Impact of real and simulated flights on psychophysiological response of military pilots
Objective: The present research aimed to analyse the autonomic, anxiety, perceived exertion, and self-confidence response during real and simulated flights. Methods: This cross-sectional study participated 12 experienced male pilots (age = 33.08 (5.21)) from the Spanish Air Force. Participants had t...
- Autores:
-
Fuentes García, Juan Pedro
Clemente-Suárez, Vicente Javier
Marazuela-Martínez, Miguel Ángel
Tornero Aguilera, José Francisco
Villafaina, Santos
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7942
- Acceso en línea:
- https://hdl.handle.net/11323/7942
https://doi.org/10.3390/ijerph18020787
https://repositorio.cuc.edu.co/
- Palabra clave:
- HRV
Army
Simulator
Flight
Anxiety
Perceived exertion
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_ed8f7a5f2005ee77135103223963169e |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7942 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Impact of real and simulated flights on psychophysiological response of military pilots |
title |
Impact of real and simulated flights on psychophysiological response of military pilots |
spellingShingle |
Impact of real and simulated flights on psychophysiological response of military pilots HRV Army Simulator Flight Anxiety Perceived exertion |
title_short |
Impact of real and simulated flights on psychophysiological response of military pilots |
title_full |
Impact of real and simulated flights on psychophysiological response of military pilots |
title_fullStr |
Impact of real and simulated flights on psychophysiological response of military pilots |
title_full_unstemmed |
Impact of real and simulated flights on psychophysiological response of military pilots |
title_sort |
Impact of real and simulated flights on psychophysiological response of military pilots |
dc.creator.fl_str_mv |
Fuentes García, Juan Pedro Clemente-Suárez, Vicente Javier Marazuela-Martínez, Miguel Ángel Tornero Aguilera, José Francisco Villafaina, Santos |
dc.contributor.author.spa.fl_str_mv |
Fuentes García, Juan Pedro Clemente-Suárez, Vicente Javier Marazuela-Martínez, Miguel Ángel Tornero Aguilera, José Francisco Villafaina, Santos |
dc.subject.spa.fl_str_mv |
HRV Army Simulator Flight Anxiety Perceived exertion |
topic |
HRV Army Simulator Flight Anxiety Perceived exertion |
description |
Objective: The present research aimed to analyse the autonomic, anxiety, perceived exertion, and self-confidence response during real and simulated flights. Methods: This cross-sectional study participated 12 experienced male pilots (age = 33.08 (5.21)) from the Spanish Air Force. Participants had to complete a real and a simulated flight mission randomly. The heart rate variability (HRV), anxiety, self-confidence, and rating of perceived exertion were collected before and after both manoeuvres, and HRV was also collected during both simulated and real flights. Results: When studying the acute effects of real and simulated flights, the mean heart rate, the R-to-R interval, the cognitive anxiety and the perceived exertion were significantly impacted only by real flights. Furthermore, significant differences in the mean heart rate and RR interval were found when compared to the acute effects of real and simulated flights (with higher acute effects observed in real flights). Additionally, when compared the HRV values during simulated and real flights, significant differences were observed in the RR and heart rate mean (with lower RR interval and higher heart rate mean observed during real flights). Conclusion: Real flights significantly reduced the RR interval and cognitive anxiety while increased the heart rate mean and the rating of perceived exertion, whereas simulated flights did not induce any significant change in the autonomic modulation. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-03-01T14:59:37Z |
dc.date.available.none.fl_str_mv |
2021-03-01T14:59:37Z |
dc.date.issued.none.fl_str_mv |
2021-01-18 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1661-7827 1660-4601 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7942 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.3390/ijerph18020787 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1661-7827 1660-4601 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7942 https://doi.org/10.3390/ijerph18020787 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Gerathewohl, S.J. Fidelity of Simulation and Transfer of Training: A Review of the Problem; US Department of Transportation, Federal Aviation Administration, Office of Aviation Medicine: Washington, DC, USA, 1969. 2. Dahlstrom, N.; Nahlinder, S. Mental workload in aircraft and simulator during basic civil aviation training. Int. J. Aviat. Psychol. 2009, 19, 309–325. [CrossRef] 3. Wilson, G.F. An analysis of mental workload in pilots during flight using multiple psychophysiological measures. Int. J. Aviat. Psychol. 2002, 12, 3–18. [CrossRef] 4. Alaimo, A.; Esposito, A.; Orlando, C.; Simoncini, A. Aircraft Pilots Workload Analysis: Heart Rate Variability Objective Measures and NASA-Task Load Index Subjective Evaluation. Aerospace 2020, 7, 137. [CrossRef] 5. Wilson, G.F. A comparison of three cardiac ambulatory recorders using flight data. Int. J. Aviat. Psychol. 2002, 12, 111–119. [CrossRef] 6. Cao, X.; MacNaughton, P.; Cadet, L.R.; Cedeno-Laurent, J.G.; Flanigan, S.; Vallarino, J.; Donnelly-McLay, D.; Christiani, D.C.; Spengler, J.D.; Allen, J.G. Heart rate variability and performance of commercial airline pilots during flight simulations. Int. J. Environ. Res. Public Health 2019, 16, 237. [CrossRef] [PubMed] 7. Magnusson, S. Similarities and differences in psychophysiological reactions between simulated and real air-to-ground missions. Int. J. Aviat. Psychol. 2002, 12, 49–61. [CrossRef] 8. Thayer, J.F.; Ahs, F.; Fredrikson, M.; Sollers, J.J., III; Wager, T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [CrossRef] 9. Shaffer, F.; McCraty, R.; Zerr, C.L. A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Front. Psychol. 2014, 5, 1040. [CrossRef] 10. Fuentes-Garcia, J.P.; Pereira, T.; Castro, M.A.; Carvalho Santos, A.; Villafaina, S. Psychophysiological stress response of adolescent chess players during problem-solving tasks. Physiol. Behav. 2019, 209, 112609. [CrossRef] 11. Fuentes, J.P.; Villafaina, S.; Collado-Mateo, D.; de la Vega, R.; Olivares, P.R.; Clemente-Suárez, V.J. Differences between high vs low performance chess players in heart rate variability during chess problems. Front. Psychol. 2019, 10, 409. [CrossRef] 12. Beauchaine, T. Vagal tone, development, and Gray’s motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Dev. Psychopathol. 2001, 13, 183–214. [CrossRef] [PubMed] 13. Berntson, G.G.; Norman, G.J.; Hawkley, L.C.; Cacioppo, J.T. Cardiac autonomic balance versus cardiac regulatory capacity. Psychophysiology 2008, 45, 643–652. [CrossRef] [PubMed] 14. Diaz-Manzano, M.; Fuentes, J.P.; Fernandez-Lucas, J.; Aznar-Lain, S.; Clemente-Suárez, V.J. Higher use of techniques studied and performance in melee combat produce a higher psychophysiological stress response. Stress Health 2018, 34, 622–628. [CrossRef] [PubMed] 15. Hormeño-Holgado, A.J.; Clemente-Suárez, V.J. Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots. Physiol. Behav. 2019, 208, 112559. [CrossRef] [PubMed] 16. Sauvet, F.; Jouanin, J.C.; Langrume, C.; Van Beers, P.; Papelier, Y.; Dussault, C. Heart rate variability in novice pilots during and after a multi-leg cross-country flight. Aviat. Space Environ. Med. 2009, 80, 862–869. [CrossRef] 17. Tornero-Aguilera, J.F.; Robles-Pérez, J.J.; Clemente-Suárez, V.J. Use of Psychophysiological Portable Devices to Analyse Stress Response in Different Experienced Soldiers. J. Med. Syst. 2018, 42, 75. [CrossRef] 18. Bustamante-Sánchez, A.; Tornero-Aguilera, J.F.; Fernández-Elías, V.E.; Hormeño-Holgado, A.J.; Dalamitros, A.A.; ClementeSuárez, V.J. Effect of Stress on Autonomic and Cardiovascular Systems in Military Population: A Systematic Review. Cardiol. Res. Pract. 2020, 2020. [CrossRef] 19. Bustamante-Sánchez, Á.; Delgado-Terán, M.; Clemente-Suárez, V.J. Psychophysiological response of different aircrew in normobaric hypoxia training. Ergonomics 2019, 62, 277–285. [CrossRef] 20. Tornero Aguilera, J.F.; Gil-Cabrera, J.; Clemente-Suárez, V.J. Determining the psychophysiological responses of military aircrew when exposed to acute disorientation stimuli. BMJ Mil. Health 2020. [CrossRef] 21. Bustamante-Sánchez, Á.; Clemente-Suárez, V.J. Psychophysiological response in night and instrument helicopter flights. Ergonomics 2020, 63, 399–406. [CrossRef] 22. Gil-Cabrera, J.; Tornero Aguilera, J.F.; Sanchez-Tena, M.A.; Alvarez-Peregrina, C.; Valbuena-Iglesias, C.; Clemente-Suárez, V.J. Aviation-Associated Spatial Disorientation and Incidence of Visual Illusions Survey in Military Pilots. Int. J. Aerosp. Psychol. 2020, 1–8. [CrossRef] 23. Laborde, S.; Mosley, E.; Thayer, J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research - Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol. 2017, 8, 213. [CrossRef] [PubMed] 24. Da Costa de Rezende Barbosa, M.P.; da Silva, N.T.; de Azevedo, F.M.; Pastre, C.M.; Marques Vanderlei, L.C. Comparison of Polar ((R)) RS800G3 heart rate monitor with Polar ((R)) S810i and electrocardiogram to obtain the series of RR intervals and analysis of heart rate variability at rest. Clin. Physiol. Funct. Imaging 2016, 36, 112–117. [CrossRef] [PubMed] 25. Tarvainen, M.P.; Niskanen, J.-P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV–heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [CrossRef] [PubMed] 26. Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Ann. Noninvasive Electrocardiol. 1996, 1, 151–181. 27. Lipponen, J.A.; Tarvainen, M.P. A robust algorithm for heart rate variability time series artefact correction using novel beat classification. J. Med. Eng. Technol. 2019, 43, 173–181. [CrossRef] 28. Tarvainen, M.P.; Ranta-Aho, P.O.; Karjalainen, P.A. An advanced detrending method with application to HRV analysis. IEEE Trans. Biomed. Eng. 2002, 49, 172–175. [CrossRef] 29. Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [CrossRef] 30. Cox, R.H.; Martens, M.P.; Russell, W.D. Measuring anxiety in athletics: The revised competitive state anxiety inventory–2. J. Sport Exerc. Psychol. 2003, 25, 519–533. [CrossRef] 31. Andrade Fernández, E.M.; Lois Río, G.; Arce Fernández, C. Propiedades psicométricas de la versión española del Inventario de Ansiedad Competitiva CSAI-2R en deportistas. Psicothema 2007, 19, 150–155. 32. Spielberger, C.D.; Gonzalez-Reigosa, F.; Martinez-Urrutia, A.; Natalicio, L.; Natalicio, D.S. Development of the Spanish edition of the state-trait anxiety inventory. Interam. J. Psychol. 1971, 5, 145–158. 33. Borg, G. Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 1970, 2, 92–98. [PubMed] 34. Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2. [CrossRef] [PubMed] 35. Coolican, H. Research Methods and Statistics in Psychology; Psychology Press: East Sussex, UK, 2017. 36. Delgado-Moreno, R.; Robles-Pérez, J.J.; Aznar-Laín, S.; Clemente-Suárez, V.J. Effect of experience and psychophysiological modification by combat stress in soldier’s memory. J. Med. Syst. 2019, 43, 150. [CrossRef] 37. Delgado-Moreno, R.; Robles-Pérez, J.J.; Clemente-Suárez, V.J. Combat stress decreases memory of warfighters in action. J. Med. Syst. 2017, 41, 124. [CrossRef] 38. Bustamante-Sánchez, Á.; Clemente-Suárez, V.J. Psychophysiological Response to Disorientation Training in Different Aircraft Pilots. Appl. Psychophysiol. Biofeedback 2020, 45, 241–247. [CrossRef] 39. Hankins, T.C.; Wilson, G.F. A comparison of heart rate, eye activity, EEG and subjective measures of pilot mental workload during flight. Aviat. Space Environ. Med. 1998, 69, 360. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
International Journal of Environmental Research and Public Health |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.mdpi.com/1660-4601/18/2/787 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/7bff6c59-0087-4d1b-a8b4-9469713a6ddd/download https://repositorio.cuc.edu.co/bitstreams/418c9105-d9b5-4bac-ba5a-d51c13623fd5/download https://repositorio.cuc.edu.co/bitstreams/5845547e-7008-4e02-9c28-f5c2888015bc/download https://repositorio.cuc.edu.co/bitstreams/c6e362d2-ebc0-436e-acbd-0b79dbf6720d/download https://repositorio.cuc.edu.co/bitstreams/de16a68c-28d4-4ba5-9a11-3f889b74ba68/download |
bitstream.checksum.fl_str_mv |
5519d88bfe02829e1ef5147957c497f2 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 7db34d4522b25711925f97ec916a067d c8957c7ff1b524bec589e280a28d659c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760785587699712 |
spelling |
Fuentes García, Juan PedroClemente-Suárez, Vicente JavierMarazuela-Martínez, Miguel ÁngelTornero Aguilera, José FranciscoVillafaina, Santos2021-03-01T14:59:37Z2021-03-01T14:59:37Z2021-01-181661-78271660-4601https://hdl.handle.net/11323/7942https://doi.org/10.3390/ijerph18020787Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Objective: The present research aimed to analyse the autonomic, anxiety, perceived exertion, and self-confidence response during real and simulated flights. Methods: This cross-sectional study participated 12 experienced male pilots (age = 33.08 (5.21)) from the Spanish Air Force. Participants had to complete a real and a simulated flight mission randomly. The heart rate variability (HRV), anxiety, self-confidence, and rating of perceived exertion were collected before and after both manoeuvres, and HRV was also collected during both simulated and real flights. Results: When studying the acute effects of real and simulated flights, the mean heart rate, the R-to-R interval, the cognitive anxiety and the perceived exertion were significantly impacted only by real flights. Furthermore, significant differences in the mean heart rate and RR interval were found when compared to the acute effects of real and simulated flights (with higher acute effects observed in real flights). Additionally, when compared the HRV values during simulated and real flights, significant differences were observed in the RR and heart rate mean (with lower RR interval and higher heart rate mean observed during real flights). Conclusion: Real flights significantly reduced the RR interval and cognitive anxiety while increased the heart rate mean and the rating of perceived exertion, whereas simulated flights did not induce any significant change in the autonomic modulation.Fuentes García, Juan Pedro-will be generated-orcid-0000-0002-8299-1092-600Clemente-Suárez, Vicente Javier-will be generated-orcid-0000-0002-2397-2801-600Marazuela-Martínez, Miguel ÁngelTornero Aguilera, José Francisco-will be generated-orcid-0000-0002-0747-8133-600Villafaina, Santosapplication/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2International Journal of Environmental Research and Public Healthhttps://www.mdpi.com/1660-4601/18/2/787HRVArmySimulatorFlightAnxietyPerceived exertionImpact of real and simulated flights on psychophysiological response of military pilotsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Gerathewohl, S.J. Fidelity of Simulation and Transfer of Training: A Review of the Problem; US Department of Transportation, Federal Aviation Administration, Office of Aviation Medicine: Washington, DC, USA, 1969.2. Dahlstrom, N.; Nahlinder, S. Mental workload in aircraft and simulator during basic civil aviation training. Int. J. Aviat. Psychol. 2009, 19, 309–325. [CrossRef]3. Wilson, G.F. An analysis of mental workload in pilots during flight using multiple psychophysiological measures. Int. J. Aviat. Psychol. 2002, 12, 3–18. [CrossRef]4. Alaimo, A.; Esposito, A.; Orlando, C.; Simoncini, A. Aircraft Pilots Workload Analysis: Heart Rate Variability Objective Measures and NASA-Task Load Index Subjective Evaluation. Aerospace 2020, 7, 137. [CrossRef]5. Wilson, G.F. A comparison of three cardiac ambulatory recorders using flight data. Int. J. Aviat. Psychol. 2002, 12, 111–119. [CrossRef]6. Cao, X.; MacNaughton, P.; Cadet, L.R.; Cedeno-Laurent, J.G.; Flanigan, S.; Vallarino, J.; Donnelly-McLay, D.; Christiani, D.C.; Spengler, J.D.; Allen, J.G. Heart rate variability and performance of commercial airline pilots during flight simulations. Int. J. Environ. Res. Public Health 2019, 16, 237. [CrossRef] [PubMed]7. Magnusson, S. Similarities and differences in psychophysiological reactions between simulated and real air-to-ground missions. Int. J. Aviat. Psychol. 2002, 12, 49–61. [CrossRef]8. Thayer, J.F.; Ahs, F.; Fredrikson, M.; Sollers, J.J., III; Wager, T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [CrossRef]9. Shaffer, F.; McCraty, R.; Zerr, C.L. A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Front. Psychol. 2014, 5, 1040. [CrossRef]10. Fuentes-Garcia, J.P.; Pereira, T.; Castro, M.A.; Carvalho Santos, A.; Villafaina, S. Psychophysiological stress response of adolescent chess players during problem-solving tasks. Physiol. Behav. 2019, 209, 112609. [CrossRef]11. Fuentes, J.P.; Villafaina, S.; Collado-Mateo, D.; de la Vega, R.; Olivares, P.R.; Clemente-Suárez, V.J. Differences between high vs low performance chess players in heart rate variability during chess problems. Front. Psychol. 2019, 10, 409. [CrossRef]12. Beauchaine, T. Vagal tone, development, and Gray’s motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Dev. Psychopathol. 2001, 13, 183–214. [CrossRef] [PubMed]13. Berntson, G.G.; Norman, G.J.; Hawkley, L.C.; Cacioppo, J.T. Cardiac autonomic balance versus cardiac regulatory capacity. Psychophysiology 2008, 45, 643–652. [CrossRef] [PubMed]14. Diaz-Manzano, M.; Fuentes, J.P.; Fernandez-Lucas, J.; Aznar-Lain, S.; Clemente-Suárez, V.J. Higher use of techniques studied and performance in melee combat produce a higher psychophysiological stress response. Stress Health 2018, 34, 622–628. [CrossRef] [PubMed]15. Hormeño-Holgado, A.J.; Clemente-Suárez, V.J. Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots. Physiol. Behav. 2019, 208, 112559. [CrossRef] [PubMed]16. Sauvet, F.; Jouanin, J.C.; Langrume, C.; Van Beers, P.; Papelier, Y.; Dussault, C. Heart rate variability in novice pilots during and after a multi-leg cross-country flight. Aviat. Space Environ. Med. 2009, 80, 862–869. [CrossRef]17. Tornero-Aguilera, J.F.; Robles-Pérez, J.J.; Clemente-Suárez, V.J. Use of Psychophysiological Portable Devices to Analyse Stress Response in Different Experienced Soldiers. J. Med. Syst. 2018, 42, 75. [CrossRef]18. Bustamante-Sánchez, A.; Tornero-Aguilera, J.F.; Fernández-Elías, V.E.; Hormeño-Holgado, A.J.; Dalamitros, A.A.; ClementeSuárez, V.J. Effect of Stress on Autonomic and Cardiovascular Systems in Military Population: A Systematic Review. Cardiol. Res. Pract. 2020, 2020. [CrossRef]19. Bustamante-Sánchez, Á.; Delgado-Terán, M.; Clemente-Suárez, V.J. Psychophysiological response of different aircrew in normobaric hypoxia training. Ergonomics 2019, 62, 277–285. [CrossRef]20. Tornero Aguilera, J.F.; Gil-Cabrera, J.; Clemente-Suárez, V.J. Determining the psychophysiological responses of military aircrew when exposed to acute disorientation stimuli. BMJ Mil. Health 2020. [CrossRef]21. Bustamante-Sánchez, Á.; Clemente-Suárez, V.J. Psychophysiological response in night and instrument helicopter flights. Ergonomics 2020, 63, 399–406. [CrossRef]22. Gil-Cabrera, J.; Tornero Aguilera, J.F.; Sanchez-Tena, M.A.; Alvarez-Peregrina, C.; Valbuena-Iglesias, C.; Clemente-Suárez, V.J. Aviation-Associated Spatial Disorientation and Incidence of Visual Illusions Survey in Military Pilots. Int. J. Aerosp. Psychol. 2020, 1–8. [CrossRef]23. Laborde, S.; Mosley, E.; Thayer, J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research - Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol. 2017, 8, 213. [CrossRef] [PubMed]24. Da Costa de Rezende Barbosa, M.P.; da Silva, N.T.; de Azevedo, F.M.; Pastre, C.M.; Marques Vanderlei, L.C. Comparison of Polar ((R)) RS800G3 heart rate monitor with Polar ((R)) S810i and electrocardiogram to obtain the series of RR intervals and analysis of heart rate variability at rest. Clin. Physiol. Funct. Imaging 2016, 36, 112–117. [CrossRef] [PubMed]25. Tarvainen, M.P.; Niskanen, J.-P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV–heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [CrossRef] [PubMed]26. Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Ann. Noninvasive Electrocardiol. 1996, 1, 151–181.27. Lipponen, J.A.; Tarvainen, M.P. A robust algorithm for heart rate variability time series artefact correction using novel beat classification. J. Med. Eng. Technol. 2019, 43, 173–181. [CrossRef]28. Tarvainen, M.P.; Ranta-Aho, P.O.; Karjalainen, P.A. An advanced detrending method with application to HRV analysis. IEEE Trans. Biomed. Eng. 2002, 49, 172–175. [CrossRef]29. Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [CrossRef]30. Cox, R.H.; Martens, M.P.; Russell, W.D. Measuring anxiety in athletics: The revised competitive state anxiety inventory–2. J. Sport Exerc. Psychol. 2003, 25, 519–533. [CrossRef]31. Andrade Fernández, E.M.; Lois Río, G.; Arce Fernández, C. Propiedades psicométricas de la versión española del Inventario de Ansiedad Competitiva CSAI-2R en deportistas. Psicothema 2007, 19, 150–155.32. Spielberger, C.D.; Gonzalez-Reigosa, F.; Martinez-Urrutia, A.; Natalicio, L.; Natalicio, D.S. Development of the Spanish edition of the state-trait anxiety inventory. Interam. J. Psychol. 1971, 5, 145–158.33. Borg, G. Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 1970, 2, 92–98. [PubMed]34. Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2. [CrossRef] [PubMed]35. Coolican, H. Research Methods and Statistics in Psychology; Psychology Press: East Sussex, UK, 2017.36. Delgado-Moreno, R.; Robles-Pérez, J.J.; Aznar-Laín, S.; Clemente-Suárez, V.J. Effect of experience and psychophysiological modification by combat stress in soldier’s memory. J. Med. Syst. 2019, 43, 150. [CrossRef]37. Delgado-Moreno, R.; Robles-Pérez, J.J.; Clemente-Suárez, V.J. Combat stress decreases memory of warfighters in action. J. Med. Syst. 2017, 41, 124. [CrossRef]38. Bustamante-Sánchez, Á.; Clemente-Suárez, V.J. Psychophysiological Response to Disorientation Training in Different Aircraft Pilots. Appl. Psychophysiol. Biofeedback 2020, 45, 241–247. [CrossRef]39. Hankins, T.C.; Wilson, G.F. A comparison of heart rate, eye activity, EEG and subjective measures of pilot mental workload during flight. Aviat. Space Environ. Med. 1998, 69, 360.PublicationORIGINALImpact of Real and Simulated Flights on Psychophysiological.pdfImpact of Real and Simulated Flights on Psychophysiological.pdfapplication/pdf337728https://repositorio.cuc.edu.co/bitstreams/7bff6c59-0087-4d1b-a8b4-9469713a6ddd/download5519d88bfe02829e1ef5147957c497f2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/418c9105-d9b5-4bac-ba5a-d51c13623fd5/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/5845547e-7008-4e02-9c28-f5c2888015bc/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILImpact of Real and Simulated Flights on Psychophysiological.pdf.jpgImpact of Real and Simulated Flights on Psychophysiological.pdf.jpgimage/jpeg73958https://repositorio.cuc.edu.co/bitstreams/c6e362d2-ebc0-436e-acbd-0b79dbf6720d/download7db34d4522b25711925f97ec916a067dMD54TEXTImpact of Real and Simulated Flights on Psychophysiological.pdf.txtImpact of Real and Simulated Flights on Psychophysiological.pdf.txttext/plain34549https://repositorio.cuc.edu.co/bitstreams/de16a68c-28d4-4ba5-9a11-3f889b74ba68/downloadc8957c7ff1b524bec589e280a28d659cMD5511323/7942oai:repositorio.cuc.edu.co:11323/79422024-09-17 11:08:46.19http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |