Neural network configuration for pollen analysis
Palynology is a botanical discipline devoted to the study of pollen and spores [1], focusing mainly on the analysis of the external morphology that presents structural patterns different from those of the variations in the exine, which is the external wall of the pollen grains. The study and microsc...
- Autores:
-
amelec, viloria
Mercado, Darwin
Pineda, Omar
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7261
- Acceso en línea:
- https://hdl.handle.net/11323/7261
https://repositorio.cuc.edu.co/
- Palabra clave:
- Genetic algorithm
Neural network configuration
Pollen analysis
- Rights
- closedAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_ed1ef6141ce674c25ffd1bc5a5e9a8f8 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7261 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Neural network configuration for pollen analysis |
title |
Neural network configuration for pollen analysis |
spellingShingle |
Neural network configuration for pollen analysis Genetic algorithm Neural network configuration Pollen analysis |
title_short |
Neural network configuration for pollen analysis |
title_full |
Neural network configuration for pollen analysis |
title_fullStr |
Neural network configuration for pollen analysis |
title_full_unstemmed |
Neural network configuration for pollen analysis |
title_sort |
Neural network configuration for pollen analysis |
dc.creator.fl_str_mv |
amelec, viloria Mercado, Darwin Pineda, Omar |
dc.contributor.author.spa.fl_str_mv |
amelec, viloria Mercado, Darwin Pineda, Omar |
dc.subject.spa.fl_str_mv |
Genetic algorithm Neural network configuration Pollen analysis |
topic |
Genetic algorithm Neural network configuration Pollen analysis |
description |
Palynology is a botanical discipline devoted to the study of pollen and spores [1], focusing mainly on the analysis of the external morphology that presents structural patterns different from those of the variations in the exine, which is the external wall of the pollen grains. The study and microscopic analysis of its symmetry, wall opening, contour, shape, size, etc., have a taxonomic value and allows distinguishing different taxa at different levels: family, genera, species. The study of pollen grains is a difficult task, in its different phases, from small microscopic samples. The analysis of these is an important source of information for many scientific and industrial applications, making palynology a valuable tool for various areas of knowledge [1]. In palynology, neural networks have been successfully applied for the classification of pollen grains. For this purpose, RPROP was selected as a neural network training algorithm for the classification of a previously reported dataset. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-11-11T16:50:38Z |
dc.date.available.none.fl_str_mv |
2020-11-11T16:50:38Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.embargoEnd.none.fl_str_mv |
2021-05-07 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2194-5357 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7261 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2194-5357 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7261 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Rodriguez, I.F., Mégret, R., Acuna, E., Agosto-Rivera, J.L., Giray, T.: Recognition of pollen-bearing bees from video using convolutional neural network. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 314–322. IEEE, March 2018 Carpenter, G.A.: Neural-network models of learning and memory: leading questions and an emerging framework. Trends Cogn. Sci. 5(3), 114–118 (2001) Al-Saqer, S.M., Hassan, G.M.: Artificial neural networks based red palm weevil (Rynchophorus Ferrugineous, Olivier) recognition system. Am. J. Agric. Biol. Sci. 6, 356–364 (2011) Burki, C., Šikoparija, B., Thibaudon, M., Oliver, G., Magyar, D., Udvardy, O., Pauling, A.: Artificial neural networks can be used for Ambrosia pollen emission parameterization in COSMO-ART. Atmos. Environ. 218, 116969 (2019) Li, P., Treloar, W.J., Flenley, J.R., Empson, L.: vf: vf towards automation of palynology 2: the use of texture measures and neural network analysis for automated identification of optical images of pollen grains. J. Quat. Sci.: Publ. Quat. Res. Assoc. 19(8), 755–762 (2004) Li, P., Flenley, J.R.: Pollen texture identification using neural networks. Grana 38(1), 59–64 (1999) Dewan, P., Ganti, R., Srivatsa, M., Stein, S.: NN-SAR: a neural network approach for spatial autoregression. In 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 783–789. IEEE, March 2019 Friedman, M., Kandel, A.: Introduction to Pattern Recognition Statistical, Structural, Neural and Fuzzy Logic Approaches. World Scientific Publishing Company Inc., 2 March 1999 Zewdie, G.K., Lary, D.J., Levetin, E., Garuma, G.F.: Applying deep neural networks and ensemble machine learning methods to forecast airborne ambrosia pollen. Int. J. Environ. Res. Public Health 16(11), 1992 (2019) Zhao, X., Yue, S.: Analysing and forecasting the security in supply-demand management of Chinese forestry enterprises by linear weighted method and artificial neural network. Enterp. Inf. Syst. 1–18 (2020) Riedmiller, M., Braun, H.: Direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 586–591 (1993) Daood, A., Ribeiro, E., Bush, M.: Sequential recognition of pollen grain Z-stacks by combining CNN and RNN. In: The Thirty-First International Flairs Conference, May 2018 Raj, J.S., Ananthi, J.V.: Recurrent neural networks and nonlinear prediction in support vector machines. J. Soft Comput. Paradig. (JSCP) 1(01), 33–40 (2019) Varela, N., Silva, J., Gonzalez, F.M., Palencia, P., Palma, H.H., Pineda, O.B.: Method for the recovery of images in databases of rice grains from visual content. Procedia Comput. Sci. 170, 983–988 (2020) Khorissi, N.E., Mellit, A., Guessoum, A., Mesaouer, A.: GA-based feed-forward neural network for image classification: application for the grains of pollen. J. Appl. Comput. Sci. 17(2), 83–96 (2009) Viloria, A., Acuña, G.C., Franco, D.J.A., Hernández-Palma, H., Fuentes, J.P., Rambal, E.P.: Integration of data mining techniques to PostgreSQL database manager system. Procedia Comput. Sci. 155, 575–580 (2019) Pentoś, K., Łuczycka, D., Wróbel, R.: The identification of the relationship between chemical and electrical parameters of honeys using artificial neural networks. Comput. Biol. Med. 53, 244–249 (2014) Al-Mahasneh, M.A., Rababah, T.M., Ma’Abreh, A.S.: Evaluating the combined effect of temperature, shear rate and water content on wild-flower honey viscosity using adaptive neural fuzzy inference system and artificial neural networks. J. Food Process Eng 36(4), 510–520 (2013) Viloria, A., Lezama, O.B.P.: Improvements for determining the number of clusters in k-Means for innovation databases in SMEs. In: ANT/EDI40, pp. 1201–1206 (2019) Rashidi, M.M., Galanis, N., Nazari, F., Parsa, A.B., Shamekhi, L.: Parametric analysis and optimization of regenerative Clausius and organic Rankine cycles with two feedwater heaters using artificial bees colony and artificial neural network. Energy 36(9), 5728–5740 (2011) Pentoś, K., Łuczycka, D., Kapłon, T.: The identification of relationships between selected honey parameters by extracting the contribution of independent variables in a neural network model. Eur. Food Res. Technol. 241(6), 793–801 (2015) Peyron, O., Vernal, A.D.: Application of artificial neural networks (ANN) to high-latitude dinocyst assemblages for the reconstruction of past sea-surface conditions in Arctic and sub-Arctic seas. J. Quat. Sci.: Publ. Quat. Res. Assoc. 16(7), 699–709 (2001) Mokin, V.B., Kozachko, O.M., Rodinkova, V.V., Palamarchuk, O.O., Vuzh, T.Y.: The decision support system for the classification of allergenic pollen types based on fuzzy expert data of pollen features on the microscope images. In: 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), pp. 850–855. IEEE, May 2017 Todd, G.: Fuzzy neural network interface: development and application: a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Information Engineering at Massey University, Palmerston North, New Zealand, (Doctoral dissertation, Massey University (2003) Cho, H., Berger, B., Peng, J.: Generalizable and scalable visualization of single-cell data using neural networks. Cell Syst. 7(2), 185–191 (2018) Lehky, S.R., Sejnowski, T.J.: Neural network model of visual cortex for determining surface curvature from images of shaded surfaces. Proc. R. Soc. Lond. B Biol. Sci. 240(1298), 251–278 (1990) Dell’Anna, R., Lazzeri, P., Frisanco, M., Monti, F., Campeggi, F.M., Gottardini, E., Bersani, M.: Pollen discrimination and classification by Fourier transform infrared (FT-IR) microspectroscopy and machine learning. Anal. Bioanal. Chem. 394(5), 1443–1452 (2009) Chiroma, H., Khan, A., Abubakar, A.I., Saadi, Y., Hamza, M.F., Shuib, L., Herawan, T.: A new approach for forecasting OPEC petroleum consumption based on neural network train by using flower pollination algorithm. Appl. Soft Comput. 48, 50–58 (2016) Tomassetti, B., Lombardi, A., Cerasani, E., Di Sabatino, A., Pace, L., Ammazzalorso, D., Verdecchia, M.: Mapping of Alternaria and Pleospora concentrations in Central Italy using meteorological forecast and neural network estimator. Aerobiologia 29(1), 55–70 (2013) Guyon, V.N., Astwood, J.D., Garner, E.C., Dunker, A.K., Taylor, L.P.: Isolation and characterization of cDNAs expressed in the early stages of flavonol-induced pollen germination in petunia. Plant Physiol. 123(2), 699–710 (2000) Ramos-Pollán, R., Guevara-López, M.Á., Oliveira, E.: Introducing ROC curves as error measure functions: a new approach to train ANN-based biomedical data classifiers. In: Iberoamerican Congress on Pattern Recognition, pp. 517–524. Springer, Heidelberg, November 2010 Raghu, P.P., Poongodi, R., Yegnanarayana, B.: Unsupervised texture classification using vector quantization and deterministic relaxation neural network. IEEE Trans. Image Process. 6(10), 1376–1387 (1997) |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Advances in Intelligent Systems and Computing |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089228244&doi=10.1007%2f978-3-030-51859-2_32&partnerID=40&md5=e2878cfc05f98250976ff8e30037d82d |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/4da1003e-35fe-42a3-8203-dd5d4f4f5b5d/download https://repositorio.cuc.edu.co/bitstreams/705edf3e-822e-4332-be98-e738927ef33c/download https://repositorio.cuc.edu.co/bitstreams/a29b5672-bb59-4a3c-9d2a-9e7a24b6be78/download https://repositorio.cuc.edu.co/bitstreams/a362f18a-0da5-47ff-bb3c-4cbaa95b36a5/download https://repositorio.cuc.edu.co/bitstreams/2f724f76-e17a-4223-a03e-ea1f57310166/download |
bitstream.checksum.fl_str_mv |
0225c598723e3715de9d954feaf77bf1 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad dfa270f9a9ca44cc46e145e23b907135 60adf88bd01f99691cda016c02c46267 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760688158212096 |
spelling |
amelec, viloriaMercado, DarwinPineda, Omar2020-11-11T16:50:38Z2020-11-11T16:50:38Z20202021-05-072194-5357https://hdl.handle.net/11323/7261Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Palynology is a botanical discipline devoted to the study of pollen and spores [1], focusing mainly on the analysis of the external morphology that presents structural patterns different from those of the variations in the exine, which is the external wall of the pollen grains. The study and microscopic analysis of its symmetry, wall opening, contour, shape, size, etc., have a taxonomic value and allows distinguishing different taxa at different levels: family, genera, species. The study of pollen grains is a difficult task, in its different phases, from small microscopic samples. The analysis of these is an important source of information for many scientific and industrial applications, making palynology a valuable tool for various areas of knowledge [1]. In palynology, neural networks have been successfully applied for the classification of pollen grains. For this purpose, RPROP was selected as a neural network training algorithm for the classification of a previously reported dataset.amelec, viloria-will be generated-orcid-0000-0003-2673-6350-600Mercado, Darwin-will be generated-orcid-0000-0001-8241-8715-600Pineda, Omar-will be generated-orcid-0000-0002-8239-3906-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAdvances in Intelligent Systems and Computinghttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089228244&doi=10.1007%2f978-3-030-51859-2_32&partnerID=40&md5=e2878cfc05f98250976ff8e30037d82dGenetic algorithmNeural network configurationPollen analysisNeural network configuration for pollen analysisPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionRodriguez, I.F., Mégret, R., Acuna, E., Agosto-Rivera, J.L., Giray, T.: Recognition of pollen-bearing bees from video using convolutional neural network. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 314–322. IEEE, March 2018Carpenter, G.A.: Neural-network models of learning and memory: leading questions and an emerging framework. Trends Cogn. Sci. 5(3), 114–118 (2001)Al-Saqer, S.M., Hassan, G.M.: Artificial neural networks based red palm weevil (Rynchophorus Ferrugineous, Olivier) recognition system. Am. J. Agric. Biol. Sci. 6, 356–364 (2011)Burki, C., Šikoparija, B., Thibaudon, M., Oliver, G., Magyar, D., Udvardy, O., Pauling, A.: Artificial neural networks can be used for Ambrosia pollen emission parameterization in COSMO-ART. Atmos. Environ. 218, 116969 (2019)Li, P., Treloar, W.J., Flenley, J.R., Empson, L.: vf: vf towards automation of palynology 2: the use of texture measures and neural network analysis for automated identification of optical images of pollen grains. J. Quat. Sci.: Publ. Quat. Res. Assoc. 19(8), 755–762 (2004)Li, P., Flenley, J.R.: Pollen texture identification using neural networks. Grana 38(1), 59–64 (1999)Dewan, P., Ganti, R., Srivatsa, M., Stein, S.: NN-SAR: a neural network approach for spatial autoregression. In 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 783–789. IEEE, March 2019Friedman, M., Kandel, A.: Introduction to Pattern Recognition Statistical, Structural, Neural and Fuzzy Logic Approaches. World Scientific Publishing Company Inc., 2 March 1999Zewdie, G.K., Lary, D.J., Levetin, E., Garuma, G.F.: Applying deep neural networks and ensemble machine learning methods to forecast airborne ambrosia pollen. Int. J. Environ. Res. Public Health 16(11), 1992 (2019)Zhao, X., Yue, S.: Analysing and forecasting the security in supply-demand management of Chinese forestry enterprises by linear weighted method and artificial neural network. Enterp. Inf. Syst. 1–18 (2020)Riedmiller, M., Braun, H.: Direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 586–591 (1993)Daood, A., Ribeiro, E., Bush, M.: Sequential recognition of pollen grain Z-stacks by combining CNN and RNN. In: The Thirty-First International Flairs Conference, May 2018Raj, J.S., Ananthi, J.V.: Recurrent neural networks and nonlinear prediction in support vector machines. J. Soft Comput. Paradig. (JSCP) 1(01), 33–40 (2019)Varela, N., Silva, J., Gonzalez, F.M., Palencia, P., Palma, H.H., Pineda, O.B.: Method for the recovery of images in databases of rice grains from visual content. Procedia Comput. Sci. 170, 983–988 (2020)Khorissi, N.E., Mellit, A., Guessoum, A., Mesaouer, A.: GA-based feed-forward neural network for image classification: application for the grains of pollen. J. Appl. Comput. Sci. 17(2), 83–96 (2009)Viloria, A., Acuña, G.C., Franco, D.J.A., Hernández-Palma, H., Fuentes, J.P., Rambal, E.P.: Integration of data mining techniques to PostgreSQL database manager system. Procedia Comput. Sci. 155, 575–580 (2019)Pentoś, K., Łuczycka, D., Wróbel, R.: The identification of the relationship between chemical and electrical parameters of honeys using artificial neural networks. Comput. Biol. Med. 53, 244–249 (2014)Al-Mahasneh, M.A., Rababah, T.M., Ma’Abreh, A.S.: Evaluating the combined effect of temperature, shear rate and water content on wild-flower honey viscosity using adaptive neural fuzzy inference system and artificial neural networks. J. Food Process Eng 36(4), 510–520 (2013)Viloria, A., Lezama, O.B.P.: Improvements for determining the number of clusters in k-Means for innovation databases in SMEs. In: ANT/EDI40, pp. 1201–1206 (2019)Rashidi, M.M., Galanis, N., Nazari, F., Parsa, A.B., Shamekhi, L.: Parametric analysis and optimization of regenerative Clausius and organic Rankine cycles with two feedwater heaters using artificial bees colony and artificial neural network. Energy 36(9), 5728–5740 (2011)Pentoś, K., Łuczycka, D., Kapłon, T.: The identification of relationships between selected honey parameters by extracting the contribution of independent variables in a neural network model. Eur. Food Res. Technol. 241(6), 793–801 (2015)Peyron, O., Vernal, A.D.: Application of artificial neural networks (ANN) to high-latitude dinocyst assemblages for the reconstruction of past sea-surface conditions in Arctic and sub-Arctic seas. J. Quat. Sci.: Publ. Quat. Res. Assoc. 16(7), 699–709 (2001)Mokin, V.B., Kozachko, O.M., Rodinkova, V.V., Palamarchuk, O.O., Vuzh, T.Y.: The decision support system for the classification of allergenic pollen types based on fuzzy expert data of pollen features on the microscope images. In: 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), pp. 850–855. IEEE, May 2017Todd, G.: Fuzzy neural network interface: development and application: a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Information Engineering at Massey University, Palmerston North, New Zealand, (Doctoral dissertation, Massey University (2003)Cho, H., Berger, B., Peng, J.: Generalizable and scalable visualization of single-cell data using neural networks. Cell Syst. 7(2), 185–191 (2018)Lehky, S.R., Sejnowski, T.J.: Neural network model of visual cortex for determining surface curvature from images of shaded surfaces. Proc. R. Soc. Lond. B Biol. Sci. 240(1298), 251–278 (1990)Dell’Anna, R., Lazzeri, P., Frisanco, M., Monti, F., Campeggi, F.M., Gottardini, E., Bersani, M.: Pollen discrimination and classification by Fourier transform infrared (FT-IR) microspectroscopy and machine learning. Anal. Bioanal. Chem. 394(5), 1443–1452 (2009)Chiroma, H., Khan, A., Abubakar, A.I., Saadi, Y., Hamza, M.F., Shuib, L., Herawan, T.: A new approach for forecasting OPEC petroleum consumption based on neural network train by using flower pollination algorithm. Appl. Soft Comput. 48, 50–58 (2016)Tomassetti, B., Lombardi, A., Cerasani, E., Di Sabatino, A., Pace, L., Ammazzalorso, D., Verdecchia, M.: Mapping of Alternaria and Pleospora concentrations in Central Italy using meteorological forecast and neural network estimator. Aerobiologia 29(1), 55–70 (2013)Guyon, V.N., Astwood, J.D., Garner, E.C., Dunker, A.K., Taylor, L.P.: Isolation and characterization of cDNAs expressed in the early stages of flavonol-induced pollen germination in petunia. Plant Physiol. 123(2), 699–710 (2000)Ramos-Pollán, R., Guevara-López, M.Á., Oliveira, E.: Introducing ROC curves as error measure functions: a new approach to train ANN-based biomedical data classifiers. In: Iberoamerican Congress on Pattern Recognition, pp. 517–524. Springer, Heidelberg, November 2010Raghu, P.P., Poongodi, R., Yegnanarayana, B.: Unsupervised texture classification using vector quantization and deterministic relaxation neural network. IEEE Trans. Image Process. 6(10), 1376–1387 (1997)PublicationORIGINALNEURAL NETWORK CONFIGURATION FOR POLLEN ANALYSIS.pdfNEURAL NETWORK CONFIGURATION FOR POLLEN ANALYSIS.pdfapplication/pdf6090https://repositorio.cuc.edu.co/bitstreams/4da1003e-35fe-42a3-8203-dd5d4f4f5b5d/download0225c598723e3715de9d954feaf77bf1MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/705edf3e-822e-4332-be98-e738927ef33c/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/a29b5672-bb59-4a3c-9d2a-9e7a24b6be78/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILNEURAL NETWORK CONFIGURATION FOR POLLEN ANALYSIS.pdf.jpgNEURAL NETWORK CONFIGURATION FOR POLLEN ANALYSIS.pdf.jpgimage/jpeg42502https://repositorio.cuc.edu.co/bitstreams/a362f18a-0da5-47ff-bb3c-4cbaa95b36a5/downloaddfa270f9a9ca44cc46e145e23b907135MD54TEXTNEURAL NETWORK CONFIGURATION FOR POLLEN ANALYSIS.pdf.txtNEURAL NETWORK CONFIGURATION FOR POLLEN ANALYSIS.pdf.txttext/plain1224https://repositorio.cuc.edu.co/bitstreams/2f724f76-e17a-4223-a03e-ea1f57310166/download60adf88bd01f99691cda016c02c46267MD5511323/7261oai:repositorio.cuc.edu.co:11323/72612024-09-16 16:50:12.715http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |