Neural network configuration for pollen analysis
Palynology is a botanical discipline devoted to the study of pollen and spores [1], focusing mainly on the analysis of the external morphology that presents structural patterns different from those of the variations in the exine, which is the external wall of the pollen grains. The study and microsc...
- Autores:
-
amelec, viloria
Mercado, Darwin
Pineda, Omar
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7261
- Acceso en línea:
- https://hdl.handle.net/11323/7261
https://repositorio.cuc.edu.co/
- Palabra clave:
- Genetic algorithm
Neural network configuration
Pollen analysis
- Rights
- closedAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
Summary: | Palynology is a botanical discipline devoted to the study of pollen and spores [1], focusing mainly on the analysis of the external morphology that presents structural patterns different from those of the variations in the exine, which is the external wall of the pollen grains. The study and microscopic analysis of its symmetry, wall opening, contour, shape, size, etc., have a taxonomic value and allows distinguishing different taxa at different levels: family, genera, species. The study of pollen grains is a difficult task, in its different phases, from small microscopic samples. The analysis of these is an important source of information for many scientific and industrial applications, making palynology a valuable tool for various areas of knowledge [1]. In palynology, neural networks have been successfully applied for the classification of pollen grains. For this purpose, RPROP was selected as a neural network training algorithm for the classification of a previously reported dataset. |
---|