j. msea.2021.141313.Zhou, J., Wang, C., Song, M., Chen, X., Xia, W., 2021. Simple synthesis of ultrafine amorphous silicon carbide nanoparticles by atmospheric plasmas. Mater. Lett. 299, 130072 https://doi.org/10.1016/j.matlet.2021.130072.13141Medieval architectureAtmospheric pollutantsUltrafine particlesPublic policyHuman healthPublicationORIGINAL1-s2.0-S2212095521002765-main (1).pdf1-s2.0-S2212095521002765-main (1).pdfapplication/pdf19538989https://repositorio.cuc.edu.co/bitstreams/c962be9a-3e13-4f01-a715-4b93e670f6f0/download2b999c2973b7bfe494b99c7442f25647MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/74749715-44df-4ec0-9e78-519b31668f3f/downloade30e9215131d99561d40d6b0abbe9badMD52TEXT1-s2.0-S2212095521002765-main (1).pdf.txt1-s2.0-S2212095521002765-main (1).pdf.txttext/plain50802https://repositorio.cuc.edu.co/bitstreams/c43d572e-4785-4e25-a094-a1f3f1a6ce3b/downloadfe764140abe7dcb6711dff2e1f5178c6MD53THUMBNAIL1-s2.0-S2212095521002765-main (1).pdf.jpg1-s2.0-S2212095521002765-main (1).pdf.jpgimage/jpeg12640https://repositorio.cuc.edu.co/bitstreams/4ffbdc1b-63c8-49a8-8684-84165b41e0af/download8d756b567d3830b7ea1efb1c9d55b5c0MD5411323/9379oai:repositorio.cuc.edu.co:11323/93792024-09-17 14:16:08.288https://creativecommons.org/licenses/by/4.0/© 2021 Elsevier B.V. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |