Data set on wind speed, wind direction and wind probability distributions in Puerto Bolivar - Colombia

This paper presents wind speed and direction data measured with a weather station located in Puerto Bolivar, department of La Guajira, situated in the extreme north of Colombia, whose geographic coordinates are 12 110 N 71 550 W. A wind speed and direction sensor, a barometric pressure sensor, and a...

Full description

Autores:
Valencia Ochoa, Guillermo
Núñez Alvarez, José
Vanegas Chamorro, Marley
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7468
Acceso en línea:
https://hdl.handle.net/11323/7468
https://doi.org/10.1016/j.dib.2019.104753
https://repositorio.cuc.edu.co/
Palabra clave:
Wind speed
Wind probability distribution
Wind direction
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_ece378bb77f20ec2ff413c7d8327ec2c
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7468
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Data set on wind speed, wind direction and wind probability distributions in Puerto Bolivar - Colombia
title Data set on wind speed, wind direction and wind probability distributions in Puerto Bolivar - Colombia
spellingShingle Data set on wind speed, wind direction and wind probability distributions in Puerto Bolivar - Colombia
Wind speed
Wind probability distribution
Wind direction
title_short Data set on wind speed, wind direction and wind probability distributions in Puerto Bolivar - Colombia
title_full Data set on wind speed, wind direction and wind probability distributions in Puerto Bolivar - Colombia
title_fullStr Data set on wind speed, wind direction and wind probability distributions in Puerto Bolivar - Colombia
title_full_unstemmed Data set on wind speed, wind direction and wind probability distributions in Puerto Bolivar - Colombia
title_sort Data set on wind speed, wind direction and wind probability distributions in Puerto Bolivar - Colombia
dc.creator.fl_str_mv Valencia Ochoa, Guillermo
Núñez Alvarez, José
Vanegas Chamorro, Marley
dc.contributor.author.spa.fl_str_mv Valencia Ochoa, Guillermo
Núñez Alvarez, José
Vanegas Chamorro, Marley
dc.subject.spa.fl_str_mv Wind speed
Wind probability distribution
Wind direction
topic Wind speed
Wind probability distribution
Wind direction
description This paper presents wind speed and direction data measured with a weather station located in Puerto Bolivar, department of La Guajira, situated in the extreme north of Colombia, whose geographic coordinates are 12 110 N 71 550 W. A wind speed and direction sensor, a barometric pressure sensor, and a temperature sensor were used to obtain the presented data. These data were taken at the height of 10 m, which is the highest point of the weather station. The data taken by the meteorological station correspond to a period of 20 years (1993e2013), with hourly frequency. For the missing data, a mathematical model to estimate the Julian averages was developed, allowing to calculate the frequency histograms and four types of probability distributions for these data. Also, the representative wind roses were generated, taking into account the averages in each of the 12 months of the year.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-11-24T16:30:00Z
dc.date.available.none.fl_str_mv 2020-11-24T16:30:00Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7468
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.dib.2019.104753
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7468
https://doi.org/10.1016/j.dib.2019.104753
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] M.P. Pinto, J.K. Moreno, Y.A. Munoz, A. Ospino, Technical and economic evaluation of a small-scale wind power system ~ located in berlin, Colombia, Tecciencia 13 (24) (2018) 63e72.
[2] A.-L.J. Luis, An approximation to the probability normal distribution and its inverse, Ing. Invest. Tecnol. 16 (4) (Oct. 2015) 605e611.
[3] M. Ordaz, A simple approximation to the Gaussian distribution, Struct. Saf. 9 (4) (Jun. 1991) 315e318.
[4] K. Krishnamoorthy, Handbook of the Normal Distribution Distributions with Applications, University of Louisiana Lafayette, 2010.
[5] P.-A. Amaya-Martínez, A.-J. Saavedra-Montes, E.-I. Arango-Zuluaga, A statistical analysis of wind speed distribution models in the Aburr a Valley, Colombia, CT&F - Ciencia, Tecnol. y Futur. 5 (5) (2018) 121e136.
[6] J.A. Carta, P. Ramírez, Analysis of two-component mixture Weibull statistics for estimation of wind speed distributions, Renew. Energy 32 (3) (Mar. 2007) 518e531.
[7] H. Bidaoui, I. El Abbassi, A. El Bouardi, A. Darcherif, Wind speed data analysis using Weibull and Rayleigh distribution functions, case study: five cities northern Morocco, Procedia Manuf. 32 (Jan. 2019) 786e793.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Data in Brief
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2352340919311084?via%3Dihub
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/675c8ddd-a781-4df4-81bb-0b15881cb786/download
https://repositorio.cuc.edu.co/bitstreams/52ef3f0d-60fe-4921-8d5c-01f70879fec6/download
https://repositorio.cuc.edu.co/bitstreams/3a098b04-59eb-4b64-8cdc-077343986196/download
https://repositorio.cuc.edu.co/bitstreams/dd2a66aa-ac81-4e80-be56-4b4f9130af85/download
https://repositorio.cuc.edu.co/bitstreams/0fef67ad-b2a9-462a-ac29-452b603af627/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
40417d59a656375bfda38f793b398c5e
e30e9215131d99561d40d6b0abbe9bad
26854f5018934fda1e5f34c7d867e817
14d5937576c9722f0f071c2b9566d6a3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760676924817408
spelling Valencia Ochoa, GuillermoNúñez Alvarez, JoséVanegas Chamorro, Marley2020-11-24T16:30:00Z2020-11-24T16:30:00Z2019https://hdl.handle.net/11323/7468https://doi.org/10.1016/j.dib.2019.104753Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper presents wind speed and direction data measured with a weather station located in Puerto Bolivar, department of La Guajira, situated in the extreme north of Colombia, whose geographic coordinates are 12 110 N 71 550 W. A wind speed and direction sensor, a barometric pressure sensor, and a temperature sensor were used to obtain the presented data. These data were taken at the height of 10 m, which is the highest point of the weather station. The data taken by the meteorological station correspond to a period of 20 years (1993e2013), with hourly frequency. For the missing data, a mathematical model to estimate the Julian averages was developed, allowing to calculate the frequency histograms and four types of probability distributions for these data. Also, the representative wind roses were generated, taking into account the averages in each of the 12 months of the year.Valencia Ochoa, GuillermoNúñez Alvarez, JoséVanegas Chamorro, Marleyapplication/pdfspaCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Data in Briefhttps://www.sciencedirect.com/science/article/pii/S2352340919311084?via%3DihubWind speedWind probability distributionWind directionData set on wind speed, wind direction and wind probability distributions in Puerto Bolivar - ColombiaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] M.P. Pinto, J.K. Moreno, Y.A. Munoz, A. Ospino, Technical and economic evaluation of a small-scale wind power system ~ located in berlin, Colombia, Tecciencia 13 (24) (2018) 63e72.[2] A.-L.J. Luis, An approximation to the probability normal distribution and its inverse, Ing. Invest. Tecnol. 16 (4) (Oct. 2015) 605e611.[3] M. Ordaz, A simple approximation to the Gaussian distribution, Struct. Saf. 9 (4) (Jun. 1991) 315e318.[4] K. Krishnamoorthy, Handbook of the Normal Distribution Distributions with Applications, University of Louisiana Lafayette, 2010.[5] P.-A. Amaya-Martínez, A.-J. Saavedra-Montes, E.-I. Arango-Zuluaga, A statistical analysis of wind speed distribution models in the Aburr a Valley, Colombia, CT&F - Ciencia, Tecnol. y Futur. 5 (5) (2018) 121e136.[6] J.A. Carta, P. Ramírez, Analysis of two-component mixture Weibull statistics for estimation of wind speed distributions, Renew. Energy 32 (3) (Mar. 2007) 518e531.[7] H. Bidaoui, I. El Abbassi, A. El Bouardi, A. Darcherif, Wind speed data analysis using Weibull and Rayleigh distribution functions, case study: five cities northern Morocco, Procedia Manuf. 32 (Jan. 2019) 786e793.PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/675c8ddd-a781-4df4-81bb-0b15881cb786/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALData set on wind speed, wind direction and wind.pdfData set on wind speed, wind direction and wind.pdfapplication/pdf2826090https://repositorio.cuc.edu.co/bitstreams/52ef3f0d-60fe-4921-8d5c-01f70879fec6/download40417d59a656375bfda38f793b398c5eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/3a098b04-59eb-4b64-8cdc-077343986196/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILData set on wind speed, wind direction and wind.pdf.jpgData set on wind speed, wind direction and wind.pdf.jpgimage/jpeg39057https://repositorio.cuc.edu.co/bitstreams/dd2a66aa-ac81-4e80-be56-4b4f9130af85/download26854f5018934fda1e5f34c7d867e817MD54TEXTData set on wind speed, wind direction and wind.pdf.txtData set on wind speed, wind direction and wind.pdf.txttext/plain13770https://repositorio.cuc.edu.co/bitstreams/0fef67ad-b2a9-462a-ac29-452b603af627/download14d5937576c9722f0f071c2b9566d6a3MD5511323/7468oai:repositorio.cuc.edu.co:11323/74682024-09-16 16:44:15.041http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==