Model and simulation of structural equations for determining the student satisfaction
Structural Equations Models (SEM) determine the dependence or independence relationship of the variables through the integration of linear equations. These models combine factorial analysis with linear regression to determine the data adjustment obtained with a proposed model by means of a path anal...
- Autores:
-
Amelec, Viloria
Pineda Lezama, Omar Bonerge
Mercado Caruso, Nohora Nubia
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5991
- Acceso en línea:
- https://hdl.handle.net/11323/5991
https://repositorio.cuc.edu.co/
- Palabra clave:
- Structural equations
Maximum likelihood method
Factor analysis
Learning
Management
System
TPACK model
Ecuaciones estructurales
Método de máxima verosimilitud
Análisis factorial
Sistema de gestión del aprendizaje
Modelo TPACK
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_ee66ef65a70ff12d07225d6ab30fff04 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5991 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Model and simulation of structural equations for determining the student satisfaction |
dc.title.translated.spa.fl_str_mv |
Modelo y simulación de ecuaciones estructurales para determinar la satisfacción del alumno |
title |
Model and simulation of structural equations for determining the student satisfaction |
spellingShingle |
Model and simulation of structural equations for determining the student satisfaction Structural equations Maximum likelihood method Factor analysis Learning Management System TPACK model Ecuaciones estructurales Método de máxima verosimilitud Análisis factorial Sistema de gestión del aprendizaje Modelo TPACK |
title_short |
Model and simulation of structural equations for determining the student satisfaction |
title_full |
Model and simulation of structural equations for determining the student satisfaction |
title_fullStr |
Model and simulation of structural equations for determining the student satisfaction |
title_full_unstemmed |
Model and simulation of structural equations for determining the student satisfaction |
title_sort |
Model and simulation of structural equations for determining the student satisfaction |
dc.creator.fl_str_mv |
Amelec, Viloria Pineda Lezama, Omar Bonerge Mercado Caruso, Nohora Nubia |
dc.contributor.author.spa.fl_str_mv |
Amelec, Viloria Pineda Lezama, Omar Bonerge Mercado Caruso, Nohora Nubia |
dc.subject.spa.fl_str_mv |
Structural equations Maximum likelihood method Factor analysis Learning Management System TPACK model Ecuaciones estructurales Método de máxima verosimilitud Análisis factorial Sistema de gestión del aprendizaje Modelo TPACK |
topic |
Structural equations Maximum likelihood method Factor analysis Learning Management System TPACK model Ecuaciones estructurales Método de máxima verosimilitud Análisis factorial Sistema de gestión del aprendizaje Modelo TPACK |
description |
Structural Equations Models (SEM) determine the dependence or independence relationship of the variables through the integration of linear equations. These models combine factorial analysis with linear regression to determine the data adjustment obtained with a proposed model by means of a path analysis, which represents the relationship between latent and observed variables. Observed variables are those that can be directly measured, usually through questionnaires. Latent variables are not directly measured and can be endogenous (dependent) or exogenous (independent). This research provides a model that allows to determine student satisfaction through the structural equations modeling by using the Technological Pedagogical Content Knowledge model (TPACK). |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-02-05T13:28:52Z |
dc.date.available.none.fl_str_mv |
2020-02-05T13:28:52Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
00002010 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5991 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
00002010 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/5991 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Torres-Samuel, M., Vásquez, C., Viloria, A., Lis-Gutiérrez, J.P., Borrero, T.C., Varela, N.: Web Visibility Profiles of Top100 Latin American Universities. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, Springer, Cham, vol 10943, 1-12 (2018). [2] Garson, D. (2013). Factor analysis. Asheboro. North Caroline State: Blue Books. University Press. [3] Duan, L., Xu, L., Liu, Y., Lee, J.: Cluster-based outlier detection. Annals of Operations Research 168 (1), 151–168 (2009). [4] Haykin, S.: Neural Networks a Comprehensive Foundation. Second Edition. Macmillan College Publishing, Inc. USA. ISBN 9780023527616 (1999). [5] Haykin, S.: Neural Networks and Learning Machines. New Jersey, Prentice Hall International (2009). [6] Oviedo, B. a. (2015). Análisis de datos educativos utilizando redes bayesianas, Latin American and Caribbean Conference for Engineering and Technology LACCEI 2015. [7] Hair, Joseph; Anderson, Rolph; Tatham, Ronald y Black, W. (2001). Análisis multivariante. Madrid, España: Prentice Hall. [8] Vasquez, C., Torres, M., Viloria, A.: Public policies in science and technology in Latin American countries with universities in the top 100 of web ranking. J. Eng. Appl. Sci. 12(11), 2963–2965 (2017). [9] Vásquez, C., Torres-Samuel, M., Viloria, A., Lis-Gutiérrez, J.P., Crissien Borrero, T., Varela, N., Cabrera, D.: Cluster of the Latin American Universities Top100 According to Webometrics 2017. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, Springer, Cham , vol 10943, 1-12 (2018). [10] Samperio Pacheco, Víctor Manuel. (2019). Ecuaciones estructurales en los modelos educativos: características y fases en su construcción. Apertura, 11(1), pp. 90-103. http://dx.doi. org/10.32870/Ap.v11n1.1402). [11] Viloria, A., Lis-Gutiérrez, J.P., Gaitán-Angulo, M., Godoy, A.R.M., Moreno, G.C., Kamatkar, S.J. : Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching – Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. [12] Roig-Vila, Rosabel; Mengual-Andrés, Santiago & Quinto-Medrano, Patricio. (2015). Conocimientos tecnológicos, pedagógicos y disciplinares del profesorado de primaria. Comunicar, XXII(45), pp. 151-159. https://doi.org/10.3916/C45-2015-16 [13] Vanyolos, E., I. Furka, I. Miko y otros tres autores, How does practice improve the skills of medical students during consecutive training courses? doi; https://dx.doi.org/10.1590/s0102-865020170060000010. Rev. Acta Cirurgica Brasileira, 32(6), 491-502 (2017) [14] Tárraga Mínguez, Raúl; Sanz Cervera, Pilar; Pastor Cerezuela, Gemma y Fernández Andrés, María. (2017). Análisis de la autoeficacia percibida en el uso de las TIC de futuros maestros y maestras de educación infantil y educación primaria. Revista Electrónica Interuniversitaria de Formación del Profesorado, 20(3), pp. 107-116. https://doi.org/10.6018/reifop.20.3.263901. [15] Haykin, S.: Neural Networks and Learning Machines. New Jersey, Prentice Hall International (2009). [16] Kline, Rex. (2005). Principles and practice of structural equation modeling. Nueva York: Gilford Press [17] Cejas León, Roberto; Navío Gámez, Antonio y Barroso Osuna, Julio. (2016). Las competencias del profesorado universitario desde el modelo TPACK (conocimiento tecnológico y pedagógico del contenido). Pixel-Bit. Revista de Medios y Educación, (49), pp. 105-119. https://doi.org/10.12795/pixelbit.2016.i49.07 |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Procedia Computer Science |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/d5c3044c-7831-467b-a0e7-2ee313d072ec/download https://repositorio.cuc.edu.co/bitstreams/e07b7ecb-5bf6-486e-90f6-c8bfbf1b58cf/download https://repositorio.cuc.edu.co/bitstreams/31ebc0b4-a563-4ef9-bd7e-8cf0533deb8f/download https://repositorio.cuc.edu.co/bitstreams/6b5c8c38-aa42-4dfe-b6f8-cebf54b16ce7/download https://repositorio.cuc.edu.co/bitstreams/70c05595-5313-4382-862f-bd60da9b0516/download |
bitstream.checksum.fl_str_mv |
0585a053f7e1305a56b0b113156f965f 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 8e9da15a11af04953cfaec367c366319 02c2272e59f8d031b1a0ad9f2fd91a8f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760819503890432 |
spelling |
Amelec, ViloriaPineda Lezama, Omar BonergeMercado Caruso, Nohora Nubia2020-02-05T13:28:52Z2020-02-05T13:28:52Z201900002010https://hdl.handle.net/11323/5991Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Structural Equations Models (SEM) determine the dependence or independence relationship of the variables through the integration of linear equations. These models combine factorial analysis with linear regression to determine the data adjustment obtained with a proposed model by means of a path analysis, which represents the relationship between latent and observed variables. Observed variables are those that can be directly measured, usually through questionnaires. Latent variables are not directly measured and can be endogenous (dependent) or exogenous (independent). This research provides a model that allows to determine student satisfaction through the structural equations modeling by using the Technological Pedagogical Content Knowledge model (TPACK).Los modelos de ecuaciones estructurales (SEM) determinan la relación de dependencia o independencia de las variables a través de la integración de ecuaciones lineales. Estos modelos combinan análisis factorial con regresión lineal para determinar el ajuste de datos obtenido con un modelo propuesto mediante un análisis de ruta, que representa la relación entre las variables latentes y observadas. Las variables observadas son aquellas que pueden medirse directamente, generalmente a través de cuestionarios. Las variables latentes no se miden directamente y pueden ser endógenas (dependientes) o exógenas (independientes). Esta investigación proporciona un modelo que permite determinar la satisfacción de los estudiantes a través del modelado de ecuaciones estructurales mediante el uso del modelo de Conocimiento de Contenido Pedagógico Tecnológico (TPACK).Amelec, Viloria-will be generated-orcid-0000-0003-2673-6350-600Pineda Lezama, Omar BonergeMercado Caruso, Nohora Nubia-will be generated-orcid-0000-0001-9261-8331-600engProcedia Computer ScienceCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Structural equationsMaximum likelihood methodFactor analysisLearningManagementSystemTPACK modelEcuaciones estructuralesMétodo de máxima verosimilitudAnálisis factorialSistema de gestión del aprendizajeModelo TPACKModel and simulation of structural equations for determining the student satisfactionModelo y simulación de ecuaciones estructurales para determinar la satisfacción del alumnoArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Torres-Samuel, M., Vásquez, C., Viloria, A., Lis-Gutiérrez, J.P., Borrero, T.C., Varela, N.: Web Visibility Profiles of Top100 Latin American Universities. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, Springer, Cham, vol 10943, 1-12 (2018).[2] Garson, D. (2013). Factor analysis. Asheboro. North Caroline State: Blue Books. University Press.[3] Duan, L., Xu, L., Liu, Y., Lee, J.: Cluster-based outlier detection. Annals of Operations Research 168 (1), 151–168 (2009).[4] Haykin, S.: Neural Networks a Comprehensive Foundation. Second Edition. Macmillan College Publishing, Inc. USA. ISBN 9780023527616 (1999).[5] Haykin, S.: Neural Networks and Learning Machines. New Jersey, Prentice Hall International (2009).[6] Oviedo, B. a. (2015). Análisis de datos educativos utilizando redes bayesianas, Latin American and Caribbean Conference for Engineering and Technology LACCEI 2015.[7] Hair, Joseph; Anderson, Rolph; Tatham, Ronald y Black, W. (2001). Análisis multivariante. Madrid, España: Prentice Hall.[8] Vasquez, C., Torres, M., Viloria, A.: Public policies in science and technology in Latin American countries with universities in the top 100 of web ranking. J. Eng. Appl. Sci. 12(11), 2963–2965 (2017).[9] Vásquez, C., Torres-Samuel, M., Viloria, A., Lis-Gutiérrez, J.P., Crissien Borrero, T., Varela, N., Cabrera, D.: Cluster of the Latin American Universities Top100 According to Webometrics 2017. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, Springer, Cham , vol 10943, 1-12 (2018).[10] Samperio Pacheco, Víctor Manuel. (2019). Ecuaciones estructurales en los modelos educativos: características y fases en su construcción. Apertura, 11(1), pp. 90-103. http://dx.doi. org/10.32870/Ap.v11n1.1402).[11] Viloria, A., Lis-Gutiérrez, J.P., Gaitán-Angulo, M., Godoy, A.R.M., Moreno, G.C., Kamatkar, S.J. : Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching – Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data.[12] Roig-Vila, Rosabel; Mengual-Andrés, Santiago & Quinto-Medrano, Patricio. (2015). Conocimientos tecnológicos, pedagógicos y disciplinares del profesorado de primaria. Comunicar, XXII(45), pp. 151-159. https://doi.org/10.3916/C45-2015-16[13] Vanyolos, E., I. Furka, I. Miko y otros tres autores, How does practice improve the skills of medical students during consecutive training courses? doi; https://dx.doi.org/10.1590/s0102-865020170060000010. Rev. Acta Cirurgica Brasileira, 32(6), 491-502 (2017)[14] Tárraga Mínguez, Raúl; Sanz Cervera, Pilar; Pastor Cerezuela, Gemma y Fernández Andrés, María. (2017). Análisis de la autoeficacia percibida en el uso de las TIC de futuros maestros y maestras de educación infantil y educación primaria. Revista Electrónica Interuniversitaria de Formación del Profesorado, 20(3), pp. 107-116. https://doi.org/10.6018/reifop.20.3.263901.[15] Haykin, S.: Neural Networks and Learning Machines. New Jersey, Prentice Hall International (2009).[16] Kline, Rex. (2005). Principles and practice of structural equation modeling. Nueva York: Gilford Press[17] Cejas León, Roberto; Navío Gámez, Antonio y Barroso Osuna, Julio. (2016). Las competencias del profesorado universitario desde el modelo TPACK (conocimiento tecnológico y pedagógico del contenido). Pixel-Bit. Revista de Medios y Educación, (49), pp. 105-119. https://doi.org/10.12795/pixelbit.2016.i49.07PublicationORIGINALModel and Simulation of Structural Equations for Determining the.pdfModel and Simulation of Structural Equations for Determining the.pdfapplication/pdf460285https://repositorio.cuc.edu.co/bitstreams/d5c3044c-7831-467b-a0e7-2ee313d072ec/download0585a053f7e1305a56b0b113156f965fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/e07b7ecb-5bf6-486e-90f6-c8bfbf1b58cf/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/31ebc0b4-a563-4ef9-bd7e-8cf0533deb8f/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILModel and Simulation of Structural Equations for Determining the.pdf.jpgModel and Simulation of Structural Equations for Determining the.pdf.jpgimage/jpeg45826https://repositorio.cuc.edu.co/bitstreams/6b5c8c38-aa42-4dfe-b6f8-cebf54b16ce7/download8e9da15a11af04953cfaec367c366319MD55TEXTModel and Simulation of Structural Equations for Determining the.pdf.txtModel and Simulation of Structural Equations for Determining the.pdf.txttext/plain17437https://repositorio.cuc.edu.co/bitstreams/70c05595-5313-4382-862f-bd60da9b0516/download02c2272e59f8d031b1a0ad9f2fd91a8fMD5611323/5991oai:repositorio.cuc.edu.co:11323/59912024-09-17 12:50:07.438http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |