Multi-Objective analysis of a CHP system using natural gas and biogas on the prime mover
With the aim of reducing operational costs and gas emissions in a Combined Heat and Power System (CHP), a type of biofuel is proposed as a product of a process using a biomass resource to replace other types of fossil fuels, and to be able to cover the average annual scale of power demand of 24 MWh/...
- Autores:
-
Valencia Ochoa, Guillermo Eliecer
Obregón, Luis Guillermo
Cardenas Escorcia, Yulineth del Carmen
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/1210
- Acceso en línea:
- https://hdl.handle.net/11323/1210
https://repositorio.cuc.edu.co/
- Palabra clave:
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_eda9bdc0823a7ed9b6b16365c8710f20 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/1210 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Multi-Objective analysis of a CHP system using natural gas and biogas on the prime mover |
title |
Multi-Objective analysis of a CHP system using natural gas and biogas on the prime mover |
spellingShingle |
Multi-Objective analysis of a CHP system using natural gas and biogas on the prime mover |
title_short |
Multi-Objective analysis of a CHP system using natural gas and biogas on the prime mover |
title_full |
Multi-Objective analysis of a CHP system using natural gas and biogas on the prime mover |
title_fullStr |
Multi-Objective analysis of a CHP system using natural gas and biogas on the prime mover |
title_full_unstemmed |
Multi-Objective analysis of a CHP system using natural gas and biogas on the prime mover |
title_sort |
Multi-Objective analysis of a CHP system using natural gas and biogas on the prime mover |
dc.creator.fl_str_mv |
Valencia Ochoa, Guillermo Eliecer Obregón, Luis Guillermo Cardenas Escorcia, Yulineth del Carmen |
dc.contributor.author.spa.fl_str_mv |
Valencia Ochoa, Guillermo Eliecer Obregón, Luis Guillermo Cardenas Escorcia, Yulineth del Carmen |
description |
With the aim of reducing operational costs and gas emissions in a Combined Heat and Power System (CHP), a type of biofuel is proposed as a product of a process using a biomass resource to replace other types of fossil fuels, and to be able to cover the average annual scale of power demand of 24 MWh/day from a metallurgical plant, and a thermal energy demand of 60 MWh/day. This study shows the behavior of gas emissions and economic analysis through the use of HOMER Pro software depending on the type of fuel selected. The proposed system consists of a set of electric generators (2MW in total) and a boiler with a cogenerative system connected to the gas outlet of the electric generators. The results of the simulation showed that the system working with natural gas presents a decrease of 5.66% in the annual operating cost concerning the system that works with biogas. However, the biogas system causes a 19.39% decrease in carbon dioxide production compared to the other systems. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-11-17T13:27:18Z |
dc.date.available.none.fl_str_mv |
2018-11-17T13:27:18Z |
dc.date.issued.none.fl_str_mv |
2018 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2283-9216 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/1210 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2283-9216 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/1210 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Batidzirai B., van der Hilst F., Meerman H., Junginger M., 2013, Optimization potential of biomass supply chains with torrefaction technology, Biofuels, Bioproducts and Biorefining, 8, 2, 25–282. Basu A., Bhattacharya A., Chowdhury S., 2012, Planned scheduling for economic power sharing in a chpbased micro-grid, IEEE Transactions on Power Systems, 27, 1, 30–8. Benelmir R., 1998, Energy cogeneration systems and energy management strategy, Energy Convers Manage, 39, 1791–802. Lacko R., Drobni B., Mori M., Sekavnik M., 2014, Stand-alone renewable combined heat and power system with hydrogen technologies for household application, Energy, 77, 164–70. Persson M., Jonsson O., Wellinger A., 2006, Biogas upgrading to vehicle fuel standards and grid injection. IEA Bioenergy, 37, 18–55. Petchers N., 2012, Combined heating, cooling & power handbook: technologies & applications: an integrated approach to energy resource optimization, Fairmont Press, NY, United States. Zafra A., Ridao M., Alvarado I., 2008, Applying risk management to combined heat and power plants, IEEE Transactions on Power Systems, 23, 3, 938–45. Barrozo F., Escorcia Y., Valencia G., 2017, Hybrid PV and Wind grid-connected renewable energy system to reduce the gas emission and operation cost, Contemporary Engineering Sciences, 26, 1269-1278. Barrozo F., Valencia G., Cárdenas Y., 2017, An economic evaluation of Renewable and Conventional Electricity Generation Systems in a shopping center using HOMER Pro, Contemporary Engineering Sciences, 10, 26, 1287-1295. Barrozo F., Valencia G., Cárdenas Y., 2017, Biomass generator to reduce the gas emission and operation cost in a grid-connected renewable energy systems. International Journal of ChemTech Research, 10, 13, 311-316. Valencia G., Vanegas M., Martinez R., 2016, Estudio de la persistencia del viento en la región Caribe colombiana con énfasis en La Guajira. Ed. Universidad del Atlántico, Barranquilla, Colombia Valencia G., Vanegas M., Polo J., 2016, Análisis estadístico de la velocidad y dirección del viento en la Costa Caribe colombiana con énfasis en La Guajira, Ed. Universidad del Atlántico, Barranquilla, Colombia Valencia G., Vanegas M., Villicana E., 2016, Atlas solar de la Costa Caribe colombiana, Ed. Universidad del Atlántico, Barranquilla, Colombia Vanegas M., Valencia G., 2016, Atlas eólico de la Costa Caribe colombiana, Ed. Universidad del Atlántico, Barranquilla, Colombia Ramos E., Valencia G., Cárdenas Y., 2017, Energy Saving in Industrial Process Based on the Equivalent Production Method to Calculate Energy Performance Indicators, Chemical Engineering Transactions, 57, 709-714. Valencia G., Ramos E., Merino L., 2017, Energy Planning for Gas Consumption Reduction in a Hot Dip Galvanizing Plant, Chemical Engineering Transactions, 57, 697-702. Osorio M., Valencia G., 2017, Exergoeconomic Analysis of a 30 kW Micro Turbine Cogeneration System Using Hysys and Matlab, Chemical Engineering Transactions, 57, 475-480. |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Chemical Engineering Transactions |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/784c8495-0148-4936-98b2-10e1c5a4c222/download https://repositorio.cuc.edu.co/bitstreams/2e6ce895-0a0e-4c66-8c95-285b8f4984a3/download https://repositorio.cuc.edu.co/bitstreams/6ea0e00e-437c-4d03-93bf-225465b156aa/download https://repositorio.cuc.edu.co/bitstreams/d3778196-b484-4b7c-be6d-b15362264a8f/download |
bitstream.checksum.fl_str_mv |
0760306c0ac799b2116dfe5e457e2195 8a4605be74aa9ea9d79846c1fba20a33 f69692843086b37ef99cad8c661845d9 52f171361bbfe0d21f1fdab36f7820bb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760812829704192 |
spelling |
Valencia Ochoa, Guillermo EliecerObregón, Luis GuillermoCardenas Escorcia, Yulineth del Carmen2018-11-17T13:27:18Z2018-11-17T13:27:18Z20182283-9216https://hdl.handle.net/11323/1210Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/With the aim of reducing operational costs and gas emissions in a Combined Heat and Power System (CHP), a type of biofuel is proposed as a product of a process using a biomass resource to replace other types of fossil fuels, and to be able to cover the average annual scale of power demand of 24 MWh/day from a metallurgical plant, and a thermal energy demand of 60 MWh/day. This study shows the behavior of gas emissions and economic analysis through the use of HOMER Pro software depending on the type of fuel selected. The proposed system consists of a set of electric generators (2MW in total) and a boiler with a cogenerative system connected to the gas outlet of the electric generators. The results of the simulation showed that the system working with natural gas presents a decrease of 5.66% in the annual operating cost concerning the system that works with biogas. However, the biogas system causes a 19.39% decrease in carbon dioxide production compared to the other systems.Valencia Ochoa, Guillermo Eliecer-badc27cf-8d52-48c7-8cc8-5ffbe0292696-0Obregón, Luis Guillermo-654743da-71d0-4591-aadd-3ffa8f2d68d0-0Cardenas Escorcia, Yulineth del Carmen-0000-0002-9841-701X-600engChemical Engineering TransactionsAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Multi-Objective analysis of a CHP system using natural gas and biogas on the prime moverArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionBatidzirai B., van der Hilst F., Meerman H., Junginger M., 2013, Optimization potential of biomass supply chains with torrefaction technology, Biofuels, Bioproducts and Biorefining, 8, 2, 25–282. Basu A., Bhattacharya A., Chowdhury S., 2012, Planned scheduling for economic power sharing in a chpbased micro-grid, IEEE Transactions on Power Systems, 27, 1, 30–8. Benelmir R., 1998, Energy cogeneration systems and energy management strategy, Energy Convers Manage, 39, 1791–802. Lacko R., Drobni B., Mori M., Sekavnik M., 2014, Stand-alone renewable combined heat and power system with hydrogen technologies for household application, Energy, 77, 164–70. Persson M., Jonsson O., Wellinger A., 2006, Biogas upgrading to vehicle fuel standards and grid injection. IEA Bioenergy, 37, 18–55. Petchers N., 2012, Combined heating, cooling & power handbook: technologies & applications: an integrated approach to energy resource optimization, Fairmont Press, NY, United States. Zafra A., Ridao M., Alvarado I., 2008, Applying risk management to combined heat and power plants, IEEE Transactions on Power Systems, 23, 3, 938–45. Barrozo F., Escorcia Y., Valencia G., 2017, Hybrid PV and Wind grid-connected renewable energy system to reduce the gas emission and operation cost, Contemporary Engineering Sciences, 26, 1269-1278. Barrozo F., Valencia G., Cárdenas Y., 2017, An economic evaluation of Renewable and Conventional Electricity Generation Systems in a shopping center using HOMER Pro, Contemporary Engineering Sciences, 10, 26, 1287-1295. Barrozo F., Valencia G., Cárdenas Y., 2017, Biomass generator to reduce the gas emission and operation cost in a grid-connected renewable energy systems. International Journal of ChemTech Research, 10, 13, 311-316. Valencia G., Vanegas M., Martinez R., 2016, Estudio de la persistencia del viento en la región Caribe colombiana con énfasis en La Guajira. Ed. Universidad del Atlántico, Barranquilla, Colombia Valencia G., Vanegas M., Polo J., 2016, Análisis estadístico de la velocidad y dirección del viento en la Costa Caribe colombiana con énfasis en La Guajira, Ed. Universidad del Atlántico, Barranquilla, Colombia Valencia G., Vanegas M., Villicana E., 2016, Atlas solar de la Costa Caribe colombiana, Ed. Universidad del Atlántico, Barranquilla, Colombia Vanegas M., Valencia G., 2016, Atlas eólico de la Costa Caribe colombiana, Ed. Universidad del Atlántico, Barranquilla, Colombia Ramos E., Valencia G., Cárdenas Y., 2017, Energy Saving in Industrial Process Based on the Equivalent Production Method to Calculate Energy Performance Indicators, Chemical Engineering Transactions, 57, 709-714. Valencia G., Ramos E., Merino L., 2017, Energy Planning for Gas Consumption Reduction in a Hot Dip Galvanizing Plant, Chemical Engineering Transactions, 57, 697-702. Osorio M., Valencia G., 2017, Exergoeconomic Analysis of a 30 kW Micro Turbine Cogeneration System Using Hysys and Matlab, Chemical Engineering Transactions, 57, 475-480.PublicationORIGINALMulti-Objective analysis of a CHP system using natural gas and biogas on the prime mover.pdfMulti-Objective analysis of a CHP system using natural gas and biogas on the prime mover.pdfapplication/pdf537556https://repositorio.cuc.edu.co/bitstreams/784c8495-0148-4936-98b2-10e1c5a4c222/download0760306c0ac799b2116dfe5e457e2195MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/2e6ce895-0a0e-4c66-8c95-285b8f4984a3/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILMulti-Objective analysis of a CHP system using natural gas and biogas on the prime mover.pdf.jpgMulti-Objective analysis of a CHP system using natural gas and biogas on the prime mover.pdf.jpgimage/jpeg72148https://repositorio.cuc.edu.co/bitstreams/6ea0e00e-437c-4d03-93bf-225465b156aa/downloadf69692843086b37ef99cad8c661845d9MD54TEXTMulti-Objective analysis of a CHP system using natural gas and biogas on the prime mover.pdf.txtMulti-Objective analysis of a CHP system using natural gas and biogas on the prime mover.pdf.txttext/plain16200https://repositorio.cuc.edu.co/bitstreams/d3778196-b484-4b7c-be6d-b15362264a8f/download52f171361bbfe0d21f1fdab36f7820bbMD5511323/1210oai:repositorio.cuc.edu.co:11323/12102024-09-17 12:48:33.055open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |