Neural network configuration for pollen analysis

Palynology is a botanical discipline devoted to the study of pollen and spores [1], focusing mainly on the analysis of the external morphology that presents structural patterns different from those of the variations in the exine, which is the external wall of the pollen grains. The study and microsc...

Full description

Autores:
amelec, viloria
Mercado, Darwin
Pineda, Omar
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7261
Acceso en línea:
https://hdl.handle.net/11323/7261
https://repositorio.cuc.edu.co/
Palabra clave:
Genetic algorithm
Neural network configuration
Pollen analysis
Rights
closedAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_ed1ef6141ce674c25ffd1bc5a5e9a8f8
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7261
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Neural network configuration for pollen analysis
title Neural network configuration for pollen analysis
spellingShingle Neural network configuration for pollen analysis
Genetic algorithm
Neural network configuration
Pollen analysis
title_short Neural network configuration for pollen analysis
title_full Neural network configuration for pollen analysis
title_fullStr Neural network configuration for pollen analysis
title_full_unstemmed Neural network configuration for pollen analysis
title_sort Neural network configuration for pollen analysis
dc.creator.fl_str_mv amelec, viloria
Mercado, Darwin
Pineda, Omar
dc.contributor.author.spa.fl_str_mv amelec, viloria
Mercado, Darwin
Pineda, Omar
dc.subject.spa.fl_str_mv Genetic algorithm
Neural network configuration
Pollen analysis
topic Genetic algorithm
Neural network configuration
Pollen analysis
description Palynology is a botanical discipline devoted to the study of pollen and spores [1], focusing mainly on the analysis of the external morphology that presents structural patterns different from those of the variations in the exine, which is the external wall of the pollen grains. The study and microscopic analysis of its symmetry, wall opening, contour, shape, size, etc., have a taxonomic value and allows distinguishing different taxa at different levels: family, genera, species. The study of pollen grains is a difficult task, in its different phases, from small microscopic samples. The analysis of these is an important source of information for many scientific and industrial applications, making palynology a valuable tool for various areas of knowledge [1]. In palynology, neural networks have been successfully applied for the classification of pollen grains. For this purpose, RPROP was selected as a neural network training algorithm for the classification of a previously reported dataset.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-11T16:50:38Z
dc.date.available.none.fl_str_mv 2020-11-11T16:50:38Z
dc.date.issued.none.fl_str_mv 2020
dc.date.embargoEnd.none.fl_str_mv 2021-05-07
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2194-5357
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7261
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2194-5357
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7261
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Rodriguez, I.F., Mégret, R., Acuna, E., Agosto-Rivera, J.L., Giray, T.: Recognition of pollen-bearing bees from video using convolutional neural network. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 314–322. IEEE, March 2018
Carpenter, G.A.: Neural-network models of learning and memory: leading questions and an emerging framework. Trends Cogn. Sci. 5(3), 114–118 (2001)
Al-Saqer, S.M., Hassan, G.M.: Artificial neural networks based red palm weevil (Rynchophorus Ferrugineous, Olivier) recognition system. Am. J. Agric. Biol. Sci. 6, 356–364 (2011)
Burki, C., Šikoparija, B., Thibaudon, M., Oliver, G., Magyar, D., Udvardy, O., Pauling, A.: Artificial neural networks can be used for Ambrosia pollen emission parameterization in COSMO-ART. Atmos. Environ. 218, 116969 (2019)
Li, P., Treloar, W.J., Flenley, J.R., Empson, L.: vf: vf towards automation of palynology 2: the use of texture measures and neural network analysis for automated identification of optical images of pollen grains. J. Quat. Sci.: Publ. Quat. Res. Assoc. 19(8), 755–762 (2004)
Li, P., Flenley, J.R.: Pollen texture identification using neural networks. Grana 38(1), 59–64 (1999)
Dewan, P., Ganti, R., Srivatsa, M., Stein, S.: NN-SAR: a neural network approach for spatial autoregression. In 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 783–789. IEEE, March 2019
Friedman, M., Kandel, A.: Introduction to Pattern Recognition Statistical, Structural, Neural and Fuzzy Logic Approaches. World Scientific Publishing Company Inc., 2 March 1999
Zewdie, G.K., Lary, D.J., Levetin, E., Garuma, G.F.: Applying deep neural networks and ensemble machine learning methods to forecast airborne ambrosia pollen. Int. J. Environ. Res. Public Health 16(11), 1992 (2019)
Zhao, X., Yue, S.: Analysing and forecasting the security in supply-demand management of Chinese forestry enterprises by linear weighted method and artificial neural network. Enterp. Inf. Syst. 1–18 (2020)
Riedmiller, M., Braun, H.: Direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 586–591 (1993)
Daood, A., Ribeiro, E., Bush, M.: Sequential recognition of pollen grain Z-stacks by combining CNN and RNN. In: The Thirty-First International Flairs Conference, May 2018
Raj, J.S., Ananthi, J.V.: Recurrent neural networks and nonlinear prediction in support vector machines. J. Soft Comput. Paradig. (JSCP) 1(01), 33–40 (2019)
Varela, N., Silva, J., Gonzalez, F.M., Palencia, P., Palma, H.H., Pineda, O.B.: Method for the recovery of images in databases of rice grains from visual content. Procedia Comput. Sci. 170, 983–988 (2020)
Khorissi, N.E., Mellit, A., Guessoum, A., Mesaouer, A.: GA-based feed-forward neural network for image classification: application for the grains of pollen. J. Appl. Comput. Sci. 17(2), 83–96 (2009)
Viloria, A., Acuña, G.C., Franco, D.J.A., Hernández-Palma, H., Fuentes, J.P., Rambal, E.P.: Integration of data mining techniques to PostgreSQL database manager system. Procedia Comput. Sci. 155, 575–580 (2019)
Pentoś, K., Łuczycka, D., Wróbel, R.: The identification of the relationship between chemical and electrical parameters of honeys using artificial neural networks. Comput. Biol. Med. 53, 244–249 (2014)
Al-Mahasneh, M.A., Rababah, T.M., Ma’Abreh, A.S.: Evaluating the combined effect of temperature, shear rate and water content on wild-flower honey viscosity using adaptive neural fuzzy inference system and artificial neural networks. J. Food Process Eng 36(4), 510–520 (2013)
Viloria, A., Lezama, O.B.P.: Improvements for determining the number of clusters in k-Means for innovation databases in SMEs. In: ANT/EDI40, pp. 1201–1206 (2019)
Rashidi, M.M., Galanis, N., Nazari, F., Parsa, A.B., Shamekhi, L.: Parametric analysis and optimization of regenerative Clausius and organic Rankine cycles with two feedwater heaters using artificial bees colony and artificial neural network. Energy 36(9), 5728–5740 (2011)
Pentoś, K., Łuczycka, D., Kapłon, T.: The identification of relationships between selected honey parameters by extracting the contribution of independent variables in a neural network model. Eur. Food Res. Technol. 241(6), 793–801 (2015)
Peyron, O., Vernal, A.D.: Application of artificial neural networks (ANN) to high-latitude dinocyst assemblages for the reconstruction of past sea-surface conditions in Arctic and sub-Arctic seas. J. Quat. Sci.: Publ. Quat. Res. Assoc. 16(7), 699–709 (2001)
Mokin, V.B., Kozachko, O.M., Rodinkova, V.V., Palamarchuk, O.O., Vuzh, T.Y.: The decision support system for the classification of allergenic pollen types based on fuzzy expert data of pollen features on the microscope images. In: 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), pp. 850–855. IEEE, May 2017
Todd, G.: Fuzzy neural network interface: development and application: a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Information Engineering at Massey University, Palmerston North, New Zealand, (Doctoral dissertation, Massey University (2003)
Cho, H., Berger, B., Peng, J.: Generalizable and scalable visualization of single-cell data using neural networks. Cell Syst. 7(2), 185–191 (2018)
Lehky, S.R., Sejnowski, T.J.: Neural network model of visual cortex for determining surface curvature from images of shaded surfaces. Proc. R. Soc. Lond. B Biol. Sci. 240(1298), 251–278 (1990)
Dell’Anna, R., Lazzeri, P., Frisanco, M., Monti, F., Campeggi, F.M., Gottardini, E., Bersani, M.: Pollen discrimination and classification by Fourier transform infrared (FT-IR) microspectroscopy and machine learning. Anal. Bioanal. Chem. 394(5), 1443–1452 (2009)
Chiroma, H., Khan, A., Abubakar, A.I., Saadi, Y., Hamza, M.F., Shuib, L., Herawan, T.: A new approach for forecasting OPEC petroleum consumption based on neural network train by using flower pollination algorithm. Appl. Soft Comput. 48, 50–58 (2016)
Tomassetti, B., Lombardi, A., Cerasani, E., Di Sabatino, A., Pace, L., Ammazzalorso, D., Verdecchia, M.: Mapping of Alternaria and Pleospora concentrations in Central Italy using meteorological forecast and neural network estimator. Aerobiologia 29(1), 55–70 (2013)
Guyon, V.N., Astwood, J.D., Garner, E.C., Dunker, A.K., Taylor, L.P.: Isolation and characterization of cDNAs expressed in the early stages of flavonol-induced pollen germination in petunia. Plant Physiol. 123(2), 699–710 (2000)
Ramos-Pollán, R., Guevara-López, M.Á., Oliveira, E.: Introducing ROC curves as error measure functions: a new approach to train ANN-based biomedical data classifiers. In: Iberoamerican Congress on Pattern Recognition, pp. 517–524. Springer, Heidelberg, November 2010
Raghu, P.P., Poongodi, R., Yegnanarayana, B.: Unsupervised texture classification using vector quantization and deterministic relaxation neural network. IEEE Trans. Image Process. 6(10), 1376–1387 (1997)
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Advances in Intelligent Systems and Computing
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089228244&doi=10.1007%2f978-3-030-51859-2_32&partnerID=40&md5=e2878cfc05f98250976ff8e30037d82d
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/4da1003e-35fe-42a3-8203-dd5d4f4f5b5d/download
https://repositorio.cuc.edu.co/bitstreams/705edf3e-822e-4332-be98-e738927ef33c/download
https://repositorio.cuc.edu.co/bitstreams/a29b5672-bb59-4a3c-9d2a-9e7a24b6be78/download
https://repositorio.cuc.edu.co/bitstreams/a362f18a-0da5-47ff-bb3c-4cbaa95b36a5/download
https://repositorio.cuc.edu.co/bitstreams/2f724f76-e17a-4223-a03e-ea1f57310166/download
bitstream.checksum.fl_str_mv 0225c598723e3715de9d954feaf77bf1
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
dfa270f9a9ca44cc46e145e23b907135
60adf88bd01f99691cda016c02c46267
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760688158212096
spelling amelec, viloriaMercado, DarwinPineda, Omar2020-11-11T16:50:38Z2020-11-11T16:50:38Z20202021-05-072194-5357https://hdl.handle.net/11323/7261Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Palynology is a botanical discipline devoted to the study of pollen and spores [1], focusing mainly on the analysis of the external morphology that presents structural patterns different from those of the variations in the exine, which is the external wall of the pollen grains. The study and microscopic analysis of its symmetry, wall opening, contour, shape, size, etc., have a taxonomic value and allows distinguishing different taxa at different levels: family, genera, species. The study of pollen grains is a difficult task, in its different phases, from small microscopic samples. The analysis of these is an important source of information for many scientific and industrial applications, making palynology a valuable tool for various areas of knowledge [1]. In palynology, neural networks have been successfully applied for the classification of pollen grains. For this purpose, RPROP was selected as a neural network training algorithm for the classification of a previously reported dataset.amelec, viloria-will be generated-orcid-0000-0003-2673-6350-600Mercado, Darwin-will be generated-orcid-0000-0001-8241-8715-600Pineda, Omar-will be generated-orcid-0000-0002-8239-3906-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAdvances in Intelligent Systems and Computinghttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089228244&doi=10.1007%2f978-3-030-51859-2_32&partnerID=40&md5=e2878cfc05f98250976ff8e30037d82dGenetic algorithmNeural network configurationPollen analysisNeural network configuration for pollen analysisPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionRodriguez, I.F., Mégret, R., Acuna, E., Agosto-Rivera, J.L., Giray, T.: Recognition of pollen-bearing bees from video using convolutional neural network. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 314–322. IEEE, March 2018Carpenter, G.A.: Neural-network models of learning and memory: leading questions and an emerging framework. Trends Cogn. Sci. 5(3), 114–118 (2001)Al-Saqer, S.M., Hassan, G.M.: Artificial neural networks based red palm weevil (Rynchophorus Ferrugineous, Olivier) recognition system. Am. J. Agric. Biol. Sci. 6, 356–364 (2011)Burki, C., Šikoparija, B., Thibaudon, M., Oliver, G., Magyar, D., Udvardy, O., Pauling, A.: Artificial neural networks can be used for Ambrosia pollen emission parameterization in COSMO-ART. Atmos. Environ. 218, 116969 (2019)Li, P., Treloar, W.J., Flenley, J.R., Empson, L.: vf: vf towards automation of palynology 2: the use of texture measures and neural network analysis for automated identification of optical images of pollen grains. J. Quat. Sci.: Publ. Quat. Res. Assoc. 19(8), 755–762 (2004)Li, P., Flenley, J.R.: Pollen texture identification using neural networks. Grana 38(1), 59–64 (1999)Dewan, P., Ganti, R., Srivatsa, M., Stein, S.: NN-SAR: a neural network approach for spatial autoregression. In 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 783–789. IEEE, March 2019Friedman, M., Kandel, A.: Introduction to Pattern Recognition Statistical, Structural, Neural and Fuzzy Logic Approaches. World Scientific Publishing Company Inc., 2 March 1999Zewdie, G.K., Lary, D.J., Levetin, E., Garuma, G.F.: Applying deep neural networks and ensemble machine learning methods to forecast airborne ambrosia pollen. Int. J. Environ. Res. Public Health 16(11), 1992 (2019)Zhao, X., Yue, S.: Analysing and forecasting the security in supply-demand management of Chinese forestry enterprises by linear weighted method and artificial neural network. Enterp. Inf. Syst. 1–18 (2020)Riedmiller, M., Braun, H.: Direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 586–591 (1993)Daood, A., Ribeiro, E., Bush, M.: Sequential recognition of pollen grain Z-stacks by combining CNN and RNN. In: The Thirty-First International Flairs Conference, May 2018Raj, J.S., Ananthi, J.V.: Recurrent neural networks and nonlinear prediction in support vector machines. J. Soft Comput. Paradig. (JSCP) 1(01), 33–40 (2019)Varela, N., Silva, J., Gonzalez, F.M., Palencia, P., Palma, H.H., Pineda, O.B.: Method for the recovery of images in databases of rice grains from visual content. Procedia Comput. Sci. 170, 983–988 (2020)Khorissi, N.E., Mellit, A., Guessoum, A., Mesaouer, A.: GA-based feed-forward neural network for image classification: application for the grains of pollen. J. Appl. Comput. Sci. 17(2), 83–96 (2009)Viloria, A., Acuña, G.C., Franco, D.J.A., Hernández-Palma, H., Fuentes, J.P., Rambal, E.P.: Integration of data mining techniques to PostgreSQL database manager system. Procedia Comput. Sci. 155, 575–580 (2019)Pentoś, K., Łuczycka, D., Wróbel, R.: The identification of the relationship between chemical and electrical parameters of honeys using artificial neural networks. Comput. Biol. Med. 53, 244–249 (2014)Al-Mahasneh, M.A., Rababah, T.M., Ma’Abreh, A.S.: Evaluating the combined effect of temperature, shear rate and water content on wild-flower honey viscosity using adaptive neural fuzzy inference system and artificial neural networks. J. Food Process Eng 36(4), 510–520 (2013)Viloria, A., Lezama, O.B.P.: Improvements for determining the number of clusters in k-Means for innovation databases in SMEs. In: ANT/EDI40, pp. 1201–1206 (2019)Rashidi, M.M., Galanis, N., Nazari, F., Parsa, A.B., Shamekhi, L.: Parametric analysis and optimization of regenerative Clausius and organic Rankine cycles with two feedwater heaters using artificial bees colony and artificial neural network. Energy 36(9), 5728–5740 (2011)Pentoś, K., Łuczycka, D., Kapłon, T.: The identification of relationships between selected honey parameters by extracting the contribution of independent variables in a neural network model. Eur. Food Res. Technol. 241(6), 793–801 (2015)Peyron, O., Vernal, A.D.: Application of artificial neural networks (ANN) to high-latitude dinocyst assemblages for the reconstruction of past sea-surface conditions in Arctic and sub-Arctic seas. J. Quat. Sci.: Publ. Quat. Res. Assoc. 16(7), 699–709 (2001)Mokin, V.B., Kozachko, O.M., Rodinkova, V.V., Palamarchuk, O.O., Vuzh, T.Y.: The decision support system for the classification of allergenic pollen types based on fuzzy expert data of pollen features on the microscope images. In: 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), pp. 850–855. IEEE, May 2017Todd, G.: Fuzzy neural network interface: development and application: a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Information Engineering at Massey University, Palmerston North, New Zealand, (Doctoral dissertation, Massey University (2003)Cho, H., Berger, B., Peng, J.: Generalizable and scalable visualization of single-cell data using neural networks. Cell Syst. 7(2), 185–191 (2018)Lehky, S.R., Sejnowski, T.J.: Neural network model of visual cortex for determining surface curvature from images of shaded surfaces. Proc. R. Soc. Lond. B Biol. Sci. 240(1298), 251–278 (1990)Dell’Anna, R., Lazzeri, P., Frisanco, M., Monti, F., Campeggi, F.M., Gottardini, E., Bersani, M.: Pollen discrimination and classification by Fourier transform infrared (FT-IR) microspectroscopy and machine learning. Anal. Bioanal. Chem. 394(5), 1443–1452 (2009)Chiroma, H., Khan, A., Abubakar, A.I., Saadi, Y., Hamza, M.F., Shuib, L., Herawan, T.: A new approach for forecasting OPEC petroleum consumption based on neural network train by using flower pollination algorithm. Appl. Soft Comput. 48, 50–58 (2016)Tomassetti, B., Lombardi, A., Cerasani, E., Di Sabatino, A., Pace, L., Ammazzalorso, D., Verdecchia, M.: Mapping of Alternaria and Pleospora concentrations in Central Italy using meteorological forecast and neural network estimator. Aerobiologia 29(1), 55–70 (2013)Guyon, V.N., Astwood, J.D., Garner, E.C., Dunker, A.K., Taylor, L.P.: Isolation and characterization of cDNAs expressed in the early stages of flavonol-induced pollen germination in petunia. Plant Physiol. 123(2), 699–710 (2000)Ramos-Pollán, R., Guevara-López, M.Á., Oliveira, E.: Introducing ROC curves as error measure functions: a new approach to train ANN-based biomedical data classifiers. In: Iberoamerican Congress on Pattern Recognition, pp. 517–524. Springer, Heidelberg, November 2010Raghu, P.P., Poongodi, R., Yegnanarayana, B.: Unsupervised texture classification using vector quantization and deterministic relaxation neural network. IEEE Trans. Image Process. 6(10), 1376–1387 (1997)PublicationORIGINALNEURAL NETWORK CONFIGURATION FOR POLLEN ANALYSIS.pdfNEURAL NETWORK CONFIGURATION FOR POLLEN ANALYSIS.pdfapplication/pdf6090https://repositorio.cuc.edu.co/bitstreams/4da1003e-35fe-42a3-8203-dd5d4f4f5b5d/download0225c598723e3715de9d954feaf77bf1MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/705edf3e-822e-4332-be98-e738927ef33c/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/a29b5672-bb59-4a3c-9d2a-9e7a24b6be78/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILNEURAL NETWORK CONFIGURATION FOR POLLEN ANALYSIS.pdf.jpgNEURAL NETWORK CONFIGURATION FOR POLLEN ANALYSIS.pdf.jpgimage/jpeg42502https://repositorio.cuc.edu.co/bitstreams/a362f18a-0da5-47ff-bb3c-4cbaa95b36a5/downloaddfa270f9a9ca44cc46e145e23b907135MD54TEXTNEURAL NETWORK CONFIGURATION FOR POLLEN ANALYSIS.pdf.txtNEURAL NETWORK CONFIGURATION FOR POLLEN ANALYSIS.pdf.txttext/plain1224https://repositorio.cuc.edu.co/bitstreams/2f724f76-e17a-4223-a03e-ea1f57310166/download60adf88bd01f99691cda016c02c46267MD5511323/7261oai:repositorio.cuc.edu.co:11323/72612024-09-16 16:50:12.715http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==