Data mining to identify risk factors associated with university students dropout
. This paper presents the identification of university students dropout patterns by means of data mining techniques. The database consists of a series of questionnaires and interviews to students from several universities in Colombia. The information was processed by the Weka software following the...
- Autores:
-
Viloria Silva, Amelec Jesus
Castro Sarmiento, Alex
María Santodomingo, Nicolás
María Santodomingo, Nicolas Elias
Márquez Blanco, Norka
Cadavid Basto, Wilmer
Hernández P, Hugo
Navarro Beltrán, Jorge
de la Hoz Hernández, Juan
Romero, Ligia
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5225
- Acceso en línea:
- https://hdl.handle.net/11323/5225
https://repositorio.cuc.edu.co/
- Palabra clave:
- Knowledge extraction process
Tutoring
Decision making
Data mining
- Rights
- openAccess
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
RCUC2_ee9c3f81e254dd11f57b54128c97ef1d |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5225 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Data mining to identify risk factors associated with university students dropout |
title |
Data mining to identify risk factors associated with university students dropout |
spellingShingle |
Data mining to identify risk factors associated with university students dropout Knowledge extraction process Tutoring Decision making Data mining |
title_short |
Data mining to identify risk factors associated with university students dropout |
title_full |
Data mining to identify risk factors associated with university students dropout |
title_fullStr |
Data mining to identify risk factors associated with university students dropout |
title_full_unstemmed |
Data mining to identify risk factors associated with university students dropout |
title_sort |
Data mining to identify risk factors associated with university students dropout |
dc.creator.fl_str_mv |
Viloria Silva, Amelec Jesus Castro Sarmiento, Alex María Santodomingo, Nicolás María Santodomingo, Nicolas Elias Márquez Blanco, Norka Cadavid Basto, Wilmer Hernández P, Hugo Navarro Beltrán, Jorge de la Hoz Hernández, Juan Romero, Ligia |
dc.contributor.author.spa.fl_str_mv |
Viloria Silva, Amelec Jesus Castro Sarmiento, Alex María Santodomingo, Nicolás María Santodomingo, Nicolas Elias Márquez Blanco, Norka Cadavid Basto, Wilmer Hernández P, Hugo Navarro Beltrán, Jorge de la Hoz Hernández, Juan Romero, Ligia |
dc.subject.spa.fl_str_mv |
Knowledge extraction process Tutoring Decision making Data mining |
topic |
Knowledge extraction process Tutoring Decision making Data mining |
description |
. This paper presents the identification of university students dropout patterns by means of data mining techniques. The database consists of a series of questionnaires and interviews to students from several universities in Colombia. The information was processed by the Weka software following the Knowledge Extraction Process methodology with the purpose of facilitating the interpretation of results and finding useful knowledge about the students. The partial results of data mining processing on the information about the generations of students of Industrial Engineering from 2016 to 2018 are analyzed and discussed, finding relationships between family, economic, and academic issues that indicate a probable desertion risk in students with common behaviors. These relationships provide enough and appropriate information for the decision-making process in the treatment of university dropout. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-08-31T03:07:51Z |
dc.date.available.none.fl_str_mv |
2019-08-31T03:07:51Z |
dc.date.issued.none.fl_str_mv |
2019-07-26 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1865-0929 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5225 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1865-0929 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/5225 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
https://doi.org/10.1007/978-981-32-9563-6_5 |
dc.relation.references.spa.fl_str_mv |
1. Caicedo, E.J.C., Guerrero, S., López, D.: Propuesta para la construcción de un índice socioeconómico para los estudiantes que presentan las pruebas Saber Pro. Comunicaciones en Estadística 9(1), 93–106 (2016) 2. Torres-Samuel, M., Vásquez, C., Viloria, A., Lis-Gutiérrez, J.P., Borrero, T.C., Varela, N.: Web visibility profiles of top100 latin american universities. In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 254–262. Springer, Cham (2018). https://doi. org/10.1007/978-3-319-93803-5_24 3. Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50(1), 159–175 (2003) 4. Duan, L., Xu, L., Liu, Y., Lee, J.: Cluster-based outlier detection. Ann. Oper. Res. 168(1), 151–168 (2009) 5. Haykin, S.: Neural Networks a Comprehensive Foundation, 2nd edn. Macmillan College Publishing, Inc. USA (1999). ISBN 9780023527616 6. Haykin, S.: Neural Networks and Learning Machines. Prentice Hall International, New Jersey (2009) 7. Abhay, K.A., Badal, N.A.: Novel approach for intelligent distribution of data warehouses. Egypt. Inf. J. 17(1), 147–159 (2015) 8. Aguado-López, E., Rogel-Salazar, R., Becerril-García, A., Baca-Zapata, G.: Presencia de universidades en la Red: La brecha digital entre Estados Unidos y el resto del mundo. Revista de Universidad y Sociedad del Conocimiento 6(1), 1–17 (2009) 9. Bontempi, G., Ben Taieb, S., Le Borgne, Y.-A.: Machine learning strategies for time series forecasting. In: Aufaure, M.-A., Zimányi, E. (eds.) eBISS 2012. LNBIP, vol. 138, pp. 62–77. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36318-4_3 10. Isasi, P., Galván, I.: Redes de Neuronas Artificiales. Un enfoque Práctico. Pearson (2004). ISBN 8420540250 11. Kulkarni, S., Haidar, I.: Forecasting model for crude oil price using artificial neural networks and commodity future prices. Int. J. Comput. Sci. Inf. Secur. 2(1), 81–89 (2009) 12. Mazón, J.N., Trujillo, J., Serrano, M., Piattini, M.: Designing data warehouses: from business requirement analysis to multidimensional modeling. In: Proceedings of the 1st International Workshop on Requirements Engineering for Business Need and IT Alignment, Paris, France (2005) 13. Jain, A.K., Mao, J., Mohiuddin, K.M.: Artificial neural networks: a tutorial. IEEE Comput. 29(3), 1–32 (1996) 14. Kuan, C.M.: Artificial neural networks. In: Durlauf, S.N., Blume, L.E. (eds.) The New Palgrave Dictionary of Economics. Palgrave Macmillan, Basingstoke (2008) 15. Mombeini, H., Yazdani-Chamzini, A.: Modelling gold price via artificial neural network. J. Econ. Bus. Manag. 3(7), 699–703 (2015) 16. Parthasarathy, S., Zaki, M.J., Ogihara, M.: Parallel data mining for association rules on shared-memory systems. Knowl. Inf. Syst. Int. J. 3(1), 1–29 (2001) 17. Sekmen, F., Kurkcu, M.: An early warning system for Turkey: the forecasting of economic crisis by using the artificial neural networks. Asian Econ. Financ. Rev. 4(1), 529–543 (2014) 18. Sevim, C., Oztekin, A., Bali, O., Gumus, S., Guresen, E.: Developing an early warning system to predict currency crises. Eur. J. Oper. Res. 237(1), 1095–1104 (2014) 19. Singhal, D., Swarup, K.S.: Electricity price forecasting using artificial neural networks. IJEPE 33(1), 550–555 (2011) 20. Vasquez, C., Torres, M., Viloria, A.: Public policies in science and technology in Latin American countries with universities in the top 100 of web ranking. J. Eng. Appl. Sci. 12 (11), 2963–2965 (2017) 21. Vásquez, C., et al.: Cluster of the latin american universities top100 according to webometrics 2017. In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 276–283. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93803-5_26 22. Viloria, A., Lis-Gutiérrez, J.P., Gaitán-Angulo, M., Godoy, A.R.M., Moreno, G.C., Kamatkar, S.J.: Methodology for the design of a student pattern recognition tool to facilitate the teaching – learning process through knowledge data discovery (big data). In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 670–679. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93803-5_63 23. Prodromidis, A., Chan, P.K., Stolfo, S.J.: Meta learning in distributed data mining systems: Issues and approaches. In: Kargupta, H., Chan, P. (eds.) Book on Advances in Distributed and Parallel Knowledge Discovery. AAAI/MIT Press (2000) 24. Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for data mining association rules in large databases. In: Proceedings of 21st Very Large Data Base Conference, vol. 5, no. 1, pp. 432– 444 (1995) 25. Stolfo, S., Prodromidis, A.L., Tselepis, S., Lee, W., Fan, D.W.: Java agents for metalearning over distributed databases. In: Proceedings of 3rd International Conference on Knowledge Discovery and Data Mining, vol. 5, no. 2, pp. 74–81 (1997) |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Communications in Computer and Information Science |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/5395dbf4-df2c-453c-a0b0-a0b4982b2277/download https://repositorio.cuc.edu.co/bitstreams/298090ef-6561-4dd0-a9a4-76b602b5b844/download https://repositorio.cuc.edu.co/bitstreams/94447a7e-4eda-4efb-aea1-016ea864c4b1/download https://repositorio.cuc.edu.co/bitstreams/6dab0e28-9b2a-4df5-af5c-816ada922b22/download https://repositorio.cuc.edu.co/bitstreams/189f62f5-ed1b-486e-8d9e-b6098ee693f3/download https://repositorio.cuc.edu.co/bitstreams/171966ed-5221-49ad-b38f-c738a4e65ee1/download |
bitstream.checksum.fl_str_mv |
3cdda1aa989394178ad117d43c250888 934f4ca17e109e0a05eaeaba504d7ce4 8a4605be74aa9ea9d79846c1fba20a33 07095a3d257cd7248311664e4576d21b 429a96acc026c855154f89480eb1cd8a 46f66c2667a268e603da75d6fa08e9e6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760841786130432 |
spelling |
Viloria Silva, Amelec JesusCastro Sarmiento, AlexMaría Santodomingo, NicolásMaría Santodomingo, Nicolas EliasMárquez Blanco, NorkaCadavid Basto, WilmerHernández P, HugoNavarro Beltrán, Jorgede la Hoz Hernández, JuanRomero, Ligia2019-08-31T03:07:51Z2019-08-31T03:07:51Z2019-07-261865-0929https://hdl.handle.net/11323/5225Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/. This paper presents the identification of university students dropout patterns by means of data mining techniques. The database consists of a series of questionnaires and interviews to students from several universities in Colombia. The information was processed by the Weka software following the Knowledge Extraction Process methodology with the purpose of facilitating the interpretation of results and finding useful knowledge about the students. The partial results of data mining processing on the information about the generations of students of Industrial Engineering from 2016 to 2018 are analyzed and discussed, finding relationships between family, economic, and academic issues that indicate a probable desertion risk in students with common behaviors. These relationships provide enough and appropriate information for the decision-making process in the treatment of university dropout.Universidad Peruana de Ciencias Aplicadas, Universidad de la Costa, Universidad Libre Seccional Barranquilla, Corporación Universitaria Latinoamericana.Viloria Silva, Amelec JesusCastro Sarmiento, AlexMaría Santodomingo, NicolásMaría Santodomingo, Nicolas EliasMárquez Blanco, NorkaCadavid Basto, WilmerHernández P, HugoNavarro Beltrán, Jorgede la Hoz Hernández, JuanRomero, LigiaengCommunications in Computer and Information Sciencehttps://doi.org/10.1007/978-981-32-9563-6_51. Caicedo, E.J.C., Guerrero, S., López, D.: Propuesta para la construcción de un índice socioeconómico para los estudiantes que presentan las pruebas Saber Pro. Comunicaciones en Estadística 9(1), 93–106 (2016) 2. Torres-Samuel, M., Vásquez, C., Viloria, A., Lis-Gutiérrez, J.P., Borrero, T.C., Varela, N.: Web visibility profiles of top100 latin american universities. In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 254–262. Springer, Cham (2018). https://doi. org/10.1007/978-3-319-93803-5_24 3. Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50(1), 159–175 (2003) 4. Duan, L., Xu, L., Liu, Y., Lee, J.: Cluster-based outlier detection. Ann. Oper. Res. 168(1), 151–168 (2009) 5. Haykin, S.: Neural Networks a Comprehensive Foundation, 2nd edn. Macmillan College Publishing, Inc. USA (1999). ISBN 9780023527616 6. Haykin, S.: Neural Networks and Learning Machines. Prentice Hall International, New Jersey (2009) 7. Abhay, K.A., Badal, N.A.: Novel approach for intelligent distribution of data warehouses. Egypt. Inf. J. 17(1), 147–159 (2015) 8. Aguado-López, E., Rogel-Salazar, R., Becerril-García, A., Baca-Zapata, G.: Presencia de universidades en la Red: La brecha digital entre Estados Unidos y el resto del mundo. Revista de Universidad y Sociedad del Conocimiento 6(1), 1–17 (2009) 9. Bontempi, G., Ben Taieb, S., Le Borgne, Y.-A.: Machine learning strategies for time series forecasting. In: Aufaure, M.-A., Zimányi, E. (eds.) eBISS 2012. LNBIP, vol. 138, pp. 62–77. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36318-4_3 10. Isasi, P., Galván, I.: Redes de Neuronas Artificiales. Un enfoque Práctico. Pearson (2004). ISBN 8420540250 11. Kulkarni, S., Haidar, I.: Forecasting model for crude oil price using artificial neural networks and commodity future prices. Int. J. Comput. Sci. Inf. Secur. 2(1), 81–89 (2009) 12. Mazón, J.N., Trujillo, J., Serrano, M., Piattini, M.: Designing data warehouses: from business requirement analysis to multidimensional modeling. In: Proceedings of the 1st International Workshop on Requirements Engineering for Business Need and IT Alignment, Paris, France (2005) 13. Jain, A.K., Mao, J., Mohiuddin, K.M.: Artificial neural networks: a tutorial. IEEE Comput. 29(3), 1–32 (1996) 14. Kuan, C.M.: Artificial neural networks. In: Durlauf, S.N., Blume, L.E. (eds.) The New Palgrave Dictionary of Economics. Palgrave Macmillan, Basingstoke (2008) 15. Mombeini, H., Yazdani-Chamzini, A.: Modelling gold price via artificial neural network. J. Econ. Bus. Manag. 3(7), 699–703 (2015) 16. Parthasarathy, S., Zaki, M.J., Ogihara, M.: Parallel data mining for association rules on shared-memory systems. Knowl. Inf. Syst. Int. J. 3(1), 1–29 (2001) 17. Sekmen, F., Kurkcu, M.: An early warning system for Turkey: the forecasting of economic crisis by using the artificial neural networks. Asian Econ. Financ. Rev. 4(1), 529–543 (2014) 18. Sevim, C., Oztekin, A., Bali, O., Gumus, S., Guresen, E.: Developing an early warning system to predict currency crises. Eur. J. Oper. Res. 237(1), 1095–1104 (2014) 19. Singhal, D., Swarup, K.S.: Electricity price forecasting using artificial neural networks. IJEPE 33(1), 550–555 (2011) 20. Vasquez, C., Torres, M., Viloria, A.: Public policies in science and technology in Latin American countries with universities in the top 100 of web ranking. J. Eng. Appl. Sci. 12 (11), 2963–2965 (2017) 21. Vásquez, C., et al.: Cluster of the latin american universities top100 according to webometrics 2017. In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 276–283. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93803-5_26 22. Viloria, A., Lis-Gutiérrez, J.P., Gaitán-Angulo, M., Godoy, A.R.M., Moreno, G.C., Kamatkar, S.J.: Methodology for the design of a student pattern recognition tool to facilitate the teaching – learning process through knowledge data discovery (big data). In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 670–679. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93803-5_63 23. Prodromidis, A., Chan, P.K., Stolfo, S.J.: Meta learning in distributed data mining systems: Issues and approaches. In: Kargupta, H., Chan, P. (eds.) Book on Advances in Distributed and Parallel Knowledge Discovery. AAAI/MIT Press (2000) 24. Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for data mining association rules in large databases. In: Proceedings of 21st Very Large Data Base Conference, vol. 5, no. 1, pp. 432– 444 (1995) 25. Stolfo, S., Prodromidis, A.L., Tselepis, S., Lee, W., Fan, D.W.: Java agents for metalearning over distributed databases. In: Proceedings of 3rd International Conference on Knowledge Discovery and Data Mining, vol. 5, no. 2, pp. 74–81 (1997)Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Knowledge extraction processTutoringDecision makingData miningData mining to identify risk factors associated with university students dropoutPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALData Mining to Identify Risk Factors.pdfData Mining to Identify Risk Factors.pdfapplication/pdf148552https://repositorio.cuc.edu.co/bitstreams/5395dbf4-df2c-453c-a0b0-a0b4982b2277/download3cdda1aa989394178ad117d43c250888MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/298090ef-6561-4dd0-a9a4-76b602b5b844/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/94447a7e-4eda-4efb-aea1-016ea864c4b1/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILData Mining to Identify Risk Factors.pdf.jpgData Mining to Identify Risk Factors.pdf.jpgimage/jpeg2561https://repositorio.cuc.edu.co/bitstreams/6dab0e28-9b2a-4df5-af5c-816ada922b22/download07095a3d257cd7248311664e4576d21bMD54Data Mining to Identify Risk Factors.pdf.jpgData Mining to Identify Risk Factors.pdf.jpgimage/jpeg40238https://repositorio.cuc.edu.co/bitstreams/189f62f5-ed1b-486e-8d9e-b6098ee693f3/download429a96acc026c855154f89480eb1cd8aMD55THUMBNAILTEXTData Mining to Identify Risk Factors.pdf.txtData Mining to Identify Risk Factors.pdf.txttext/plain27007https://repositorio.cuc.edu.co/bitstreams/171966ed-5221-49ad-b38f-c738a4e65ee1/download46f66c2667a268e603da75d6fa08e9e6MD5611323/5225oai:repositorio.cuc.edu.co:11323/52252024-09-17 14:09:11.822http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |