Multi-Objective analysis of a CHP system using natural gas and biogas on the prime mover

With the aim of reducing operational costs and gas emissions in a Combined Heat and Power System (CHP), a type of biofuel is proposed as a product of a process using a biomass resource to replace other types of fossil fuels, and to be able to cover the average annual scale of power demand of 24 MWh/...

Full description

Autores:
Valencia Ochoa, Guillermo Eliecer
Obregón, Luis Guillermo
Cardenas Escorcia, Yulineth del Carmen
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/1210
Acceso en línea:
https://hdl.handle.net/11323/1210
https://repositorio.cuc.edu.co/
Palabra clave:
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_eda9bdc0823a7ed9b6b16365c8710f20
oai_identifier_str oai:repositorio.cuc.edu.co:11323/1210
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Multi-Objective analysis of a CHP system using natural gas and biogas on the prime mover
title Multi-Objective analysis of a CHP system using natural gas and biogas on the prime mover
spellingShingle Multi-Objective analysis of a CHP system using natural gas and biogas on the prime mover
title_short Multi-Objective analysis of a CHP system using natural gas and biogas on the prime mover
title_full Multi-Objective analysis of a CHP system using natural gas and biogas on the prime mover
title_fullStr Multi-Objective analysis of a CHP system using natural gas and biogas on the prime mover
title_full_unstemmed Multi-Objective analysis of a CHP system using natural gas and biogas on the prime mover
title_sort Multi-Objective analysis of a CHP system using natural gas and biogas on the prime mover
dc.creator.fl_str_mv Valencia Ochoa, Guillermo Eliecer
Obregón, Luis Guillermo
Cardenas Escorcia, Yulineth del Carmen
dc.contributor.author.spa.fl_str_mv Valencia Ochoa, Guillermo Eliecer
Obregón, Luis Guillermo
Cardenas Escorcia, Yulineth del Carmen
description With the aim of reducing operational costs and gas emissions in a Combined Heat and Power System (CHP), a type of biofuel is proposed as a product of a process using a biomass resource to replace other types of fossil fuels, and to be able to cover the average annual scale of power demand of 24 MWh/day from a metallurgical plant, and a thermal energy demand of 60 MWh/day. This study shows the behavior of gas emissions and economic analysis through the use of HOMER Pro software depending on the type of fuel selected. The proposed system consists of a set of electric generators (2MW in total) and a boiler with a cogenerative system connected to the gas outlet of the electric generators. The results of the simulation showed that the system working with natural gas presents a decrease of 5.66% in the annual operating cost concerning the system that works with biogas. However, the biogas system causes a 19.39% decrease in carbon dioxide production compared to the other systems.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-11-17T13:27:18Z
dc.date.available.none.fl_str_mv 2018-11-17T13:27:18Z
dc.date.issued.none.fl_str_mv 2018
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2283-9216
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/1210
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2283-9216
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/1210
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Batidzirai B., van der Hilst F., Meerman H., Junginger M., 2013, Optimization potential of biomass supply chains with torrefaction technology, Biofuels, Bioproducts and Biorefining, 8, 2, 25–282. Basu A., Bhattacharya A., Chowdhury S., 2012, Planned scheduling for economic power sharing in a chpbased micro-grid, IEEE Transactions on Power Systems, 27, 1, 30–8. Benelmir R., 1998, Energy cogeneration systems and energy management strategy, Energy Convers Manage, 39, 1791–802. Lacko R., Drobni B., Mori M., Sekavnik M., 2014, Stand-alone renewable combined heat and power system with hydrogen technologies for household application, Energy, 77, 164–70. Persson M., Jonsson O., Wellinger A., 2006, Biogas upgrading to vehicle fuel standards and grid injection. IEA Bioenergy, 37, 18–55. Petchers N., 2012, Combined heating, cooling & power handbook: technologies & applications: an integrated approach to energy resource optimization, Fairmont Press, NY, United States. Zafra A., Ridao M., Alvarado I., 2008, Applying risk management to combined heat and power plants, IEEE Transactions on Power Systems, 23, 3, 938–45. Barrozo F., Escorcia Y., Valencia G., 2017, Hybrid PV and Wind grid-connected renewable energy system to reduce the gas emission and operation cost, Contemporary Engineering Sciences, 26, 1269-1278. Barrozo F., Valencia G., Cárdenas Y., 2017, An economic evaluation of Renewable and Conventional Electricity Generation Systems in a shopping center using HOMER Pro, Contemporary Engineering Sciences, 10, 26, 1287-1295. Barrozo F., Valencia G., Cárdenas Y., 2017, Biomass generator to reduce the gas emission and operation cost in a grid-connected renewable energy systems. International Journal of ChemTech Research, 10, 13, 311-316. Valencia G., Vanegas M., Martinez R., 2016, Estudio de la persistencia del viento en la región Caribe colombiana con énfasis en La Guajira. Ed. Universidad del Atlántico, Barranquilla, Colombia Valencia G., Vanegas M., Polo J., 2016, Análisis estadístico de la velocidad y dirección del viento en la Costa Caribe colombiana con énfasis en La Guajira, Ed. Universidad del Atlántico, Barranquilla, Colombia Valencia G., Vanegas M., Villicana E., 2016, Atlas solar de la Costa Caribe colombiana, Ed. Universidad del Atlántico, Barranquilla, Colombia Vanegas M., Valencia G., 2016, Atlas eólico de la Costa Caribe colombiana, Ed. Universidad del Atlántico, Barranquilla, Colombia Ramos E., Valencia G., Cárdenas Y., 2017, Energy Saving in Industrial Process Based on the Equivalent Production Method to Calculate Energy Performance Indicators, Chemical Engineering Transactions, 57, 709-714. Valencia G., Ramos E., Merino L., 2017, Energy Planning for Gas Consumption Reduction in a Hot Dip Galvanizing Plant, Chemical Engineering Transactions, 57, 697-702. Osorio M., Valencia G., 2017, Exergoeconomic Analysis of a 30 kW Micro Turbine Cogeneration System Using Hysys and Matlab, Chemical Engineering Transactions, 57, 475-480.
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Chemical Engineering Transactions
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/784c8495-0148-4936-98b2-10e1c5a4c222/download
https://repositorio.cuc.edu.co/bitstreams/2e6ce895-0a0e-4c66-8c95-285b8f4984a3/download
https://repositorio.cuc.edu.co/bitstreams/6ea0e00e-437c-4d03-93bf-225465b156aa/download
https://repositorio.cuc.edu.co/bitstreams/d3778196-b484-4b7c-be6d-b15362264a8f/download
bitstream.checksum.fl_str_mv 0760306c0ac799b2116dfe5e457e2195
8a4605be74aa9ea9d79846c1fba20a33
f69692843086b37ef99cad8c661845d9
52f171361bbfe0d21f1fdab36f7820bb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760812829704192
spelling Valencia Ochoa, Guillermo EliecerObregón, Luis GuillermoCardenas Escorcia, Yulineth del Carmen2018-11-17T13:27:18Z2018-11-17T13:27:18Z20182283-9216https://hdl.handle.net/11323/1210Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/With the aim of reducing operational costs and gas emissions in a Combined Heat and Power System (CHP), a type of biofuel is proposed as a product of a process using a biomass resource to replace other types of fossil fuels, and to be able to cover the average annual scale of power demand of 24 MWh/day from a metallurgical plant, and a thermal energy demand of 60 MWh/day. This study shows the behavior of gas emissions and economic analysis through the use of HOMER Pro software depending on the type of fuel selected. The proposed system consists of a set of electric generators (2MW in total) and a boiler with a cogenerative system connected to the gas outlet of the electric generators. The results of the simulation showed that the system working with natural gas presents a decrease of 5.66% in the annual operating cost concerning the system that works with biogas. However, the biogas system causes a 19.39% decrease in carbon dioxide production compared to the other systems.Valencia Ochoa, Guillermo Eliecer-badc27cf-8d52-48c7-8cc8-5ffbe0292696-0Obregón, Luis Guillermo-654743da-71d0-4591-aadd-3ffa8f2d68d0-0Cardenas Escorcia, Yulineth del Carmen-0000-0002-9841-701X-600engChemical Engineering TransactionsAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Multi-Objective analysis of a CHP system using natural gas and biogas on the prime moverArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionBatidzirai B., van der Hilst F., Meerman H., Junginger M., 2013, Optimization potential of biomass supply chains with torrefaction technology, Biofuels, Bioproducts and Biorefining, 8, 2, 25–282. Basu A., Bhattacharya A., Chowdhury S., 2012, Planned scheduling for economic power sharing in a chpbased micro-grid, IEEE Transactions on Power Systems, 27, 1, 30–8. Benelmir R., 1998, Energy cogeneration systems and energy management strategy, Energy Convers Manage, 39, 1791–802. Lacko R., Drobni B., Mori M., Sekavnik M., 2014, Stand-alone renewable combined heat and power system with hydrogen technologies for household application, Energy, 77, 164–70. Persson M., Jonsson O., Wellinger A., 2006, Biogas upgrading to vehicle fuel standards and grid injection. IEA Bioenergy, 37, 18–55. Petchers N., 2012, Combined heating, cooling & power handbook: technologies & applications: an integrated approach to energy resource optimization, Fairmont Press, NY, United States. Zafra A., Ridao M., Alvarado I., 2008, Applying risk management to combined heat and power plants, IEEE Transactions on Power Systems, 23, 3, 938–45. Barrozo F., Escorcia Y., Valencia G., 2017, Hybrid PV and Wind grid-connected renewable energy system to reduce the gas emission and operation cost, Contemporary Engineering Sciences, 26, 1269-1278. Barrozo F., Valencia G., Cárdenas Y., 2017, An economic evaluation of Renewable and Conventional Electricity Generation Systems in a shopping center using HOMER Pro, Contemporary Engineering Sciences, 10, 26, 1287-1295. Barrozo F., Valencia G., Cárdenas Y., 2017, Biomass generator to reduce the gas emission and operation cost in a grid-connected renewable energy systems. International Journal of ChemTech Research, 10, 13, 311-316. Valencia G., Vanegas M., Martinez R., 2016, Estudio de la persistencia del viento en la región Caribe colombiana con énfasis en La Guajira. Ed. Universidad del Atlántico, Barranquilla, Colombia Valencia G., Vanegas M., Polo J., 2016, Análisis estadístico de la velocidad y dirección del viento en la Costa Caribe colombiana con énfasis en La Guajira, Ed. Universidad del Atlántico, Barranquilla, Colombia Valencia G., Vanegas M., Villicana E., 2016, Atlas solar de la Costa Caribe colombiana, Ed. Universidad del Atlántico, Barranquilla, Colombia Vanegas M., Valencia G., 2016, Atlas eólico de la Costa Caribe colombiana, Ed. Universidad del Atlántico, Barranquilla, Colombia Ramos E., Valencia G., Cárdenas Y., 2017, Energy Saving in Industrial Process Based on the Equivalent Production Method to Calculate Energy Performance Indicators, Chemical Engineering Transactions, 57, 709-714. Valencia G., Ramos E., Merino L., 2017, Energy Planning for Gas Consumption Reduction in a Hot Dip Galvanizing Plant, Chemical Engineering Transactions, 57, 697-702. Osorio M., Valencia G., 2017, Exergoeconomic Analysis of a 30 kW Micro Turbine Cogeneration System Using Hysys and Matlab, Chemical Engineering Transactions, 57, 475-480.PublicationORIGINALMulti-Objective analysis of a CHP system using natural gas and biogas on the prime mover.pdfMulti-Objective analysis of a CHP system using natural gas and biogas on the prime mover.pdfapplication/pdf537556https://repositorio.cuc.edu.co/bitstreams/784c8495-0148-4936-98b2-10e1c5a4c222/download0760306c0ac799b2116dfe5e457e2195MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/2e6ce895-0a0e-4c66-8c95-285b8f4984a3/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILMulti-Objective analysis of a CHP system using natural gas and biogas on the prime mover.pdf.jpgMulti-Objective analysis of a CHP system using natural gas and biogas on the prime mover.pdf.jpgimage/jpeg72148https://repositorio.cuc.edu.co/bitstreams/6ea0e00e-437c-4d03-93bf-225465b156aa/downloadf69692843086b37ef99cad8c661845d9MD54TEXTMulti-Objective analysis of a CHP system using natural gas and biogas on the prime mover.pdf.txtMulti-Objective analysis of a CHP system using natural gas and biogas on the prime mover.pdf.txttext/plain16200https://repositorio.cuc.edu.co/bitstreams/d3778196-b484-4b7c-be6d-b15362264a8f/download52f171361bbfe0d21f1fdab36f7820bbMD5511323/1210oai:repositorio.cuc.edu.co:11323/12102024-09-17 12:48:33.055open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=