Coastal Migration Index for Coastal Flooding Events Increased by Sea Level Rise due to Climate Change: Mexico and Cuba Case Studies

This paper presents a coastal migration index (CMI) useful for decision-making in the current scenario of sea-level rise (SLR) due to climate change. The CMI includes coastal human population density, degree of urbanization, and coastal-flooding penetration. Quantitative and qualitative statistical...

Full description

Autores:
Jiménez-Hernández, Sergio B.
Pérez Montero, Ofelia
Meza, Eustorgio
Velázquez, Yunior R.
Castellanos, Juan R.
Martínez-Cano, Esperanza
Sosa-Pérez, Felipe
Herrera, Juan F.
Zielinski, Seweryn
Cuker, Benjamin
Oliveira, Marcos
Anfuso, Giorgio
Milanes, Celene B.
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8834
Acceso en línea:
https://hdl.handle.net/11323/8834
https://doi.org/10.3390/w13213090
https://repositorio.cuc.edu.co/
Palabra clave:
coastal vulnerability
coastal management
coastal environmental sustainability
stoplight map
hurricanes
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_ee9e4b2c7e6a8ca20a01df868b9ce3c1
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8834
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Coastal Migration Index for Coastal Flooding Events Increased by Sea Level Rise due to Climate Change: Mexico and Cuba Case Studies
title Coastal Migration Index for Coastal Flooding Events Increased by Sea Level Rise due to Climate Change: Mexico and Cuba Case Studies
spellingShingle Coastal Migration Index for Coastal Flooding Events Increased by Sea Level Rise due to Climate Change: Mexico and Cuba Case Studies
coastal vulnerability
coastal management
coastal environmental sustainability
stoplight map
hurricanes
title_short Coastal Migration Index for Coastal Flooding Events Increased by Sea Level Rise due to Climate Change: Mexico and Cuba Case Studies
title_full Coastal Migration Index for Coastal Flooding Events Increased by Sea Level Rise due to Climate Change: Mexico and Cuba Case Studies
title_fullStr Coastal Migration Index for Coastal Flooding Events Increased by Sea Level Rise due to Climate Change: Mexico and Cuba Case Studies
title_full_unstemmed Coastal Migration Index for Coastal Flooding Events Increased by Sea Level Rise due to Climate Change: Mexico and Cuba Case Studies
title_sort Coastal Migration Index for Coastal Flooding Events Increased by Sea Level Rise due to Climate Change: Mexico and Cuba Case Studies
dc.creator.fl_str_mv Jiménez-Hernández, Sergio B.
Pérez Montero, Ofelia
Meza, Eustorgio
Velázquez, Yunior R.
Castellanos, Juan R.
Martínez-Cano, Esperanza
Sosa-Pérez, Felipe
Herrera, Juan F.
Zielinski, Seweryn
Cuker, Benjamin
Oliveira, Marcos
Anfuso, Giorgio
Milanes, Celene B.
dc.contributor.author.spa.fl_str_mv Jiménez-Hernández, Sergio B.
Pérez Montero, Ofelia
Meza, Eustorgio
Velázquez, Yunior R.
Castellanos, Juan R.
Martínez-Cano, Esperanza
Sosa-Pérez, Felipe
Herrera, Juan F.
Zielinski, Seweryn
Cuker, Benjamin
Oliveira, Marcos
Anfuso, Giorgio
Milanes, Celene B.
dc.subject.spa.fl_str_mv coastal vulnerability
coastal management
coastal environmental sustainability
stoplight map
hurricanes
topic coastal vulnerability
coastal management
coastal environmental sustainability
stoplight map
hurricanes
description This paper presents a coastal migration index (CMI) useful for decision-making in the current scenario of sea-level rise (SLR) due to climate change. The CMI includes coastal human population density, degree of urbanization, and coastal-flooding penetration. Quantitative and qualitative statistical techniques and the geographic information system ArcGIS View 9.0 were used. Further, a panel of fifteen international experts in coastal management issues was consulted to establish and validate the CMI. Results led to three index components based on 22 indicators. CMI was applied in the state of Tamaulipas, Mexico and in Santiago de Cuba province, Cuba. According to CMI estimates, the risk levels associated with SLR for human settlements analyzed in Mexico and Cuba were 5.3% and 11.0%, respectively. The most severely affected communities will require resettlement. Meanwhile, the CMI determined that 15.8% of the Mexican territory studied will be able to withstand the effects of SLR through the management of engineering works that will protect human settlements. The CMI determined that 79.0%, in the case of Tamaulipas, as well as 89.0% of the Cuban territory, will not require new policies or guidelines to promote conservation and protection of coastal natural resources. Lastly, the method used allowed for creation of a CMI stoplight map useful to coastal decision-makers to adopt sound management actions.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-04T13:36:44Z
dc.date.available.none.fl_str_mv 2021-11-04T13:36:44Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2073-4441
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8834
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.3390/w13213090
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2073-4441
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8834
https://doi.org/10.3390/w13213090
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Milanés, C.B.; Montero, O.P.; Szlafsztein, C.F.; Pimentel, M.A.D.S. Climate change and spatial justice in coastal planning in Cuba and Brazil. Ambient. Soc. 2020, 23.
López-Dóriga, U.; Jiménez, J.A.; Valdemoro, H.I.; Nicholls, R.J. Impact of sea-level rise on the tourist-carrying capacity of Catalan beaches. Ocean Coast. Manag. 2019, 170, 40–50.
Chen, W.; Wang, X.; Deng, S.; Liu, C.; Xie, H.; Zhu, Y. Integrated urban flood vulnerability assessment using local spatial dependence-based probabilistic approach. J. Hydrol. 2019, 575, 454–469.
Da Silveira, Y.G.; Bonetti, J. Assessment of the physical vulnerability to erosion and flooding in a sheltered coastal sector: Florianópolis Bay, Brazil. J. Coast. Conserv. 2018, 23, 303–314.
Chambers, D.P.; Cazenave, A.; Champollion, N.; Dieng, H.; LloveL, W.; Forsberg, R.; Von Schuckmann, K.; Wada, Y. Evaluation of the Global Mean Sea Level Budget between 1993 and 2014. Surv. Geophys. 2016, 38, 309–327.
Benassai, G.; Di Paola, G.; Aucelli, P.P.C. Coastal risk assessment of a micro-tidal littoral plain in response to sea level rise. Ocean Coast. Manag. 2015, 104, 22–35.
Cazenave, A.; Dieng, H.-B.; Meyssignac, B.; Von Schuckmann, K.; Decharme, B.; Berthier, E. The rate of sea-level rise. Nat. Clim. Chang. 2014, 4, 358–361.
López de Llergo, R. Principales rasgos geográficos de la República Mexicana. Investig. Geogr. 2003, 26–41. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-46112003000100007&lng=es&tlng=es. (accessed on 10 April 2020)
Donoghue, J.F. Sea level history of the northern Gulf of Mexico coast and sea level rise scenarios for the near future. Clim. Chang. 2011, 107, 17–33.
Jankowski, K.L.; Tornqvist, T.; Fernandes, A.M. Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise. Nat. Commun. 2017, 8, 14792.
Batista, C.M.; Montero, O.P. An inquiry into land-use planning and integrated coastal zone management: The Cuban experience. Ocean Yearb. Online 2012, 26, 509–532.
Milanés-Batista, C.; Tamayo-Yero, H.; De Oliveira, D.; Alvarez, J.R.N. Application of business intelligence in studies management of hazard, vulnerability and risk in Cuba. IOP Conf. Ser. Mater. Sci. Eng. 2020, 844, 012033.
Batista, C.M. Coastal flood hazard mapping. In Encyclopedia of Coastal Science, 2nd ed.; Springer: Cham, Switzerland, 2018; pp. 471–479. [
Batista, C.M.; Suárez, A.; Saltarén, C.M.B. Novel method to delimitate and demarcate coastal zone boundaries. Ocean Coast. Manag. 2017, 144, 105–119.
Pimentel, M.A.D.S.; Szlafsztein, C.F.; Montero, O.P.; Batista, C.M. Sustentabilidade dos meios de vida e vulnerabilidade socioambiental: Estudos compartilhados entre brasil e Cuba. Camin. Geogr. 2021, 22, 249–264.
ONEI. Environmental Overview. Cuba. Havana: Center for Economic, Environmental and Social Information Management. 2019. Available online: http://www.onei.gob.cu (accessed on 1 April 2020).
Milanes, C.B.; Montero, O.P.; Cabrera, J.A.; Cuker, B. Recommendations for coastal planning and beach management in Caribbean insular states during and after the COVID-19 pandemic. Ocean Coast. Manag. 2021, 208, 105575.
Pérez, M.O.; Milanés, B.C.; Poveda, S.I.; Cruz, P.Y. Los estudios de peligro, vulnerabilidad y riesgos de desastres en Cuba. In Experiencias Metodológicas Para la Gestión del Riesgo; Libro de Investigación; Milanés, B.C., Fabian, S.C., Eds.; Editorial Universitaria de la Costa, EDUCOSTA S.A.S.: Barranquilla, Colombia, 2018; pp. 25–63. ISBN 978-958-8921-69-3. Available online: http://repositorio.cuc.edu.co/xmlui/handle/11323/1686 (accessed on 1 June 2019).
Citma. Studies of Danger, Vulnerability and Flood Risks by Penetration of the Sea in Santiago de Cuba, Santiago de Cuba. 2017; unpublished results.
Pérez, P.R. Rise of the average sea level in Cuba by climate change. Cuba J. Meteorol. 2019, 25, 76–83. Available online: http://rcm.insmet.cu/index.php/rcm/article/view/455/619 (accessed on 10 April 2020).
Alonso, G.; Clark, I. Confrontation with climate change in the Republic of Cuba. Int. J. Cuba. Health Med. 2015, 17, 1–19. Available online: https://www.scielosp.org/article/medicc/2015.v17n2/10-13/en/ (accessed on 12 August 2020).
Diaz, J.L.; Magas, A.R.; Bouza, O.; Hernández, J. The relief of Cuba. Earth Space Sci. 1990, 33–44. Available online: http://redciencia.cu/geobiblio/geobiblio.html#D (accessed on 1 January 2010).
Chávez, I.M.B.; Batista, C.M.; Montero, O.P.; Suarez, C.V.; García, M.C. Caracterización de las tipologías del medio físico construido en frentes de playa: Municipio Guamá (Cuba). Módulo Arquit. CUC 2021, 27, 113–144.
Batista, C.M.; Pereira, C.I.; Botero, C.M. Improving a decree law about coastal zone management in a small island developing state: The case of Cuba. Mar. Policy 2019, 101, 93–107.
Nuñez, A.; Planes, V.; Stelcl, O. Speleological and Carsological; Series No. 2; Academy of Sciences of Cuba: Carsos de Cuba, Cuba, 1968.
González-Agraz, M.P.; de Maestría, T. Vulnerabilidad de los humedales en la costa tamaulipeca (Publication Number 1), Universidad Autó-noma de Tamaulipas, Tampico, Mexico. 2011; unpublished results.
Jiménez-Hernández, S.B.; Salinas-Castillo, W.; Campos-Flores, J. Impacto de la urbanización en zonas costeras, caso de estudio: Zona conurbada Altamira-Madero-Tampico, Tamaulipas, México. In Diag-Nóstico Ambiental del Golfo de México; Caso, M., Pisanty, I., Ezcurra, E., Eds.; Untitled Instituto Nacional de Ecología, 2004; Volume 1, pp. 417–430. Available online: https://bit.ly/3fdvtwy (accessed on 25 June 2020).
Stucchi, L.; Bignami, D.F.; Bocchiola, D.; Del Curto, D.; Garzulino, A.; Rosso, R. Assessment of climate-driven flood risk and adaptation supporting the conservation management plan of a heritage site. the national art schools of Cuba. Climate 2021, 9, 23.
Batista, M.C. Coastal risk. In Encyclopedia of Coastal Science, 2nd ed.; Finkl, C.W., Makowski, C., Eds.; Springer Nature: Cham, Switzerland, 2018; Volume 1, pp. 524–534. Available online: https://link.springer.com/referenceworkentry/10.1007%2F978-3-319-48657-4_408-1 (accessed on 24 October 2018).
Pereira, C.I.; Milanes, C.B.; Sarda, R.; Cuker, B.; Botero, C.M. Challenges at the early stages of the environmental licensing procedure and potential contributions from geomorphology. Geosci. Front. 2021, 12, 101228.
Botero, C.; Pereira, C.; Milanes, C.; Pranzini, E. Dataset of human interventions as anthropogenic perturbations on the Caribbean coast of Colombia. Data Brief 2020, 31, 105847.
Antunes, C.; Rocha, C.; Catita, C. Coastal flood assessment due to sea level rise and extreme storm events: A case study of the atlantic coast of portugal’s mainland. Geosciences 2019, 9, 239.
Balica, S.F.; Wright, N.; Van Der Meulen, F. A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Nat. Hazards 2012, 64, 73–105.
Balica, S.F.; Douben, N.; Wright, N.G. Flood vulnerability indices at varying spatial scales. Water Sci. Technol. 2009, 60, 2571–2580.
Boruff, B.J.; Emrich, C.; Cutter, S.L. Erosion hazard vulnerability of US coastal counties. J. Coast. Res. 2005, 215, 932–942.
Giannakidou, C.; Diakoulaki, D.; Memos, C.D. Implementing a flood vulnerability index in urban coastal areas with industrial activity. Nat. Hazards 2019, 97, 99–120.
Gornitz, V. Global coastal hazards from future sea level rise. Palaeogeogr. Palaeoclim. Palaeoecol. 1991, 89, 379–398.
Hughes, P.; Brundrit, G.B. An index to assess south-africa vulnerability to sea-level rise. S. Afr. J. Sci. 1992, 88, 308–311.
Mclaughlin, S.; Cooper, J.A.G. A multi-scale coastal vulnerability index: A tool for coastal managers? Environ. Hazards 2010, 9, 233–248.
Su, S.; Pi, J.; Wan, C.; Li, H.; Xiao, R.; Li, B. Categorizing social vulnerability patterns in Chinese coastal cities. Ocean Coast. Manag. 2015, 116, 1–8.
Zhu, Z.-T.; Cai, F.; Chen, S.-L.; Gu, D.-Q.; Feng, A.-P.; Cao, C.; Qi, H.-S.; Lei, G. Coastal vulnerability to erosion using a multi-criteria index: A case study of the Xiamen coast. Sustainability 2018, 11, 93.
Planas, F.J.A.; Milanés, C.B.; Fanning, L.M.; Botero, C.M. Validating governance performance indicators for integrated coastal and ocean management in the southeast region of Cuba. Open J. Mar. Sci. 2016, 6, 49–65
Pereira, C.I.; Carvajal, A.F.; Batista, C.M.; Botero, C.M. Regulating human interventions in Colombian coastal areas: Implications for the environmental licensing procedure in middle-income countries. Environ. Impact Assess. Rev. 2019, 79, 106284.
Garcia, E.S.; Loáiciga, H.A. Sea-level rise and flooding in coastal riverine flood plains. Hydrol. Sci. J. 2013, 59, 204–220.
Osland, M.J.; Griffith, K.T.; Larriviere, J.C.; Feher, L.C.; Cahoon, D.R.; Enwright, N.M.; Oster, D.A.; Tirpak, J.M.; Woodrey, M.S.; Collini, R.C.; et al. Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: Gaps and opportunities for developing a coordinated regional sampling network. PLoS ONE 2017, 12, e0183431.
Wang, H.; Chen, Q.; Hu, K.; La Peyre, M.K. A modeling study of the impacts of mississippi river diversion and sea-level rise on water quality of a deltaic estuary. Chesap. Sci. 2016, 40, 1028–1054.
Batista, C.M. Coastal boundaries. In Encyclopedia of Remote Sensing, 2nd ed.; Encyclopedia of Coastal Science; Finkl, C.W., Makowski, C., Eds.; Springer Nature: Cham, Switzerland, 2018; Volume 1, pp. 414–426
Adams, H.; Kay, S. Migration as a human affair: Integrating individual stress thresholds into quantitative models of climate migration. Environ. Sci. Policy 2019, 93, 129–138.
Kantamaneni, K.; Gallagher, A.; Du, X. Assessing and mapping regional coastal vulnerability for port environments and coastal cities. J. Coast. Conserv. 2019, 23, 59–70.
Reece, J.S.; Watson, A.; Dalyander, P.S.; Edwards, C.K.; Geselbracht, L.; Lapeyre, M.K.; Tirpak, B.E.; Tirpak, J.M.; Woodrey, M. A multiscale natural community and species-level vulnerability assessment of the Gulf coast, USA. PLoS ONE 2018, 13, e0199844.
Milanés, C.; Batista, Á.R.; Núñez, R.A.; Yero, H.T. Development of a mobile application for early warning systems and risk management in Cuba. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1154, 012005. Available online: https://iopscience.iop.org/article/10.1088/1757-899X/1154/1/012005 (accessed on 25 March 2021)
Milanés, B.C.; Pérez, M.O. Ordenamiento Y Manejo Integrado de la Zona Costera Frente a Los Riesgos del Cambio Climático en la Región Suroriental de Cuba; Revista Anales de la Academia de ciencias de Cuba, 2016; Volume 6, ISSN 2304-0106. Available online: http://www.revistaccuba.cu/index.php/revacc/article/view/572 (accessed on 25 June 2020).
Batista, C.M.; Planas, J.A.; Pelot, R.; Núñez, J.R. A new methodology incorporating public participation within Cuba’s ICZM program. Ocean Coast. Manag. 2020, 186, 105101.
Ojeda, E.; Appendini, C.M.; Mendoza, E.T. Storm-wave trends in Mexican waters of the Gulf of Mexico and Caribbean Sea. Nat. Hazards Earth Syst. Sci. 2017, 17, 1305–1317.
Martínez, M.L.; Mendoza-González, G.; Silva-Casarín, R.; Mendoza-Baldwin, E. Land use changes and sea level rise may induce a “coastal squeeze” on the coasts of Veracruz, Mexico. Glob. Environ. Chang. 2014, 29, 180–188.
Bilskie, M.V.; Hagen, S.C.; Medeiros, S.C.; Cox, A.T.; Salisbury, M.; Coggin, D. Data and numerical analysis of astronomic tides, wind-waves, and hurricane storm surge along the northern Gulf of Mexico. J. Geophys. Res. Oceans 2016, 121, 3625–3658.
De Edición Agosto, C.; GEOCUBA. Derrotero de las Costas de Cuba; Generalidades. © EDIMAR.; Agencia de Cartografía Náutica, 2003; Available online: http://www.iderc.cu/documents/10523/107380/P+1103/352e0251-ad7b-4523-b5d0-b8a615729333 (accessed on 12 July 2010).
Montero, O.P.; Soler, P.A.B.; Fajardo, J.A.P.; Santana, I.P.; Hierrezuelo, M.M. Gender approach in the integrated coastal zone management program at Sevilla, Cuba. Ocean Yearb. Online 2015, 29, 192–221.
Pérez, M.O.; Carbonero, M.A.; Poveda, I.; Gómez, M.; Oliver, M.A. Cuando la mujer migra. Una mirada a las migraciones internas, desde la perspectiva del desarrollo sostenible, en el municipio costero de Guama, Santiago de Cuba. Rev. Noved. Poblac. 2018, 14, 23–25. Available online: http://www.novpob.uh.cu (accessed on 25 June 2020).
Montero, O.P.; Batista, C.M. Social perception of coastal risk in the face of hurricanes in the southeastern region of Cuba. Ocean Coast. Manag. 2020, 184, 105010.
Portorreal, Y.C.; Montero, O.P. Evaluación de impactos a la salud del manglar en el municipio Guamá, Santiago de Cuba, Cuba. Madera Y Bosques 2017, 23, 27–41.
IPF. Instituto de Planificación Física. In Plan General de Ordenamiento Territorial Urbano (PGOTU); Municipio Guama de la Provincia de Santiago de Cuba, Instituto de Planificación Física: Santiago de Cuba, Cuba, 2015.
Ferrera, W.V.; Pérez, M.O.; Soler, N.O. Población y vulnerabilidad social ante los efectos del cambio climático en el munici-pio costero de Guama. Rev. Noved. Poblac. 2020, 16, 242–269. Available online: http://www.novpob.uh.cu. (accessed on 25 September 2020).
Iturralde, V.M. Typology, training, and transformation of the coasts of Cuba. In Integrated Management of Coastal Zones in Cuba: Current State, Challenges and Challenges; Contemporary Image Editions: Havana, Cuba, 2015; pp. 129–151.
Chen, J.Y. The impact of sea level rise on China’s coastal areas and its disaster hazard evaluation. J. Coast. Res. 1997, 13, 925–930. Available online: http://www.jstor.org/stable/4298685 (accessed on 25 June 2020).
Garcia, J.P.G.M. Origins, management, and measurement of stress on the coast of southern Spain. Coast. Manag. 2000, 28, 215–234.
Freitas, M.; Andrade, C.; Cachado, C.; Cardoso, A.; Monteiro, J.; Brito, P.; Rebelo, L. Coastal land-loss associated with sea-level rise assessed by aerial videotape-assisted vulnerability analysis—The case of mainland Portugal. J. Coast. Res. 2006, 1310–1315. Available online: http://www.jstor.org/stable/25742966 (accessed on 25 June 2020).
Morabito, M.; Crisci, A.; Gioli, B.; Gualtieri, G.; Toscano, P.; Di Stefano, V.; Orlandini, S.; Gensini, G.F. Urban-hazard risk analysis: Mapping of heat-related risks in the elderly in major Italian cities. PLoS ONE 2015, 10, e0127277.
Koroglu, A.; Ranasinghe, R.; Jimenez, J.A.; Dastgheib, A. Comparison of coastal vulnerability index applications for barcelona province. Ocean Coast. Manag. 2019, 178, 104799.
Ferreira, Ó.; Plomaritis, T.A.; Costas, S. Effectiveness assessment of risk reduction measures at coastal areas using a decision support system: Findings from Emma storm. Sci. Total. Environ. 2019, 657, 124–135.
Rey-Valette, H.; Robert, S.; Rulleau, B. Resistance to relocation in flood-vulnerable coastal areas: A proposed composite index. Clim. Policy 2019, 19, 206–218.
Dou, X.; Song, J.; Wang, L.; Tang, B.; Xu, S.; Kong, F.; Jiang, X. Flood risk assessment and mapping based on a modified multi-parameter flood hazard index model in the Guanzhong urban area, China. Stoch. Environ. Res. Risk Assess. 2017, 32, 1131–1146.
Klein, R.J.; Nicholls, R.J. Assessment of coastal vulnerability to climate change. Ambio 1999, 28, 182–187.
Sekovski, I.; Del Río, L.; Armaroli, C. Development of a coastal vulnerability index using analytical hierarchy process and application to Ravenna province (Italy). Ocean Coast. Manag. 2020, 183, 104982
Mullick, M.R.A.; Tanim, A.; Islam, S.M.S. Coastal vulnerability analysis of Bangladesh coast using fuzzy logic based geospa-tial techniques. Ocean Coast. Manag. 2019, 174, 154–169.
Özyurt, G.; Ergin, A. Application of sea level rise vulnerability assessment model to selected coastal areas of Turkey. J. Coast. Res. 2009, 56, 248–251. Available online: http://www.jstor.org/stable/25737575 (accessed on 18 July 2020).
Özyurt, G.; Ergin, A. Improving coastal vulnerability assessments to sea-level rise: A new indicator-based methodology for decision makers. J. Coast. Res. 2010, 262, 265–273. [
Ojeda, Z.J.; Álvarez, F.J.; Martín, C.D.; Fraile, J.P. El uso de las tecnologías de la información geográfica para el cálculo del índice de vulnerabilidad costera (CVI) ante una potencial subida del nivel del mar en la costa andaluza (España). GeoFocus 2009, 9, 83–100. Available online: http://www.geofocus.org/index.php/geofocus/article/view/162 (accessed on 25 December 2020).
Anfuso, G.; Martínez, P.J.Á. Assessment of coastal vulnerability through the use of GIS tools in south Sicily (Italy). Environ. Manag. 2009, 43, 533–545.
Gornitz, V. Vulnerability of the east coast, USA to future sea level rise. J. Coast. Res. 1990, 9, 201–237.
Dal Cin, R.; Simeoni, U. A model for determining the classification, vulnerability, and risk in the southern coastal zone of the Marche (Italy). J. Coast. Res. 1994, 10, 18–29.
Narra, P.; Coelho, C.; Sancho, F. Multicriteria GIS-based estimation of coastal erosion risk: Implementation to Aveiro sandy coast, Portugal. Ocean Coast. Manag. 2019, 178, 104845.
Handayani, W.; Rudiarto, I.; Setyono, J.S.; Chigbu, U.E.; Sukmawati, A.M. Vulnerability assessment: A comparison of three different city sizes in the coastal area of central java, indonesia. Adv. Clim. Chang. Res. 2017, 8, 286–296.
Wang, X.; Xu, L.-L.; Cui, S.-H.; Wang, C.-H. Reflections on coastal inundation, climate change impact, and adaptation in built environment: Progresses and constraints. Adv. Clim. Chang. Res. 2020, 11, 317–331.
Pendleton, E.A.; Thieler, E.R.; Williams, S.J. Relative Coastal Change-Potential Assessment of Glacier Bay National Park and Preserve: U.S. Geological Survey Open-File Report 20051247. 2006. Available online: Pubs.usgs.gov/of/2005/1247 (accessed on 25 June 2020).
Pendleton, E.A.; Thieler, E.R.; Williams, S.J. Importance of coastal change variables in determining vulnerability to sea- and lake-level change. J. Coast. Res. 2010, 261, 176–183.
Rangel-Buitrago, N.; Neal, W.J.; de Jonge, V.N. Risk assessment as tool for coastal erosion management. Ocean Coast. Manag. 2020, 186, 105099.
Díaz-Cuevas, P.; Prieto-Campos, A.; Ojeda-Zújar, J. Developing a beach erosion sensitivity indicator using relational spatial databases and analytic hierarchy process. Ocean Coast. Manag. 2020, 189, 105146.
Rizzo, A.; Aucelli, P.P.C.; Gracia, F.J.; Anfuso, G. A novelty coastal susceptibility assessment method: Application to valdelagrana area (SW Spain). J. Coast. Conserv. 2017, 22, 973–987.
Bautista, P.A.; Bautista, H.F.D.A. The Clic-MD software a tool to analyze thousands of data in seconds: Trends of climate and agro climatic indices. Ecosistemas Y Recur. Agropecu. 2021, 8, e2637.
Bertilsson, L.; Wiklund, K.; Tebaldi, I.D.M.; Rezende, O.M.; Veról, A.P.; Miguez, M.G. Urban flood resilience—A multi-criteria index to integrate flood resilience into urban planning. J. Hydrol. 2019, 573, 970–982.
Velázquez, L.Y.; Pérez, B.M.; Castellanos, G.J. La gestión ambiental post COVID-19 y su contribución a la integridad ecológica de las playas en Cuba. In El Turismo de Sol y Playa en el Con-Texto de la COVID-19; Botero, C.M., Mercadé, S., Cabrera, J.A., Bombana, B., Eds.; Publicación en el marco de la Red Iberoamericana de Ges-tión y Certificación de Playas—PROPLAYAS: Santa Marta, Colombia, 2020; pp. 49–52. ISBN 978-958-53064-0-0. Available online: http://www.proplayas.org/covid19/ (accessed on 18 May 2020).
Calil, J.; Reguero, B.G.; Zamora, A.R.; Losada, I.J.; Mendez, F.J. Comparative Coastal Risk Index (CCRI): A multidisciplinary risk index for Latin America and the Caribbean. PLoS ONE 2017, 12, e0187011.
Pricope, N.G.; Halls, J.N.; Rosul, L.M. Modeling residential coastal flood vulnerability using finished-floor elevations and socio-economic characteristics. J. Environ. Manag. 2019, 237, 387–398.
Jaranovic, B.; Trindade, J.; Ribeiro, J.; Silva, A. Using a coastal storm hazard index to assess storm impacts in lisbon. Int. J. Saf. Secur. Eng. 2017, 7, 221–233.
Milanes, C.; Martínez-González, M.; Moreno-Gómez, J.; Saltarín-Jiménez, A.; Suarez, A.; Padilla-Llano, S.; Vasquez, A.; Lavell, A.; Zielinski, S. Multiple hazards and governance model in the Barranquilla metropolitan area, Colombia. Sustainability 2021, 13, 2669.
Milanés, C.; Acosta, B. Metodología Para el Ordenamiento Marino Costero en Playas; Corporación Universi-dad de la Costa: Barranquilla, Colombia, 2021; Available online: https://repositorio.cuc.edu.co/handle/11323/8384. (accessed on 25 June 2021).
Armaroli, C.; Duo, E. Validation of the coastal storm risk assessment framework along the Emilia-Romagna coast. Coast. Eng. 2018, 134, 159–167.
Khan, A.; Soumendu, C. Coastal Risk Assessment: A Comprehensive Framework for the Bay of Bengal; Springer Briefs in Oceanography: Berlin/Heidelberg, Germany, 2018; p. 86. ISBN 331969992X, 9783319699929.
Okada, T.; Mito, Y.; Iseri, E.; Takahashi, T.; Sugano, T.; Akiyama, Y.B.; Watanabe, K.; Tanaya, T.; Sugino, H.; Tokunaga, K.; et al. Method for the quantitative evaluation of ecosystem services in coastal regions. PeerJ 2019, 6, e6234.
Ružić, I.; Jovančević, S.D.; Benac, Č.; Krvavica, N. Assessment of the coastal vulnerability index in an area of complex geological conditions on the Krk island, northeast Adriatic Sea. Geosciences 2019, 9, 219.
Zhang, D.; Shi, X.; Xu, H.; Jing, Q.; Pan, X.; Liu, T.; Wang, H.; Hou, H. A GIS-based spatial multi-index model for flood risk assessment in the Yangtze River Basin, China. Environ. Impact Assess. Rev. 2020, 83, 106397.
Tortell, P. Coastal zone sensitivity mapping and its role in marine environmental management. Mar. Pollut. Bull. 1992, 25, 88–93.
Armenio, E.; Mossa, M.; Petrillo, A.F. Coastal vulnerability analysis to support strategies for tackling COVID-19 infection. Ocean Coast. Manag. 2021, 211, 105731.
Cai, J.; Huang, B.; Song, Y. Using multi-source geospatial big data to identify the structure of polycentric cities. Remote. Sens. Environ. 2017, 202, 210–221.
Kim, A.M. Critical cartography 2.0: From “participatory mapping” to authored visualizations of power and people. Landsc. Urban Plan. 2015, 142, 215–225.
Anfuso, G.; Postacchini, M.; Di Luccio, D.; Benassai, G. Coastal sensitivity/vulnerability characterization and adaptation strategies: A review. J. Mar. Sci. Eng. 2021, 9, 72.
Bartlett, D.; Smith, J. GIS for coastal zone management. In GIS for Coastal Zone Management, 1st ed.; Bartlett, D., Smith, J., Eds.; CRC Press: Boca Raton, FL, USA, 2004.
Seenath, A.; Wilson, M.; Miller, K. Hydrodynamic versus GIS modelling for coastal flood vulnerability assessment: Which is better for guiding coastal management? Ocean Coast. Manag. 2016, 120, 99–109.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.source.spa.fl_str_mv Water
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.mdpi.com/2073-4441/13/21/3090
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/8834/1/water-13-03090%20%281%29.pdf
https://repositorio.cuc.edu.co/bitstream/11323/8834/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/8834/3/license.txt
bitstream.checksum.fl_str_mv 0676df0971fb4b6b98f8ff81704c3ea4
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400081017110528
spelling Jiménez-Hernández, Sergio B.e97833316d86092d22679da7ad45c747Pérez Montero, Ofelia9fa989fcdf2cbb287ba0a295cf3be2cdMeza, Eustorgio6eabc3cd6b022b092aea18afef86c76bVelázquez, Yunior R.1683e26b74f5053097ccb2cdad68fcc4Castellanos, Juan R.114ea93988669676ebfd42da421835e3Martínez-Cano, Esperanza291d3db5a949d1fc7bcd6a358a3e8dfaSosa-Pérez, Felipe17ce9f24c3c35da8dde6a740a0d0c153Herrera, Juan F.85adbf1ef3b0556d5062d448fcdb5ba6Zielinski, Seweryn7af74dd4a031dd3d6fbc61d51a7ff1fcCuker, Benjaminefaf53f20ede9b35360882c3aab39664Oliveira, Marcos7915f43545d294c79e97c1c56892795cAnfuso, Giorgio652f9fc9476d9190abe1ec65d3e704bbMilanes, Celene B.b35e8cb5ff0f5ffbeaa2f0891b16b4612021-11-04T13:36:44Z2021-11-04T13:36:44Z20212073-4441https://hdl.handle.net/11323/8834https://doi.org/10.3390/w13213090Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper presents a coastal migration index (CMI) useful for decision-making in the current scenario of sea-level rise (SLR) due to climate change. The CMI includes coastal human population density, degree of urbanization, and coastal-flooding penetration. Quantitative and qualitative statistical techniques and the geographic information system ArcGIS View 9.0 were used. Further, a panel of fifteen international experts in coastal management issues was consulted to establish and validate the CMI. Results led to three index components based on 22 indicators. CMI was applied in the state of Tamaulipas, Mexico and in Santiago de Cuba province, Cuba. According to CMI estimates, the risk levels associated with SLR for human settlements analyzed in Mexico and Cuba were 5.3% and 11.0%, respectively. The most severely affected communities will require resettlement. Meanwhile, the CMI determined that 15.8% of the Mexican territory studied will be able to withstand the effects of SLR through the management of engineering works that will protect human settlements. The CMI determined that 79.0%, in the case of Tamaulipas, as well as 89.0% of the Cuban territory, will not require new policies or guidelines to promote conservation and protection of coastal natural resources. Lastly, the method used allowed for creation of a CMI stoplight map useful to coastal decision-makers to adopt sound management actions.application/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Waterhttps://www.mdpi.com/2073-4441/13/21/3090coastal vulnerabilitycoastal managementcoastal environmental sustainabilitystoplight maphurricanesCoastal Migration Index for Coastal Flooding Events Increased by Sea Level Rise due to Climate Change: Mexico and Cuba Case StudiesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionMilanés, C.B.; Montero, O.P.; Szlafsztein, C.F.; Pimentel, M.A.D.S. Climate change and spatial justice in coastal planning in Cuba and Brazil. Ambient. Soc. 2020, 23.López-Dóriga, U.; Jiménez, J.A.; Valdemoro, H.I.; Nicholls, R.J. Impact of sea-level rise on the tourist-carrying capacity of Catalan beaches. Ocean Coast. Manag. 2019, 170, 40–50.Chen, W.; Wang, X.; Deng, S.; Liu, C.; Xie, H.; Zhu, Y. Integrated urban flood vulnerability assessment using local spatial dependence-based probabilistic approach. J. Hydrol. 2019, 575, 454–469.Da Silveira, Y.G.; Bonetti, J. Assessment of the physical vulnerability to erosion and flooding in a sheltered coastal sector: Florianópolis Bay, Brazil. J. Coast. Conserv. 2018, 23, 303–314.Chambers, D.P.; Cazenave, A.; Champollion, N.; Dieng, H.; LloveL, W.; Forsberg, R.; Von Schuckmann, K.; Wada, Y. Evaluation of the Global Mean Sea Level Budget between 1993 and 2014. Surv. Geophys. 2016, 38, 309–327.Benassai, G.; Di Paola, G.; Aucelli, P.P.C. Coastal risk assessment of a micro-tidal littoral plain in response to sea level rise. Ocean Coast. Manag. 2015, 104, 22–35.Cazenave, A.; Dieng, H.-B.; Meyssignac, B.; Von Schuckmann, K.; Decharme, B.; Berthier, E. The rate of sea-level rise. Nat. Clim. Chang. 2014, 4, 358–361.López de Llergo, R. Principales rasgos geográficos de la República Mexicana. Investig. Geogr. 2003, 26–41. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-46112003000100007&lng=es&tlng=es. (accessed on 10 April 2020)Donoghue, J.F. Sea level history of the northern Gulf of Mexico coast and sea level rise scenarios for the near future. Clim. Chang. 2011, 107, 17–33.Jankowski, K.L.; Tornqvist, T.; Fernandes, A.M. Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise. Nat. Commun. 2017, 8, 14792.Batista, C.M.; Montero, O.P. An inquiry into land-use planning and integrated coastal zone management: The Cuban experience. Ocean Yearb. Online 2012, 26, 509–532.Milanés-Batista, C.; Tamayo-Yero, H.; De Oliveira, D.; Alvarez, J.R.N. Application of business intelligence in studies management of hazard, vulnerability and risk in Cuba. IOP Conf. Ser. Mater. Sci. Eng. 2020, 844, 012033.Batista, C.M. Coastal flood hazard mapping. In Encyclopedia of Coastal Science, 2nd ed.; Springer: Cham, Switzerland, 2018; pp. 471–479. [Batista, C.M.; Suárez, A.; Saltarén, C.M.B. Novel method to delimitate and demarcate coastal zone boundaries. Ocean Coast. Manag. 2017, 144, 105–119.Pimentel, M.A.D.S.; Szlafsztein, C.F.; Montero, O.P.; Batista, C.M. Sustentabilidade dos meios de vida e vulnerabilidade socioambiental: Estudos compartilhados entre brasil e Cuba. Camin. Geogr. 2021, 22, 249–264.ONEI. Environmental Overview. Cuba. Havana: Center for Economic, Environmental and Social Information Management. 2019. Available online: http://www.onei.gob.cu (accessed on 1 April 2020).Milanes, C.B.; Montero, O.P.; Cabrera, J.A.; Cuker, B. Recommendations for coastal planning and beach management in Caribbean insular states during and after the COVID-19 pandemic. Ocean Coast. Manag. 2021, 208, 105575.Pérez, M.O.; Milanés, B.C.; Poveda, S.I.; Cruz, P.Y. Los estudios de peligro, vulnerabilidad y riesgos de desastres en Cuba. In Experiencias Metodológicas Para la Gestión del Riesgo; Libro de Investigación; Milanés, B.C., Fabian, S.C., Eds.; Editorial Universitaria de la Costa, EDUCOSTA S.A.S.: Barranquilla, Colombia, 2018; pp. 25–63. ISBN 978-958-8921-69-3. Available online: http://repositorio.cuc.edu.co/xmlui/handle/11323/1686 (accessed on 1 June 2019).Citma. Studies of Danger, Vulnerability and Flood Risks by Penetration of the Sea in Santiago de Cuba, Santiago de Cuba. 2017; unpublished results.Pérez, P.R. Rise of the average sea level in Cuba by climate change. Cuba J. Meteorol. 2019, 25, 76–83. Available online: http://rcm.insmet.cu/index.php/rcm/article/view/455/619 (accessed on 10 April 2020).Alonso, G.; Clark, I. Confrontation with climate change in the Republic of Cuba. Int. J. Cuba. Health Med. 2015, 17, 1–19. Available online: https://www.scielosp.org/article/medicc/2015.v17n2/10-13/en/ (accessed on 12 August 2020).Diaz, J.L.; Magas, A.R.; Bouza, O.; Hernández, J. The relief of Cuba. Earth Space Sci. 1990, 33–44. Available online: http://redciencia.cu/geobiblio/geobiblio.html#D (accessed on 1 January 2010).Chávez, I.M.B.; Batista, C.M.; Montero, O.P.; Suarez, C.V.; García, M.C. Caracterización de las tipologías del medio físico construido en frentes de playa: Municipio Guamá (Cuba). Módulo Arquit. CUC 2021, 27, 113–144.Batista, C.M.; Pereira, C.I.; Botero, C.M. Improving a decree law about coastal zone management in a small island developing state: The case of Cuba. Mar. Policy 2019, 101, 93–107.Nuñez, A.; Planes, V.; Stelcl, O. Speleological and Carsological; Series No. 2; Academy of Sciences of Cuba: Carsos de Cuba, Cuba, 1968.González-Agraz, M.P.; de Maestría, T. Vulnerabilidad de los humedales en la costa tamaulipeca (Publication Number 1), Universidad Autó-noma de Tamaulipas, Tampico, Mexico. 2011; unpublished results.Jiménez-Hernández, S.B.; Salinas-Castillo, W.; Campos-Flores, J. Impacto de la urbanización en zonas costeras, caso de estudio: Zona conurbada Altamira-Madero-Tampico, Tamaulipas, México. In Diag-Nóstico Ambiental del Golfo de México; Caso, M., Pisanty, I., Ezcurra, E., Eds.; Untitled Instituto Nacional de Ecología, 2004; Volume 1, pp. 417–430. Available online: https://bit.ly/3fdvtwy (accessed on 25 June 2020).Stucchi, L.; Bignami, D.F.; Bocchiola, D.; Del Curto, D.; Garzulino, A.; Rosso, R. Assessment of climate-driven flood risk and adaptation supporting the conservation management plan of a heritage site. the national art schools of Cuba. Climate 2021, 9, 23.Batista, M.C. Coastal risk. In Encyclopedia of Coastal Science, 2nd ed.; Finkl, C.W., Makowski, C., Eds.; Springer Nature: Cham, Switzerland, 2018; Volume 1, pp. 524–534. Available online: https://link.springer.com/referenceworkentry/10.1007%2F978-3-319-48657-4_408-1 (accessed on 24 October 2018).Pereira, C.I.; Milanes, C.B.; Sarda, R.; Cuker, B.; Botero, C.M. Challenges at the early stages of the environmental licensing procedure and potential contributions from geomorphology. Geosci. Front. 2021, 12, 101228.Botero, C.; Pereira, C.; Milanes, C.; Pranzini, E. Dataset of human interventions as anthropogenic perturbations on the Caribbean coast of Colombia. Data Brief 2020, 31, 105847.Antunes, C.; Rocha, C.; Catita, C. Coastal flood assessment due to sea level rise and extreme storm events: A case study of the atlantic coast of portugal’s mainland. Geosciences 2019, 9, 239.Balica, S.F.; Wright, N.; Van Der Meulen, F. A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Nat. Hazards 2012, 64, 73–105.Balica, S.F.; Douben, N.; Wright, N.G. Flood vulnerability indices at varying spatial scales. Water Sci. Technol. 2009, 60, 2571–2580.Boruff, B.J.; Emrich, C.; Cutter, S.L. Erosion hazard vulnerability of US coastal counties. J. Coast. Res. 2005, 215, 932–942.Giannakidou, C.; Diakoulaki, D.; Memos, C.D. Implementing a flood vulnerability index in urban coastal areas with industrial activity. Nat. Hazards 2019, 97, 99–120.Gornitz, V. Global coastal hazards from future sea level rise. Palaeogeogr. Palaeoclim. Palaeoecol. 1991, 89, 379–398.Hughes, P.; Brundrit, G.B. An index to assess south-africa vulnerability to sea-level rise. S. Afr. J. Sci. 1992, 88, 308–311.Mclaughlin, S.; Cooper, J.A.G. A multi-scale coastal vulnerability index: A tool for coastal managers? Environ. Hazards 2010, 9, 233–248.Su, S.; Pi, J.; Wan, C.; Li, H.; Xiao, R.; Li, B. Categorizing social vulnerability patterns in Chinese coastal cities. Ocean Coast. Manag. 2015, 116, 1–8.Zhu, Z.-T.; Cai, F.; Chen, S.-L.; Gu, D.-Q.; Feng, A.-P.; Cao, C.; Qi, H.-S.; Lei, G. Coastal vulnerability to erosion using a multi-criteria index: A case study of the Xiamen coast. Sustainability 2018, 11, 93.Planas, F.J.A.; Milanés, C.B.; Fanning, L.M.; Botero, C.M. Validating governance performance indicators for integrated coastal and ocean management in the southeast region of Cuba. Open J. Mar. Sci. 2016, 6, 49–65Pereira, C.I.; Carvajal, A.F.; Batista, C.M.; Botero, C.M. Regulating human interventions in Colombian coastal areas: Implications for the environmental licensing procedure in middle-income countries. Environ. Impact Assess. Rev. 2019, 79, 106284.Garcia, E.S.; Loáiciga, H.A. Sea-level rise and flooding in coastal riverine flood plains. Hydrol. Sci. J. 2013, 59, 204–220.Osland, M.J.; Griffith, K.T.; Larriviere, J.C.; Feher, L.C.; Cahoon, D.R.; Enwright, N.M.; Oster, D.A.; Tirpak, J.M.; Woodrey, M.S.; Collini, R.C.; et al. Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: Gaps and opportunities for developing a coordinated regional sampling network. PLoS ONE 2017, 12, e0183431.Wang, H.; Chen, Q.; Hu, K.; La Peyre, M.K. A modeling study of the impacts of mississippi river diversion and sea-level rise on water quality of a deltaic estuary. Chesap. Sci. 2016, 40, 1028–1054.Batista, C.M. Coastal boundaries. In Encyclopedia of Remote Sensing, 2nd ed.; Encyclopedia of Coastal Science; Finkl, C.W., Makowski, C., Eds.; Springer Nature: Cham, Switzerland, 2018; Volume 1, pp. 414–426Adams, H.; Kay, S. Migration as a human affair: Integrating individual stress thresholds into quantitative models of climate migration. Environ. Sci. Policy 2019, 93, 129–138.Kantamaneni, K.; Gallagher, A.; Du, X. Assessing and mapping regional coastal vulnerability for port environments and coastal cities. J. Coast. Conserv. 2019, 23, 59–70.Reece, J.S.; Watson, A.; Dalyander, P.S.; Edwards, C.K.; Geselbracht, L.; Lapeyre, M.K.; Tirpak, B.E.; Tirpak, J.M.; Woodrey, M. A multiscale natural community and species-level vulnerability assessment of the Gulf coast, USA. PLoS ONE 2018, 13, e0199844.Milanés, C.; Batista, Á.R.; Núñez, R.A.; Yero, H.T. Development of a mobile application for early warning systems and risk management in Cuba. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1154, 012005. Available online: https://iopscience.iop.org/article/10.1088/1757-899X/1154/1/012005 (accessed on 25 March 2021)Milanés, B.C.; Pérez, M.O. Ordenamiento Y Manejo Integrado de la Zona Costera Frente a Los Riesgos del Cambio Climático en la Región Suroriental de Cuba; Revista Anales de la Academia de ciencias de Cuba, 2016; Volume 6, ISSN 2304-0106. Available online: http://www.revistaccuba.cu/index.php/revacc/article/view/572 (accessed on 25 June 2020).Batista, C.M.; Planas, J.A.; Pelot, R.; Núñez, J.R. A new methodology incorporating public participation within Cuba’s ICZM program. Ocean Coast. Manag. 2020, 186, 105101.Ojeda, E.; Appendini, C.M.; Mendoza, E.T. Storm-wave trends in Mexican waters of the Gulf of Mexico and Caribbean Sea. Nat. Hazards Earth Syst. Sci. 2017, 17, 1305–1317.Martínez, M.L.; Mendoza-González, G.; Silva-Casarín, R.; Mendoza-Baldwin, E. Land use changes and sea level rise may induce a “coastal squeeze” on the coasts of Veracruz, Mexico. Glob. Environ. Chang. 2014, 29, 180–188.Bilskie, M.V.; Hagen, S.C.; Medeiros, S.C.; Cox, A.T.; Salisbury, M.; Coggin, D. Data and numerical analysis of astronomic tides, wind-waves, and hurricane storm surge along the northern Gulf of Mexico. J. Geophys. Res. Oceans 2016, 121, 3625–3658.De Edición Agosto, C.; GEOCUBA. Derrotero de las Costas de Cuba; Generalidades. © EDIMAR.; Agencia de Cartografía Náutica, 2003; Available online: http://www.iderc.cu/documents/10523/107380/P+1103/352e0251-ad7b-4523-b5d0-b8a615729333 (accessed on 12 July 2010).Montero, O.P.; Soler, P.A.B.; Fajardo, J.A.P.; Santana, I.P.; Hierrezuelo, M.M. Gender approach in the integrated coastal zone management program at Sevilla, Cuba. Ocean Yearb. Online 2015, 29, 192–221.Pérez, M.O.; Carbonero, M.A.; Poveda, I.; Gómez, M.; Oliver, M.A. Cuando la mujer migra. Una mirada a las migraciones internas, desde la perspectiva del desarrollo sostenible, en el municipio costero de Guama, Santiago de Cuba. Rev. Noved. Poblac. 2018, 14, 23–25. Available online: http://www.novpob.uh.cu (accessed on 25 June 2020).Montero, O.P.; Batista, C.M. Social perception of coastal risk in the face of hurricanes in the southeastern region of Cuba. Ocean Coast. Manag. 2020, 184, 105010.Portorreal, Y.C.; Montero, O.P. Evaluación de impactos a la salud del manglar en el municipio Guamá, Santiago de Cuba, Cuba. Madera Y Bosques 2017, 23, 27–41.IPF. Instituto de Planificación Física. In Plan General de Ordenamiento Territorial Urbano (PGOTU); Municipio Guama de la Provincia de Santiago de Cuba, Instituto de Planificación Física: Santiago de Cuba, Cuba, 2015.Ferrera, W.V.; Pérez, M.O.; Soler, N.O. Población y vulnerabilidad social ante los efectos del cambio climático en el munici-pio costero de Guama. Rev. Noved. Poblac. 2020, 16, 242–269. Available online: http://www.novpob.uh.cu. (accessed on 25 September 2020).Iturralde, V.M. Typology, training, and transformation of the coasts of Cuba. In Integrated Management of Coastal Zones in Cuba: Current State, Challenges and Challenges; Contemporary Image Editions: Havana, Cuba, 2015; pp. 129–151.Chen, J.Y. The impact of sea level rise on China’s coastal areas and its disaster hazard evaluation. J. Coast. Res. 1997, 13, 925–930. Available online: http://www.jstor.org/stable/4298685 (accessed on 25 June 2020).Garcia, J.P.G.M. Origins, management, and measurement of stress on the coast of southern Spain. Coast. Manag. 2000, 28, 215–234.Freitas, M.; Andrade, C.; Cachado, C.; Cardoso, A.; Monteiro, J.; Brito, P.; Rebelo, L. Coastal land-loss associated with sea-level rise assessed by aerial videotape-assisted vulnerability analysis—The case of mainland Portugal. J. Coast. Res. 2006, 1310–1315. Available online: http://www.jstor.org/stable/25742966 (accessed on 25 June 2020).Morabito, M.; Crisci, A.; Gioli, B.; Gualtieri, G.; Toscano, P.; Di Stefano, V.; Orlandini, S.; Gensini, G.F. Urban-hazard risk analysis: Mapping of heat-related risks in the elderly in major Italian cities. PLoS ONE 2015, 10, e0127277.Koroglu, A.; Ranasinghe, R.; Jimenez, J.A.; Dastgheib, A. Comparison of coastal vulnerability index applications for barcelona province. Ocean Coast. Manag. 2019, 178, 104799.Ferreira, Ó.; Plomaritis, T.A.; Costas, S. Effectiveness assessment of risk reduction measures at coastal areas using a decision support system: Findings from Emma storm. Sci. Total. Environ. 2019, 657, 124–135.Rey-Valette, H.; Robert, S.; Rulleau, B. Resistance to relocation in flood-vulnerable coastal areas: A proposed composite index. Clim. Policy 2019, 19, 206–218.Dou, X.; Song, J.; Wang, L.; Tang, B.; Xu, S.; Kong, F.; Jiang, X. Flood risk assessment and mapping based on a modified multi-parameter flood hazard index model in the Guanzhong urban area, China. Stoch. Environ. Res. Risk Assess. 2017, 32, 1131–1146.Klein, R.J.; Nicholls, R.J. Assessment of coastal vulnerability to climate change. Ambio 1999, 28, 182–187.Sekovski, I.; Del Río, L.; Armaroli, C. Development of a coastal vulnerability index using analytical hierarchy process and application to Ravenna province (Italy). Ocean Coast. Manag. 2020, 183, 104982Mullick, M.R.A.; Tanim, A.; Islam, S.M.S. Coastal vulnerability analysis of Bangladesh coast using fuzzy logic based geospa-tial techniques. Ocean Coast. Manag. 2019, 174, 154–169.Özyurt, G.; Ergin, A. Application of sea level rise vulnerability assessment model to selected coastal areas of Turkey. J. Coast. Res. 2009, 56, 248–251. Available online: http://www.jstor.org/stable/25737575 (accessed on 18 July 2020).Özyurt, G.; Ergin, A. Improving coastal vulnerability assessments to sea-level rise: A new indicator-based methodology for decision makers. J. Coast. Res. 2010, 262, 265–273. [Ojeda, Z.J.; Álvarez, F.J.; Martín, C.D.; Fraile, J.P. El uso de las tecnologías de la información geográfica para el cálculo del índice de vulnerabilidad costera (CVI) ante una potencial subida del nivel del mar en la costa andaluza (España). GeoFocus 2009, 9, 83–100. Available online: http://www.geofocus.org/index.php/geofocus/article/view/162 (accessed on 25 December 2020).Anfuso, G.; Martínez, P.J.Á. Assessment of coastal vulnerability through the use of GIS tools in south Sicily (Italy). Environ. Manag. 2009, 43, 533–545.Gornitz, V. Vulnerability of the east coast, USA to future sea level rise. J. Coast. Res. 1990, 9, 201–237.Dal Cin, R.; Simeoni, U. A model for determining the classification, vulnerability, and risk in the southern coastal zone of the Marche (Italy). J. Coast. Res. 1994, 10, 18–29.Narra, P.; Coelho, C.; Sancho, F. Multicriteria GIS-based estimation of coastal erosion risk: Implementation to Aveiro sandy coast, Portugal. Ocean Coast. Manag. 2019, 178, 104845.Handayani, W.; Rudiarto, I.; Setyono, J.S.; Chigbu, U.E.; Sukmawati, A.M. Vulnerability assessment: A comparison of three different city sizes in the coastal area of central java, indonesia. Adv. Clim. Chang. Res. 2017, 8, 286–296.Wang, X.; Xu, L.-L.; Cui, S.-H.; Wang, C.-H. Reflections on coastal inundation, climate change impact, and adaptation in built environment: Progresses and constraints. Adv. Clim. Chang. Res. 2020, 11, 317–331.Pendleton, E.A.; Thieler, E.R.; Williams, S.J. Relative Coastal Change-Potential Assessment of Glacier Bay National Park and Preserve: U.S. Geological Survey Open-File Report 20051247. 2006. Available online: Pubs.usgs.gov/of/2005/1247 (accessed on 25 June 2020).Pendleton, E.A.; Thieler, E.R.; Williams, S.J. Importance of coastal change variables in determining vulnerability to sea- and lake-level change. J. Coast. Res. 2010, 261, 176–183.Rangel-Buitrago, N.; Neal, W.J.; de Jonge, V.N. Risk assessment as tool for coastal erosion management. Ocean Coast. Manag. 2020, 186, 105099.Díaz-Cuevas, P.; Prieto-Campos, A.; Ojeda-Zújar, J. Developing a beach erosion sensitivity indicator using relational spatial databases and analytic hierarchy process. Ocean Coast. Manag. 2020, 189, 105146.Rizzo, A.; Aucelli, P.P.C.; Gracia, F.J.; Anfuso, G. A novelty coastal susceptibility assessment method: Application to valdelagrana area (SW Spain). J. Coast. Conserv. 2017, 22, 973–987.Bautista, P.A.; Bautista, H.F.D.A. The Clic-MD software a tool to analyze thousands of data in seconds: Trends of climate and agro climatic indices. Ecosistemas Y Recur. Agropecu. 2021, 8, e2637.Bertilsson, L.; Wiklund, K.; Tebaldi, I.D.M.; Rezende, O.M.; Veról, A.P.; Miguez, M.G. Urban flood resilience—A multi-criteria index to integrate flood resilience into urban planning. J. Hydrol. 2019, 573, 970–982.Velázquez, L.Y.; Pérez, B.M.; Castellanos, G.J. La gestión ambiental post COVID-19 y su contribución a la integridad ecológica de las playas en Cuba. In El Turismo de Sol y Playa en el Con-Texto de la COVID-19; Botero, C.M., Mercadé, S., Cabrera, J.A., Bombana, B., Eds.; Publicación en el marco de la Red Iberoamericana de Ges-tión y Certificación de Playas—PROPLAYAS: Santa Marta, Colombia, 2020; pp. 49–52. ISBN 978-958-53064-0-0. Available online: http://www.proplayas.org/covid19/ (accessed on 18 May 2020).Calil, J.; Reguero, B.G.; Zamora, A.R.; Losada, I.J.; Mendez, F.J. Comparative Coastal Risk Index (CCRI): A multidisciplinary risk index for Latin America and the Caribbean. PLoS ONE 2017, 12, e0187011.Pricope, N.G.; Halls, J.N.; Rosul, L.M. Modeling residential coastal flood vulnerability using finished-floor elevations and socio-economic characteristics. J. Environ. Manag. 2019, 237, 387–398.Jaranovic, B.; Trindade, J.; Ribeiro, J.; Silva, A. Using a coastal storm hazard index to assess storm impacts in lisbon. Int. J. Saf. Secur. Eng. 2017, 7, 221–233.Milanes, C.; Martínez-González, M.; Moreno-Gómez, J.; Saltarín-Jiménez, A.; Suarez, A.; Padilla-Llano, S.; Vasquez, A.; Lavell, A.; Zielinski, S. Multiple hazards and governance model in the Barranquilla metropolitan area, Colombia. Sustainability 2021, 13, 2669.Milanés, C.; Acosta, B. Metodología Para el Ordenamiento Marino Costero en Playas; Corporación Universi-dad de la Costa: Barranquilla, Colombia, 2021; Available online: https://repositorio.cuc.edu.co/handle/11323/8384. (accessed on 25 June 2021).Armaroli, C.; Duo, E. Validation of the coastal storm risk assessment framework along the Emilia-Romagna coast. Coast. Eng. 2018, 134, 159–167.Khan, A.; Soumendu, C. Coastal Risk Assessment: A Comprehensive Framework for the Bay of Bengal; Springer Briefs in Oceanography: Berlin/Heidelberg, Germany, 2018; p. 86. ISBN 331969992X, 9783319699929.Okada, T.; Mito, Y.; Iseri, E.; Takahashi, T.; Sugano, T.; Akiyama, Y.B.; Watanabe, K.; Tanaya, T.; Sugino, H.; Tokunaga, K.; et al. Method for the quantitative evaluation of ecosystem services in coastal regions. PeerJ 2019, 6, e6234.Ružić, I.; Jovančević, S.D.; Benac, Č.; Krvavica, N. Assessment of the coastal vulnerability index in an area of complex geological conditions on the Krk island, northeast Adriatic Sea. Geosciences 2019, 9, 219.Zhang, D.; Shi, X.; Xu, H.; Jing, Q.; Pan, X.; Liu, T.; Wang, H.; Hou, H. A GIS-based spatial multi-index model for flood risk assessment in the Yangtze River Basin, China. Environ. Impact Assess. Rev. 2020, 83, 106397.Tortell, P. Coastal zone sensitivity mapping and its role in marine environmental management. Mar. Pollut. Bull. 1992, 25, 88–93.Armenio, E.; Mossa, M.; Petrillo, A.F. Coastal vulnerability analysis to support strategies for tackling COVID-19 infection. Ocean Coast. Manag. 2021, 211, 105731.Cai, J.; Huang, B.; Song, Y. Using multi-source geospatial big data to identify the structure of polycentric cities. Remote. Sens. Environ. 2017, 202, 210–221.Kim, A.M. Critical cartography 2.0: From “participatory mapping” to authored visualizations of power and people. Landsc. Urban Plan. 2015, 142, 215–225.Anfuso, G.; Postacchini, M.; Di Luccio, D.; Benassai, G. Coastal sensitivity/vulnerability characterization and adaptation strategies: A review. J. Mar. Sci. Eng. 2021, 9, 72.Bartlett, D.; Smith, J. GIS for coastal zone management. In GIS for Coastal Zone Management, 1st ed.; Bartlett, D., Smith, J., Eds.; CRC Press: Boca Raton, FL, USA, 2004.Seenath, A.; Wilson, M.; Miller, K. Hydrodynamic versus GIS modelling for coastal flood vulnerability assessment: Which is better for guiding coastal management? Ocean Coast. Manag. 2016, 120, 99–109.ORIGINALwater-13-03090 (1).pdfwater-13-03090 (1).pdfapplication/pdf450742https://repositorio.cuc.edu.co/bitstream/11323/8834/1/water-13-03090%20%281%29.pdf0676df0971fb4b6b98f8ff81704c3ea4MD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstream/11323/8834/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/8834/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open access11323/8834oai:repositorio.cuc.edu.co:11323/88342023-12-14 13:08:57.154Attribution-NonCommercial-NoDerivatives 4.0 International|||http://creativecommons.org/licenses/by-nc-nd/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==