Potencial de generación eléctrica en celdas de combustible microbianas con plantas como fuente de energía renovable

The global demand for energy has led to the search for alternative energies, with low production costs and that minimize environmental impacts. Among the existing technologies, the fuel cell (CC) stands out, which converts chemical energy into electricity. A variant of CC is the microbial fuel cell...

Full description

Autores:
Ramírez Ballestas, Emerson
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9985
Acceso en línea:
https://hdl.handle.net/11323/9985
https://repositorio.cuc.edu.co/
Palabra clave:
Celdas de combustible microbiana
Organismos bioelectroquímicos
Transferencia de electrones
Rizodeposición
Electrodos
Materia orgánica
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
id RCUC2_ec54329df3ff564212567f16b61a62bf
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9985
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Potencial de generación eléctrica en celdas de combustible microbianas con plantas como fuente de energía renovable
title Potencial de generación eléctrica en celdas de combustible microbianas con plantas como fuente de energía renovable
spellingShingle Potencial de generación eléctrica en celdas de combustible microbianas con plantas como fuente de energía renovable
Celdas de combustible microbiana
Organismos bioelectroquímicos
Transferencia de electrones
Rizodeposición
Electrodos
Materia orgánica
title_short Potencial de generación eléctrica en celdas de combustible microbianas con plantas como fuente de energía renovable
title_full Potencial de generación eléctrica en celdas de combustible microbianas con plantas como fuente de energía renovable
title_fullStr Potencial de generación eléctrica en celdas de combustible microbianas con plantas como fuente de energía renovable
title_full_unstemmed Potencial de generación eléctrica en celdas de combustible microbianas con plantas como fuente de energía renovable
title_sort Potencial de generación eléctrica en celdas de combustible microbianas con plantas como fuente de energía renovable
dc.creator.fl_str_mv Ramírez Ballestas, Emerson
dc.contributor.advisor.none.fl_str_mv Gindri Ramos, Claudete
Moreno Ríos, Andrea Liliana
dc.contributor.author.none.fl_str_mv Ramírez Ballestas, Emerson
dc.contributor.jury.none.fl_str_mv Torregroza Espinosa, Ana
Nuñez Alvarez, Jose
Neckel, Alcindo
dc.subject.proposal.spa.fl_str_mv Celdas de combustible microbiana
Organismos bioelectroquímicos
Transferencia de electrones
Rizodeposición
Electrodos
Materia orgánica
topic Celdas de combustible microbiana
Organismos bioelectroquímicos
Transferencia de electrones
Rizodeposición
Electrodos
Materia orgánica
description The global demand for energy has led to the search for alternative energies, with low production costs and that minimize environmental impacts. Among the existing technologies, the fuel cell (CC) stands out, which converts chemical energy into electricity. A variant of CC is the microbial fuel cell (MCC), where energy is produced by metabolic reactions carried out by microorganisms. The objective of this work was to evaluate the power generation potential of the CCMs using the plants Torenia fournieri, Kalachoe blossfeldiana, Pentas lanceolata, Nephrolepis exaltata, Begonia semperflorens, Asplenium nidus as an alternative source of renewable energy in the municipality of San Jacinto, Bolívar, Colombia. For this, the efficiency of the CCMs was built and analyzed using soil, sand, organic fertilizer and wood ash in a ratio of 3:2:1:1/2, as a means of supplying bacteria. The CCMs were analyzed, as well as the possible variations when using native plants (CCMP). The efficiency of the CCMPs was evaluated by monitoring the potential difference between the cell electrodes. The CCMP with the highest average was with Begonia Semperflorens, 0.607 V, and the lowest with Asplenium nidus, 0.069 V. The highest voltage peaks occurred in Torenia fournieri, with 1.782 V, and Asplenium nidus, with 1.587 V. This study revealed that the CCMPs are a promising technology, which could promote the country's energy development. It is a sustainable, low-cost, viable strategy that contributes to compliance with SDG-7 and is replicable in Colombia and the world
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-04-17T19:53:33Z
dc.date.available.none.fl_str_mv 2023-04-17T19:53:33Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/9985
dc.identifier.instname.spa.fl_str_mv Corporacion Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/9985
https://repositorio.cuc.edu.co/
identifier_str_mv Corporacion Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Arca Electrónica. (20). Retrieved November 18, 2022, from http://arcaelectronica.blogspot.com/2017/
Abdel-Gelel, I. Y., Abdel-Mongy, M., Hamza, H. A., Abbas, R. N., & Abdelgelel, I. Y. (2021). Bioelectricity Production from Different Types of Bacteria Using MFC Under Optimizing Factors and New Bacterial Strain Bioelectricity Production Isolated from Milk Sample in Egypt (Vol. 25). http://annalsofrscb.ro
Adeleye, S., & Okorondu, S. (2015). Bioelectricity from students’ hostel waste water using microbial fuel cell. International Journal of Biological and Chemical Sciences, 9(2), 1038. https://doi.org/10.4314/ijbcs.v9i2.39
Ahn, Y., & Logan, B. E. (2010). Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresource Technology, 101(2), 469–475. https://doi.org/10.1016/j.biortech.2009.07.039
Akbas, B., Kocaman, A. S., Nock, D., & Trotter, P. A. (2022). Rural electrification: An overview of optimization methods. Renewable and Sustainable Energy Reviews, 156(October 2021). https://doi.org/10.1016/j.rser.2021.111935
Al Bpapp, R. (n.d.). Medida: Uso de microorganismos eficientes
Alaraj, M., & Park, J. do. (2019a). Net power positive maximum power point tracking energy harvesting system for microbial fuel cell. Journal of Power Sources, 418, 225–232. https://doi.org/10.1016/j.jpowsour.2019.02.042
Alaraj, M., & Park, J. do. (2019b). Net power positive maximum power point tracking energy harvesting system for microbial fuel cell. Journal of Power Sources, 418, 225–232. https://doi.org/10.1016/J.JPOWSOUR.2019.02.042
Alberto Barreto Nieto, C., & Campo Robledo, J. (2012). Relación a largo plazo entre consumo de energía y PIB en América Latina: Una evaluación empírica con datos panel
Arbianti, R., Utami, T. S., Hermansyah, H., Novitasari, D., Kristin, E., & Trisnawati, I. (2013). Performance Optimization of Microbial Fuel Cell (MFC) Using Lactobacillus bulgaricus. MAKARA Journal of Technology Series, 17(1). https://doi.org/10.7454/mst.v17i1.1925
Arduino UNO | Arduino.cl - Compra tu Arduino en Línea. (n.d.). Retrieved November 18, 2022, from https://arduino.cl/arduino-uno/
Azri, Y. M., Tou, I., Sadi, M., & Benhabyles, L. (2018). Bioelectricity generation from three ornamental plants: Chlorophytum comosum, Chasmanthe floribunda and Papyrus diffusus. International Journal of Green Energy, 15(4), 254–263. https://doi.org/10.1080/15435075.2018.1432487
Babu Arulmani, S. R., Jayaraj, V., & Jebakumar, S. R. D. (2016). Long-term electricity production from soil electrogenic bacteria and high-content screening of biofilm formation on the electrodes. Journal of Soils and Sediments, 16(3), 831–841. https://doi.org/10.1007/s11368-015-1287-z
Behera, M., Jana, P. S., & Ghangrekar, M. M. (2010). Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresource Technology, 101(4), 1183–1189. https://doi.org/10.1016/j.biortech.2009.07.089
Bilgili, M., Ozbek, A., Sahin, B., & Kahraman, A. (2015). An overview of renewable electric power capacity and progress in new technologies in the world. Renewable and Sustainable Energy Reviews, 49, 323–334. https://doi.org/10.1016/j.rser.2015.04.148
Benítez-Pina, I. F. (2022a). Diseño de un sistema de supervisión y control del centro de datos del Grupo Empresarial CUBANÍQUEL. Latin American Developments in Energy Engineering, 3(1), 1–24. https://doi.org/10.17981/ladee.03.01.2022.1.
Benítez-Pina, I. F. (2022b). Sistema de uso doméstico para monitorear el consumo energético combinando el uso de las plataformas Arduino y Android. Latin American Developments in Energy Engineering, 3(1), 25–30. https://doi.org/10.17981/ladee.03.01.2022.2.
Borah, D., & More, S. (2020). Construction of Double Chambered Microbial Fuel Cell (Mfc) Using Household Materials and Bacillus Megaterium Isolate From Tea Garden Soil. Journal of Microbiology, Biotechnology and Food Sciences, 2020(vol. 10), 84–86.
Bose P. (2020). Desarrollos recientes en pilas de combustible microbianas (MFC). https://www.azocleantech.com/article.aspx?ArticleID=1085
Caizán-Juanarena, L., Borsje, C., Sleutels, T., Yntema, D., Santoro, C., Ieropoulos, I., Soavi, F., & ter Heijne, A. (2020). Combination of bioelectrochemical systems and electrochemical capacitors: Principles, analysis and opportunities. In Biotechnology Advances (Vol. 39). Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2019.107456
Carrasco J. Jorge, Antúnez B. Alejandro, & Lemus S. Gamalier. (2010). EVITE PROBLEMAS: CONOZCA CÓMO ES EL SUELO ANTES DE ESTABLECER UN HUERTO FRUTAL. 28–30.
Chabert, N., Amin Ali, O., & Achouak, W. (2015). All ecosystems potentially host electrogenic bacteria. Bioelectrochemistry, 106, 88–96. https://doi.org/10.1016/J.BIOELECHEM.2015.07.004
Chen, X. F., Wang, X. S., Liao, K. T., Zeng, L. Z., Xing, L. D., Zhou, X. W., Zheng, X. W., & Li, W. S. (2015). Improved power output by incorporating polyvinyl alcohol into the anode of a microbial fuel cell. Journal of Materials Chemistry A, 3(38), 19402–19409. https://doi.org/10.1039/c5ta03318g
Claudia, V., Ramirez, J., & Angelino, D. (2022). The potential role of peace, justice, and strong institutions in Colombia’s areas of limited statehood for energy diversification towards governance in energy democracy. Energy Policy, 168(June), 113135. https://doi.org/10.1016/j.enpol.2022.113135
De La Rosa, E. O., Castillo, J. V., Campos, M. C., Pool, G. R. B., Nuñez, G. B., Atoche, A. C., & Aguilar, J. O. (2019). Plant microbial fuel cells-based energy harvester system for self-powered IoT applications. Sensors (Switzerland), 19(6). https://doi.org/10.3390/S19061378
Deng, H., Chen, Z., & Zhao, F. (2012). Energy from Plants and Microorganisms: Progress in Plant–Microbial Fuel Cells. ChemSusChem, 5(6), 1006–1011. https://doi.org/10.1002/CSSC.201100257
Dong, Y., Feng, Y., Qu, Y., Du, Y., Zhou, X., & Liu, J. (2015). A combined system of microbial fuel cell and intermittently aerated biological filter for energy self-sufficient wastewater treatment. Scientific Reports, 5(1), 18070. https://doi.org/10.1038/srep18070
Energy Agency, I. (2020). World Energy Outlook 2020. www.iea.org/weo
Esteve-Núñez, A. (2008). Bacterias productoras de electricidad. Del subsuelo a la pila de combustible. Temas de Actualidad, 45, 34–39. www.genomatica.com
Fan, L. P., & Feng, X. (2020). Q-Learning based maximum power point tracking control for microbial fuel cell. International Journal of Electrochemical Science, 15, 9917–9932. https://doi.org/10.20964/2020.10.63
Fernie, A. R., Carrari, F., & Sweetlove, L. J. (2004). Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport. In Current Opinion in Plant Biology (Vol. 7, Issue 3, pp. 254–261). Curr Opin Plant Biol. https://doi.org/10.1016/j.pbi.2004.03.007
Fertilab - Laboratorio de Análisis Agrícolas - Suelo, Agua, Planta. (n.d.). Retrieved January 9, 2023, from https://www.fertilab.com.mx
Fragoso Altamirano, A. Y. (2020). México y su transición energética: un cambio en pro de la energía Renovable. Latin American Developments in Energy Engineering, 1(1), 26–42. https://doi.org/10.17981/ladee.01.01.2020.3.
Ghangrekar, M. M., & Shinde, V. B. (2006). Microbial Fuel Cell : a New Approach of Wastewater Treatment With Power Generation. Fuel Cells, 283440(03222), 20–21.
Goretti, M., Alejandra, D., Lluvia, A., & Soledad, M. (2017). Generación de Electricidad a Base de Fotosíntesis. Ciencias Naturales y Agropecuarias, 4(12).
Gulamhussein, M., & Randall, D. G. (2020). Design and operation of plant microbial fuel cells using municipal sludge. Journal of Water Process Engineering, 38, 101653. https://doi.org/10.1016/j.jwpe.2020.101653
Gunawardena, A., Fernando, S., & To, F. (2008). Performance of a Yeast-mediated Biological Fuel Cell. Int. J. Mol. Sci, 9, 1893–1907. https://doi.org/10.3390/ijms9101893
Hernández, M., Aguado, L., & Duque, H. (2018). Índice De Pobreza Energética Multidimensional Por Regiones Para Colombia, Ipem_Rc 2013. Economía Coyuntural, 3(3), 35–71.
Higa, T., & Parr, J. F. (1994). BENEFICIAL AND EFFECTIVE MICROORGANISMS for a SUSTAINABLE AGRICULTURE AND ENVIRONMENT.
Hubenova, Y., & Mitov, M. (2015). Extracellular electron transfer in yeast-based biofuel cells: A review. Bioelectrochemistry, 106(Pt A), 177–185. https://doi.org/10.1016/j.bioelechem.2015.04.001
Ieropoulos, I. A., Greenman, J., Melhuish, C., & Hart, J. (2005). Comparative study of three types of microbial fuel cell. Enzyme and Microbial Technology, 37(2), 238–245. https://doi.org/10.1016/j.enzmictec.2005.03.006
IES Río Caribe. (2016). La Fotosíntesis. La Fotosíntesis, 6. http://mc142.uib.es:8080/rid=1Q4QJD886-1Y1YB11-3W7/T_205_Fotos__ntesis.pdf
Jain, R., Tiwari, D. C., Sharma, S., & Mishra, P. (2015). Efficiency and stability of carbon cloth electrodes for electricity production from different types of waste water using duel chamber microbial fuel cell. Journal of Scientific and Industrial Research, 74(5), 308–314
Jardine, O., Gough, J., Chothia, C., & Teichmann, S. A. (n.d.). Comparison of the Small Molecule Metabolic Enzymes of Escherichia coli and Saccharomyces cerevisiae. https://doi.org/10.1101/gr.228002
Jiang, H., Halverson, L. J., & Dong, L. (2022). A miniaturized bioelectricity generation device using plant root exudates to feed electrogenic bacteria. Sensors and Actuators A: Physical, 342(May), 113649. https://doi.org/10.1016/j.sna.2022.113649
Jiang, Y., Han, K., Chen, S., Wang, Y., & Zhang, Z. (2016). Characterization and expression analysis of Lc-Sox4 in large yellow croaker Larimichthys crocea. Comparative Biochemistry and Physiology Part - B: Biochemistry and Molecular Biology, 196–197, 1–10. https://doi.org/10.1016/j.cbpb.2016.01.009
José, J., Rivera, R., & Arteta, A. L. (n.d.). AVANCES Y DESAFÍOS DE COLOMBIA PARA EL ALCANCE DEL ODS-7 DE LA AGENDA 2030 DE LAS NACIONES UNIDAS Asunción Lucía Rodríguez Vital Lainet María Nieto Ramos. https://doi.org/10.5281/zenodo.4758625
Jyoti Sarma, P., & Mohanty, K. (2022). A novel three-chamber modular PMFC with bentonite/flyash based clay membrane and oxygen reducing biocathode for long term sustainable bioelectricity generation. Bioelectrochemistry, 144, 107996. https://doi.org/10.1016/j.bioelechem.2021.107996
Kalaichelvan, P. T. (2012). Electricity generation from bacteria Staphylococcus aureus and Enterobacteriaceae bacterium using microbial fuel cell-an alternative source of energy and its use application.
Kim, G. T., Hyun, M. S., Chang, I. S., Kim, H. J., Park, H. S., Kim, B. H., Kim, S. D., Wimpenny, J. W. T., & Weightman, A. J. (2005). Dissimilatory Fe (III) reduction by an electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. Journal of Applied Microbiology, 99(4), 978–987. https://doi.org/10.1111/j.1365-2672.2004.02514.x
Kim, M., Li, S., Kong, D. S., Song, Y. E., Park, S. Y., Kim, H. il, Jae, J., Chung, I., & Kim, J. R. (2023a). Polydopamine/polypyrrole-modified graphite felt enhances biocompatibility for electroactive bacteria and power density of microbial fuel cell. Chemosphere, 313. https://doi.org/10.1016/j.chemosphere.2022.137388
Kim, M., Li, S., Kong, D. S., Song, Y. E., Park, S. Y., Kim, H. il, Jae, J., Chung, I., & Kim, J. R. (2023b). Polydopamine/polypyrrole-modified graphite felt enhances biocompatibility for electroactive bacteria and power density of microbial fuel cell. Chemosphere, 313. https://doi.org/10.1016/j.chemosphere.2022.137388
Koffi, N. J., & Okabe, S. (2020). High voltage generation from wastewater by microbial fuel cells equipped with a newly designed low voltage booster multiplier (LVBM). Scientific Reports, 10(1), 18985. https://doi.org/10.1038/s41598-020-75916-7
Koffi, N. J., & Okabe, S. (2022). High electrical energy harvesting performance of an integrated microbial fuel cell and low voltage booster-rectifier system treating domestic wastewater. Bioresource Technology, 359. https://doi.org/10.1016/j.biortech.2022.127455
Kuleshovа, T. E., Ivanova, A. G., Galushko, A. S., Kruchinina, I. Y., Shilova, O. A., Udalova, O. R., Zhestkov, A. S., Panova, G. G., & Gall, N. R. (2022). Influence of the electrode systems parameters on the electricity generation and the possibility of hydrogen production in a plant-microbial fuel cell. International Journal of Hydrogen Energy, xxxx, 1–13. https://doi.org/10.1016/j.ijhydene.2022.06.001
Kumar, S. S., Kumar, V., Gnaneswar Gude, V., Malyan, S. K., & Pugazhendhi, A. (2020). Alkalinity and salinity favor bioelectricity generation potential of Clostridium, Tetrathiobacter and Desulfovibrio consortium in Microbial Fuel Cells (MFC) treating sulfate-laden wastewater. Bioresource Technology, 306, 123110. https://doi.org/10.1016/J.BIORTECH.2020.123110
Li, M., Zhou, M., Tian, X., Tan, C., Mcdaniel, C. T., Hassett, D. J., & Gu, T. (2018). Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. https://doi.org/10.1016/j.biotechadv.2018.04.010
Li, Y., Li, X., Sun, Y., Zhao, X., & Li, Y. (2018). Cathodic microbial community adaptation to the removal of chlorinated herbicide in soil microbial fuel cells. Environmental Science and Pollution Research, 25(17), 16900–16912. https://doi.org/10.1007/S11356-018-1871-Z
Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. In Environmental Science and Technology (Vol. 40, Issue 17, pp. 5181–5192). American Chemical Society. https://doi.org/10.1021/es0605016
Logan, B. E., Murano, C., Scott, K., Gray, N. D., & Head, I. M. (2005). Electricity generation from cysteine in a microbial fuel cell. Water Research, 39(5), 942–952. https://doi.org/10.1016/j.watres.2004.11.019
López-Hincapié, J. D., Picos-Benítez, A. R., Cercado, B., Rodríguez, F., & Rodríguez-García, A. (2020). Improving the configuration and architecture of a small-scale air-cathode single chamber microbial fuel cell (MFC) for biosensing organic matter in wastewater samples. Journal of Water Process Engineering, 38, 101671. https://doi.org/10.1016/j.jwpe.2020.101671
Lovley, D. R. (2006a). Bug juice: Harvesting electricity with microorganisms. In Nature Reviews Microbiology (Vol. 4, Issue 7, pp. 497–508). Nature Publishing Group. https://doi.org/10.1038/nrmicro1442
Lovley, D. R. (2006b). Microbial fuel cells: novel microbial physiologies and engineering approaches. In Current Opinion in Biotechnology (Vol. 17, Issue 3, pp. 327–332). Elsevier Current Trends. https://doi.org/10.1016/j.copbio.2006.04.006
Lu, Z., Yin, D., Chen, P., Wang, H., Yang, Y., Huang, G., Cai, L., & Zhang, L. (2020). Power-generating trees: Direct bioelectricity production from plants with microbial fuel cells. Applied Energy, 268, 115040. https://doi.org/10.1016/j.apenergy.2020.115040
Mardiana, U., Innocent, C., Cretin, M., Buchari, B., & Gandasasmita, S. (2016). Yeast fuel cell: Application for desalination. IOP Conference Series: Materials Science and Engineering, 107(1). https://doi.org/10.1088/1757-899X/107/1/012049
Mardiana, U., Innocent, C., Jarrar, H., Cretin, M., Buchari, & Gandasasmita, S. (2015). Electropolymerized neutral red as redox mediator for yeast fuel cell. International Journal of Electrochemical Science, 10(11), 8886–8898.
Masih, S. A., & Zimik, M. (2012). Optimization of power generation in a dual chambered aerated membrane microbial fuel cell with E. coli as biocatalyst “Genomics assisted tagging of restorer-of-male-fertility (Ms) locus for hybrid development in short day Indian onion (Allium cepa L.)” View project. In Article in Journal of Scientific and Industrial Research. https://www.researchgate.net/publication/334612978
Mastropietro, P., Rodilla, P., Rangel, L. E., & Batlle, C. (2020). Reforming the colombian electricity market for an efficient integration of renewables: A proposal. Energy Policy, 139. https://doi.org/10.1016/j.enpol.2020.111346
Mateo, S., Cantone, A., Cañizares, P., Fernández-Morales, F. J., Scialdone, O., & Rodrigo, M. A. (2018). Development of a module of stacks of air-breathing microbial fuel cells to light-up a strip of LEDs. Electrochimica Acta, 274, 152–159. https://doi.org/10.1016/j.electacta.2018.04.095
Menezes, H. (n.d.). Os Objetivos de Desenvolvimento Sustentável e as Relaç\~{o}es Internacionais Cite this paper.
Mohyudin, S., Farooq, R., Jubeen, F., Rasheed, T., Fatima, M., & Sher, F. (2022). Microbial fuel cells a state-of-the-art technology for wastewater treatment and bioelectricity generation. Environmental Research, 204. https://doi.org/10.1016/j.envres.2021.112387
Moradian, J. M., Fang, Z., & Yong, Y.-C. (2021). Recent advances on biomass-fueled microbial fuel cell. Bioresour. Bioprocess, 8, 14. https://doi.org/10.1186/s40643-021-00365-7
Motta Escobar, S., Salazar Cabezas, L. D., & Sánchez Leal, L. C. (2022). Perspectiva del uso de Pseudomonas spp. como biocontrol de fitopatógenos en cultivos de hortalizas en Colombia: una revisión sistemática. Revista Mutis, 12(2). https://doi.org/10.21789/22561498.1862
Nguyen, H. T. H., & Min, B. (2020). Using multiple carbon brush cathode in a novel tubular photosynthetic microbial fuel cell for enhancing bioenergy generation and advanced wastewater treatment. Bioresource Technology, 316, 123928. https://doi.org/10.1016/j.biortech.2020.123928
Niessen, J., Schröder, U., & Scholz, F. (2004). Exploiting complex carbohydrates for microbial electricity generation - A bacterial fuel cell operating on starch. Electrochemistry Communications, 6(9), 955–958. https://doi.org/10.1016/j.elecom.2004.07.010
Oro, P. D. el. (2021). Jorge Luis Lecaro-Zambrano. 6(12), 670–685. https://doi.org/10.23857/pc.v6i12.3397
Osorio-De-La-Rosa, E., Vazquez-Castillo, J., Castillo-Atoche, A., Heredia-Lozano, J., Castillo-Atoche, A., Becerra-Nunez, G., & Barbosa, R. (2021). Arrays of Plant Microbial Fuel Cells for Implementing Self-Sustainable Wireless Sensor Networks. IEEE Sensors Journal, 21(2), 1965–1974. https://doi.org/10.1109/JSEN.2020.3019986
Ozkaya, B., Akoglu, B., Karadag, D., Acı, G., Taskan, E., & Hasar, H. (2012). Bioelectricity production using a new electrode in a microbial fuel cell. Bioprocess and Biosystems Engineering, 35(7), 1219–1227. https://doi.org/10.1007/s00449-012-0709-1
Park, H. S., Kim, B. H., Kim, H. S., Kim, H. J., Kim, G. T., Kim, M., Chang, I. S., Park, Y. K., & Chang, H. I. (2001). A Novel Electrochemically Active and Fe (III)-reducing Bacterium Phylogenetically Related to Clostridium butyricum Isolated from a Microbial Fuel Cell. Anaerobe, 7(6), 297–306. https://doi.org/10.1006/ANAE.2001.0399
Pereira-Blanco M. J. y Turizo-Pereira, L. A. (2020). Medidas para la implementación del uso racional y eficiente de la energía. Caso de las energías renovables en Colombia: Estado del Arte, avances y retos. Revista Jurídica, 17, 43–72.
Perez, A., & Garcia-Rendon, J. J. (2021). Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia. Renewable Energy, 167, 146–161. https://doi.org/10.1016/j.renene.2020.11.067
Peter H. Raven, Ray Franklin Evert, S. E. E. (1992). Biología de las plantas. Bogotá. https://books.google.com.co/books?id=xvNd3udrh1YC&pg=PA521&dq=Componentes+para+la+Transferencia+de+Electrones&hl=es-419&sa=X&ved=2ahUKEwixpdj4wLfvAhXIslkKHbO_D9IQ6AEwAHoECAAQAg#v=onepage&q=Componentes para la Transferencia de Electrones&f=false
Petrovič, U. (2015). Next-generation biofuels: A new challenge for yeast. Yeast, 32(9), 583–593. https://doi.org/10.1002/yea.3082
Piyare, R., Murphy, A. L., Tosato, P., & Brunelli, D. (2017). Plug into a Plant: Using a Plant Microbial Fuel Cell and a Wake-Up Radio for an Energy Neutral Sensing System. Proceedings - 2017 IEEE 42nd Conference on Local Computer Networks Workshops, LCN Workshops 2017, 18–25. https://doi.org/10.1109/LCN.Workshops.2017.60
Pokorna, D., & Zabranska, J. (2015). Sulfur-oxidizing bacteria in environmental technology. In Biotechnology Advances (Vol. 33, Issue 6, pp. 1246–1259). Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2015.02.007
Potter, M. C. (1911a). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 84(571), 260–276. https://doi.org/10.1098/rspb.1911.0073
Potter, M. C. (1911b). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 84(571), 260–276. https://doi.org/10.1098/rspb.1911.0073
Prasad, J., & Tripathi, R. K. (2019). Energy harvesting from sediment microbial fuel cell to supply uninterruptible regulated power for small devices. International Journal of Energy Research, 43(7), 2821–2831. https://doi.org/10.1002/ER.4370
Prasad, J., & Tripathi, R. K. (2020). Voltage control of sediment microbial fuel cell to power the AC load. Journal of Power Sources, 450. https://doi.org/10.1016/j.jpowsour.2020.2277
Prasad, J., & Tripathi, R. K. (2021). Scale-up and control the voltage of sediment microbial fuel cell for charging a cell phone. Biosensors and Bioelectronics, 172. https://doi.org/10.1016/j.bios.2020.112767
Prathiba, S., Kumar, P. S., & Vo, D. V. N. (2022). Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. Chemosphere, 286(P3), 131856. https://doi.org/10.1016/j.chemosphere.2021.131856
Programa Naciones Unidas para el desarrollo. (2019). Objetivo 7: Energía asequible y No contaminante | PNUD. In Objetivos del desarrollo sostenible. https://www1.undp.org/content/undp/es/home/sustainable-development-goals/goal-7-affordable-and-clean-energy.html
Rabaey, K., Lissens, G., Siciliano, S. D., & Verstraete, W. (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology Letters, 25(18), 1531–1535. https://doi.org/10.1023/A:1025484009367
Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: Novel biotechnology for energy generation. In Trends in Biotechnology (Vol. 23, Issue 6, pp. 291–298). Elsevier Current Trends. https://doi.org/10.1016/j.tibtech.2005.04.008
Rahimnejad, M., Bakeri, G., Najafpour, G., Ghasemi, M., & Oh, S. E. (2014). A review on the effect of proton exchange membranes in microbial fuel cells. In Biofuel Research Journal (Vol. 1, Issue 1, pp. 7–15). Green Wave Publishing of Canada. https://doi.org/10.18331/BRJ2015.1.1.4
Raj, B.S, Solomon, R.D, Solomon, J., Prathipa. R, & Kumar.M, A. (2013). Production of Electricity From Agricultural Soil and Dye Industrial Effluent Soil Using Microbial Fuel Cell. International Journal of Research in Engineering and Technology, 02(10), 140–148. https://doi.org/10.15623/ijret.2013.0210019
Ramirez, J., Angelino Velázquez, D., & Vélez-Zapata, C. (2022). The potential role of peace, justice, and strong institutions in Colombia’s areas of limited statehood for energy diversification towards governance in energy democracy. Energy Policy, 168, 113135. https://doi.org/10.1016/j.enpol.2022.113135
Reddy, L., Kumar, S. P., & Wee, Y. (2010). Microbial Fuel Cells (MFCs) - a novel source of energy for new millennium. Undefined.
Ritika, B., & Utpal, D. (2014). Biofertilizer, a way towards organic agriculture: A review. African Journal of Microbiology Research, 8(24), 2332–2343. https://doi.org/10.5897/ajmr2013.6374
Rojas Flores, S., Aburto Custodio, A., Espilco Soriano, N., Minchola Gallardo, J., Rodríguez Yupanqui, M., Fernando Ugaz, O., & Mendoza Villanueva, K. (2018). Electricidad a partir de plantas vivas. REVISTA CIENTIFI-K, 6(1). https://doi.org/10.18050/cientifi-k.v6n1a4.2018
Rudra, R., Kumar, V., & Kundu, P. P. (2015). Acid catalysed cross-linking of poly vinyl alcohol (PVA) by glutaraldehyde: effect of crosslink density on the characteristics of PVA membranes used in single chambered microbial fuel cells. RSC Advances, 5(101), 83436–83447. https://doi.org/10.1039/c5ra16068e
Rusyn, I. (2021). Role of microbial community and plant species in performance of plant microbial fuel cells. In Renewable and Sustainable Energy Reviews (Vol. 152). Elsevier Ltd. https://doi.org/10.1016/j.rser.2021.111697
Sampieri Roberto Hernández. (n.d.). Metodologia-de-la-investigacion-sexta-edicion.Sampieri et al.
Sánchez R., & Guerra P. (2022). Pseudomonas spp. benéficas en la agricultura. 715–725.
Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 356, 225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109
Santos, A. M., Martín-Sastre, C., & González-Arechavala, Y. (2014). Uso y aplicaciones potenciales de las microalgas. Anales de Mecanica y Electricidad, 91(1), 20–28.
Sarma, P. J., & Mohanty, K. (2019). An insight into plant microbial fuel cells. In Bioelectrochemical Interface Engineering (pp. 137–148). wiley. https://doi.org/10.1002/9781119611103.ch8
Sayed, E. T., Barakat, N. A. M., Abdelkareem, M. A., Fouad, H., & Nakagawa, N. (2015). Yeast extract as an effective and safe mediator for the baker’s-yeast-based microbial fuel cell. Industrial and Engineering Chemistry Research, 54(12), 3116–3122. https://doi.org/10.1021/ie5042325
Schiffer, H.-W., Kober, T., & Panos, E. (2018). World Energy Council’s Global Energy Scenarios to 2060. Zeitschrift Für Energiewirtschaft, 42(2), 91–102. https://doi.org/10.1007/s12398-018-0225-3
Shaikh, R., Rizvi, A., Quraishi, M., Pandit, S., Mathuriya, A. S., Gupta, P. K., Singh, J., & Prasad, R. (2021). Bioelectricity production using plant-microbial fuel cell: Present state of art. South African Journal of Botany, 140, 393–408. https://doi.org/10.1016/j.sajb.2020.09.025
Shi, R., Li, J., Jiang, J., Mehmood, K., Liu, Y., Xu, R., & Qian, W. (2017). Characteristics of biomass ashes from different materials and their ameliorative effects on acid soils. Journal of Environmental Sciences (China), 55, 294–302. https://doi.org/10.1016/j.jes.2016.07.015
Shyu, C.-W. (2021). A framework for ‘right to energy’’ to meet UN SDG7: Policy implications to meet basic human energy needs, eradicate energy poverty, enhance energy justice, and uphold energy democracy.’ Energy Research & Social Science, 79(July), 102199. https://doi.org/10.1016/j.erss.2021.102199
Srivastava, R. K., Boddula, R., & Pothu, R. (2022). Microbial fuel cells: Technologically advanced devices and approach for sustainable/renewable energy development. Energy Conversion and Management: X, 13. https://doi.org/10.1016/j.ecmx.2021.100160
Sulistiyawati, I., Laila Rahayu, N., & Septiana Purwitaningrum, F. (2020). Produksi Biolistrik menggunakan Microbial Fuel Cell (MFC) Lactobacillus bulgaricus dengan Substrat Limbah Tempe dan Tahu. https://doi.org/10.20884/1.mib.2020.37.2.1147
Tang, L., Su, C., Chen, Y., Xian, Y., Hui, X., Ye, Z., Chen, M., Zhu, F., & Zhong, H. (2021). Influence of biodegradable polybutylene succinate and non-biodegradable polyvinyl chloride microplastics on anammox sludge: Performance evaluation, suppression effect and metagenomic analysis. Journal of Hazardous Materials, 401(May 2020), 123337. https://doi.org/10.1016/j.jhazmat.2020.123337
Tapia, N. F., Rojas, C., Bonilla, C. A., & Vargas, I. T. (2018). A new method for sensing soil water content in green roofs using plant microbial fuel cells. Sensors (Switzerland), 18(1), 1–9. https://doi.org/10.3390/s18010071
Taşkan, B. (2020). Increased power generation from a new sandwich-type microbial fuel cell (ST-MFC) with a membrane-aerated cathode. Biomass and Bioenergy, 142, 105781. https://doi.org/10.1016/j.biombioe.2020.105781
Thapa, B. sen, Kim, T., Pandit, S., Song, Y. E., Afsharian, Y. P., Rahimnejad, M., Kim, J. R., & Oh, S. E. (2022). Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry. Bioresource Technology, 347(December 2021), 126579. https://doi.org/10.1016/j.biortech.2021.126579
The next generation of microbial fuel cells | EVOBLISS Project | Results in brief | FP7 | CORDIS | European Commission. (2018). https://cordis.europa.eu/article/id/241030-the-next-generation-of-microbial-fuel-cells
Tommasi, T., & Lombardelli, G. (2017). Energy sustainability of Microbial Fuel Cell (MFC): A case study. https://doi.org/10.1016/j.jpowsour.2017.03.122
Tyagi, A., Dwivedi, S. P., Mishra, S., & Srivastav, A. (2012). Studies on the optimization of bioelectricity production from industrial and domestic waste using immobilization of microbial cells. ISABB Journal of Biotechnology and Bioinformatics, 2(2), 18–25. https://doi.org/10.5897/ISAAB-JBB11.019
Unidad de Planeación Minero-Energética UPME. (2021). UPME_Proyeccion_Demanda_Energia_Junio_2021.
Unidas, N. (2022). Temas estadísticos de la CEPAL No 5. La energía de América Latina y el Caribe: acceso renovabilidad y eficiencia.
UPME. (2015). Plan Energetico Nacional Colombia: Ideario Energético 2050. Unidad de Planeación Minero-Energética, Republica de Colombia, 184. http://www.upme.gov.co/Docs/PEN/PEN_IdearioEnergetico2050.pdf
Vaghari, H., Jafarizadeh-Malmiri, H., Berenjian, A., & Anarjan, N. (2013). Recent advances in application of chitosan in fuel cells. Sustainable Chemical Processes, 1(1). https://doi.org/10.1186/2043-7129-1-16
Van Limbergen, T., Bonné, R., Hustings, J., Valcke, R., Thijs, S., Vangronsveld, J., & Manca, J. v. (2022). Plant microbial fuel cells from the perspective of photovoltaics: Efficiency, power, and applications. In Renewable and Sustainable Energy Reviews (Vol. 169). Elsevier Ltd. https://doi.org/10.1016/j.rser.2022.112953
Veerubhotla, R., Nag, S., & Das, D. (2019). Internet of Things temperature sensor powered by bacterial fuel cells on paper. Journal of Power Sources, 438. https://doi.org/10.1016/j.jpowsour.2019.226947
Vilas Boas, J., Oliveira, V. B., Marcon, L. R. C., Pinto, D. P., Simões, M., & Pinto, A. M. F. R. (2015). Effect of operating and design parameters on the performance of a microbial fuel cell with Lactobacillus pentosus. Biochemical Engineering Journal, 104, 34–40. https://doi.org/10.1016/j.bej.2015.05.009
Vilas Boas, J., Oliveira, V. B., Marcon, L. R. C., Simões, M., & Pinto, A. M. F. R. (2019). Optimization of a single chamber microbial fuel cell using Lactobacillus pentosus: Influence of design and operating parameters. Science of The Total Environment, 648, 263–270. https://doi.org/10.1016/J.SCITOTENV.2018.08.061
Viteri, J. P., Henao, F., Cherni, J., & Dyner, I. (2019). Optimizing the insertion of renewable energy in the off-grid regions of Colombia. Journal of Cleaner Production, 235, 535–548. https://doi.org/10.1016/J.JCLEPRO.2019.06.327
Wang, C.-T., Chen, W.-J., & Huang, R.-Y. (2010). Influence of growth curve phase on electricity performance of microbial fuel cell by Escherichia coli. International Journal of Hydrogen Energy, 35(13), 7217–7223. https://doi.org/10.1016/j.ijhydene.2010.01.038
Widharyanti, I. D., Hendrawan, M. A., & Christwardana, M. (2020). Membraneless plant microbial fuel cell using water hyacinth (Eichhornia crassipes) for green energy generation and biomass production. International Journal of Renewable Energy Development, 10(1), 71–78. https://doi.org/10.14710/ijred.2021.32403
World Organization for Animal Health [OIE]. (2010). E. Coli enterohemorrágica.
Yadav, G., Sharma, I., Ghangrekar, M., & Sen, R. (2020). A live bio-cathode to enhance power output steered by bacteria-microalgae synergistic metabolism in microbial fuel cell. Journal of Power Sources, 449(October 2019), 227560. https://doi.org/10.1016/j.jpowsour.2019.227560
Yee, M. O., Deutzmann, J., & Spormann, A. (2020). Cultivating electroactive microbes — from fi eld to bench.
Zhang, T., Cui, C., Chen, S., Ai, X., Yang, H., Shen, P., & Peng, Z. (2006). A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. Chemical Communications, 21, 2257–2259. https://doi.org/10.1039/b600876c
Zhong, H., Liu, X., Tian, Y., Zhang, Y., & Liu, C. (2021). Biological power generation and earthworm assisted sludge treatment wetland to remove organic matter in sludge and synchronous power generation. Science of the Total Environment, 776. https://doi.org/10.1016/j.scitotenv.2021.145909
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 162 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.publisher.department.spa.fl_str_mv Civil y Ambiental
dc.publisher.place.spa.fl_str_mv Barranquilla, Colombia
dc.publisher.program.spa.fl_str_mv Maestría de Investigación en Desarrollo Sostenible MIDES
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/7e44b2ca-1e0d-40d5-b1ec-c94d3096dd76/download
https://repositorio.cuc.edu.co/bitstreams/99eca198-4ae0-4251-a7c3-3de7a0aa2811/download
https://repositorio.cuc.edu.co/bitstreams/f321ec10-2938-4ecc-9592-78650173de28/download
https://repositorio.cuc.edu.co/bitstreams/957a97af-04ee-4166-8b5f-46dc98ad8458/download
bitstream.checksum.fl_str_mv 82e1035ee265a9cf976209273b6dbc56
2f9959eaf5b71fae44bbf9ec84150c7a
d7e50fc51fa9a744569d4794dfc7aac9
db13391bef7b4ae0816846cffa467aac
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760668814082048
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gindri Ramos, ClaudeteMoreno Ríos, Andrea LilianaRamírez Ballestas, EmersonTorregroza Espinosa, AnaNuñez Alvarez, JoseNeckel, Alcindo2023-04-17T19:53:33Z2023-04-17T19:53:33Z2023https://hdl.handle.net/11323/9985Corporacion Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The global demand for energy has led to the search for alternative energies, with low production costs and that minimize environmental impacts. Among the existing technologies, the fuel cell (CC) stands out, which converts chemical energy into electricity. A variant of CC is the microbial fuel cell (MCC), where energy is produced by metabolic reactions carried out by microorganisms. The objective of this work was to evaluate the power generation potential of the CCMs using the plants Torenia fournieri, Kalachoe blossfeldiana, Pentas lanceolata, Nephrolepis exaltata, Begonia semperflorens, Asplenium nidus as an alternative source of renewable energy in the municipality of San Jacinto, Bolívar, Colombia. For this, the efficiency of the CCMs was built and analyzed using soil, sand, organic fertilizer and wood ash in a ratio of 3:2:1:1/2, as a means of supplying bacteria. The CCMs were analyzed, as well as the possible variations when using native plants (CCMP). The efficiency of the CCMPs was evaluated by monitoring the potential difference between the cell electrodes. The CCMP with the highest average was with Begonia Semperflorens, 0.607 V, and the lowest with Asplenium nidus, 0.069 V. The highest voltage peaks occurred in Torenia fournieri, with 1.782 V, and Asplenium nidus, with 1.587 V. This study revealed that the CCMPs are a promising technology, which could promote the country's energy development. It is a sustainable, low-cost, viable strategy that contributes to compliance with SDG-7 and is replicable in Colombia and the worldLa demanda mundial de energía ha llevado a la búsqueda de energías alternativas, de bajo costo de producción y que minimicen los impactos ambientales. Entre las tecnologías existentes se destaca la celda de combustible (CC), que convierte la energía química en eléctrica. Una variante de la CC es la celda de combustible microbiana (CCM), donde se produce energía por reacciones metabólicas realizadas por microorganismos. El objetivo de este trabajo fue evaluar el potencial de generación eléctrica de las CCMs usando las plantas Torenia fournieri, Kalachoe blossfeldiana, Pentas lanceolata, Nephrolepis exaltata, Begonia semperflorens, Asplenium nidus como fuente alternativa de energía renovable en el municipio San Jacinto, Bolívar, Colombia. Para ello se construyó y analizó la eficiencia de las CCMs utilizando suelo, arena, abono orgánico y ceniza de madera en una proporción de 3:2:1:1/2, como medio de suministro de bacterias. Se analizaron las CCMs, así como las posibles variaciones al utilizar plantas nativas (CCMP). La eficiencia de las CCMPs se evaluó monitoreando la diferencia de potencial entre los electrodos de la celda. La CCMP con la media más alta fue con Begonia Semperflorens, 0,607 V y la más baja con Asplenium nidus 0,069 V. Los picos de voltaje más altos ocurrieron en Torenia fournieri con 1,782 V y Asplenium nidus, con 1,587 V. Este estudio reveló que las CCMPs son una tecnología promisoria, que podría promover el desarrollo energético del país. Es una estrategia sostenible de bajo costo, viable, que aporta al cumplimiento del ODS-7 y reproducible en Colombia y el mundoPlanteamiento del problema 22--Hipótesis25--Objetivos 25--Objetivo general 25--Objetivos específicos 25--Capítulo I. Marco teórico 27--Crisis de energía 27--Celdas de combustible 27--Plantas 28--Celdas de combustible microbianas 29--Microorganismos 32--Microalgas 32--Proceso de generación de energía 33--Estado del Arte 37--Capítulo II. Materiales y métodos 42--Instrumentos de medición o recolección de datos--uantitativos. 43--Diseño metodológico 44--Identificación y caracterización de las bacterias 46--Celda de combustible microbianas con plantas, montaje y funcionamiento 49--Recolección de datos y análisis de resultados 50--Generación de energía 51--Configuración de las celdas de combustible microbianas con plantas. 51—Capítulo III. Resultados 58--Informe Analítico de Suelo Agrícola 58--Datos CCMP 63--Capítulo IV. Discusiones 75--Análisis de resultados microbiológicos 76--Análisis de los resultados fisicoquímicos de suelos 84--Análisis del potencial eléctrico de las CCMPs 89--Conclusiones 92--Recomendaciones 95--Referencias 96Magíster en Investigación en Desarrollo Sostenible MIDESMaestría162 páginasapplication/pdfspaCorporación Universidad de la CostaCivil y AmbientalBarranquilla, ColombiaMaestría de Investigación en Desarrollo Sostenible MIDESPotencial de generación eléctrica en celdas de combustible microbianas con plantas como fuente de energía renovableTrabajo de grado - MaestríaTextinfo:eu-repo/semantics/masterThesishttp://purl.org/redcol/resource_type/TMinfo:eu-repo/semantics/acceptedVersionArca Electrónica. (20). Retrieved November 18, 2022, from http://arcaelectronica.blogspot.com/2017/Abdel-Gelel, I. Y., Abdel-Mongy, M., Hamza, H. A., Abbas, R. N., & Abdelgelel, I. Y. (2021). Bioelectricity Production from Different Types of Bacteria Using MFC Under Optimizing Factors and New Bacterial Strain Bioelectricity Production Isolated from Milk Sample in Egypt (Vol. 25). http://annalsofrscb.roAdeleye, S., & Okorondu, S. (2015). Bioelectricity from students’ hostel waste water using microbial fuel cell. International Journal of Biological and Chemical Sciences, 9(2), 1038. https://doi.org/10.4314/ijbcs.v9i2.39Ahn, Y., & Logan, B. E. (2010). Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresource Technology, 101(2), 469–475. https://doi.org/10.1016/j.biortech.2009.07.039Akbas, B., Kocaman, A. S., Nock, D., & Trotter, P. A. (2022). Rural electrification: An overview of optimization methods. Renewable and Sustainable Energy Reviews, 156(October 2021). https://doi.org/10.1016/j.rser.2021.111935Al Bpapp, R. (n.d.). Medida: Uso de microorganismos eficientesAlaraj, M., & Park, J. do. (2019a). Net power positive maximum power point tracking energy harvesting system for microbial fuel cell. Journal of Power Sources, 418, 225–232. https://doi.org/10.1016/j.jpowsour.2019.02.042Alaraj, M., & Park, J. do. (2019b). Net power positive maximum power point tracking energy harvesting system for microbial fuel cell. Journal of Power Sources, 418, 225–232. https://doi.org/10.1016/J.JPOWSOUR.2019.02.042Alberto Barreto Nieto, C., & Campo Robledo, J. (2012). Relación a largo plazo entre consumo de energía y PIB en América Latina: Una evaluación empírica con datos panelArbianti, R., Utami, T. S., Hermansyah, H., Novitasari, D., Kristin, E., & Trisnawati, I. (2013). Performance Optimization of Microbial Fuel Cell (MFC) Using Lactobacillus bulgaricus. MAKARA Journal of Technology Series, 17(1). https://doi.org/10.7454/mst.v17i1.1925Arduino UNO | Arduino.cl - Compra tu Arduino en Línea. (n.d.). Retrieved November 18, 2022, from https://arduino.cl/arduino-uno/Azri, Y. M., Tou, I., Sadi, M., & Benhabyles, L. (2018). Bioelectricity generation from three ornamental plants: Chlorophytum comosum, Chasmanthe floribunda and Papyrus diffusus. International Journal of Green Energy, 15(4), 254–263. https://doi.org/10.1080/15435075.2018.1432487Babu Arulmani, S. R., Jayaraj, V., & Jebakumar, S. R. D. (2016). Long-term electricity production from soil electrogenic bacteria and high-content screening of biofilm formation on the electrodes. Journal of Soils and Sediments, 16(3), 831–841. https://doi.org/10.1007/s11368-015-1287-zBehera, M., Jana, P. S., & Ghangrekar, M. M. (2010). Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresource Technology, 101(4), 1183–1189. https://doi.org/10.1016/j.biortech.2009.07.089Bilgili, M., Ozbek, A., Sahin, B., & Kahraman, A. (2015). An overview of renewable electric power capacity and progress in new technologies in the world. Renewable and Sustainable Energy Reviews, 49, 323–334. https://doi.org/10.1016/j.rser.2015.04.148Benítez-Pina, I. F. (2022a). Diseño de un sistema de supervisión y control del centro de datos del Grupo Empresarial CUBANÍQUEL. Latin American Developments in Energy Engineering, 3(1), 1–24. https://doi.org/10.17981/ladee.03.01.2022.1.Benítez-Pina, I. F. (2022b). Sistema de uso doméstico para monitorear el consumo energético combinando el uso de las plataformas Arduino y Android. Latin American Developments in Energy Engineering, 3(1), 25–30. https://doi.org/10.17981/ladee.03.01.2022.2.Borah, D., & More, S. (2020). Construction of Double Chambered Microbial Fuel Cell (Mfc) Using Household Materials and Bacillus Megaterium Isolate From Tea Garden Soil. Journal of Microbiology, Biotechnology and Food Sciences, 2020(vol. 10), 84–86.Bose P. (2020). Desarrollos recientes en pilas de combustible microbianas (MFC). https://www.azocleantech.com/article.aspx?ArticleID=1085Caizán-Juanarena, L., Borsje, C., Sleutels, T., Yntema, D., Santoro, C., Ieropoulos, I., Soavi, F., & ter Heijne, A. (2020). Combination of bioelectrochemical systems and electrochemical capacitors: Principles, analysis and opportunities. In Biotechnology Advances (Vol. 39). Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2019.107456Carrasco J. Jorge, Antúnez B. Alejandro, & Lemus S. Gamalier. (2010). EVITE PROBLEMAS: CONOZCA CÓMO ES EL SUELO ANTES DE ESTABLECER UN HUERTO FRUTAL. 28–30.Chabert, N., Amin Ali, O., & Achouak, W. (2015). All ecosystems potentially host electrogenic bacteria. Bioelectrochemistry, 106, 88–96. https://doi.org/10.1016/J.BIOELECHEM.2015.07.004Chen, X. F., Wang, X. S., Liao, K. T., Zeng, L. Z., Xing, L. D., Zhou, X. W., Zheng, X. W., & Li, W. S. (2015). Improved power output by incorporating polyvinyl alcohol into the anode of a microbial fuel cell. Journal of Materials Chemistry A, 3(38), 19402–19409. https://doi.org/10.1039/c5ta03318gClaudia, V., Ramirez, J., & Angelino, D. (2022). The potential role of peace, justice, and strong institutions in Colombia’s areas of limited statehood for energy diversification towards governance in energy democracy. Energy Policy, 168(June), 113135. https://doi.org/10.1016/j.enpol.2022.113135De La Rosa, E. O., Castillo, J. V., Campos, M. C., Pool, G. R. B., Nuñez, G. B., Atoche, A. C., & Aguilar, J. O. (2019). Plant microbial fuel cells-based energy harvester system for self-powered IoT applications. Sensors (Switzerland), 19(6). https://doi.org/10.3390/S19061378Deng, H., Chen, Z., & Zhao, F. (2012). Energy from Plants and Microorganisms: Progress in Plant–Microbial Fuel Cells. ChemSusChem, 5(6), 1006–1011. https://doi.org/10.1002/CSSC.201100257Dong, Y., Feng, Y., Qu, Y., Du, Y., Zhou, X., & Liu, J. (2015). A combined system of microbial fuel cell and intermittently aerated biological filter for energy self-sufficient wastewater treatment. Scientific Reports, 5(1), 18070. https://doi.org/10.1038/srep18070Energy Agency, I. (2020). World Energy Outlook 2020. www.iea.org/weoEsteve-Núñez, A. (2008). Bacterias productoras de electricidad. Del subsuelo a la pila de combustible. Temas de Actualidad, 45, 34–39. www.genomatica.comFan, L. P., & Feng, X. (2020). Q-Learning based maximum power point tracking control for microbial fuel cell. International Journal of Electrochemical Science, 15, 9917–9932. https://doi.org/10.20964/2020.10.63Fernie, A. R., Carrari, F., & Sweetlove, L. J. (2004). Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport. In Current Opinion in Plant Biology (Vol. 7, Issue 3, pp. 254–261). Curr Opin Plant Biol. https://doi.org/10.1016/j.pbi.2004.03.007Fertilab - Laboratorio de Análisis Agrícolas - Suelo, Agua, Planta. (n.d.). Retrieved January 9, 2023, from https://www.fertilab.com.mxFragoso Altamirano, A. Y. (2020). México y su transición energética: un cambio en pro de la energía Renovable. Latin American Developments in Energy Engineering, 1(1), 26–42. https://doi.org/10.17981/ladee.01.01.2020.3.Ghangrekar, M. M., & Shinde, V. B. (2006). Microbial Fuel Cell : a New Approach of Wastewater Treatment With Power Generation. Fuel Cells, 283440(03222), 20–21.Goretti, M., Alejandra, D., Lluvia, A., & Soledad, M. (2017). Generación de Electricidad a Base de Fotosíntesis. Ciencias Naturales y Agropecuarias, 4(12).Gulamhussein, M., & Randall, D. G. (2020). Design and operation of plant microbial fuel cells using municipal sludge. Journal of Water Process Engineering, 38, 101653. https://doi.org/10.1016/j.jwpe.2020.101653Gunawardena, A., Fernando, S., & To, F. (2008). Performance of a Yeast-mediated Biological Fuel Cell. Int. J. Mol. Sci, 9, 1893–1907. https://doi.org/10.3390/ijms9101893Hernández, M., Aguado, L., & Duque, H. (2018). Índice De Pobreza Energética Multidimensional Por Regiones Para Colombia, Ipem_Rc 2013. Economía Coyuntural, 3(3), 35–71.Higa, T., & Parr, J. F. (1994). BENEFICIAL AND EFFECTIVE MICROORGANISMS for a SUSTAINABLE AGRICULTURE AND ENVIRONMENT.Hubenova, Y., & Mitov, M. (2015). Extracellular electron transfer in yeast-based biofuel cells: A review. Bioelectrochemistry, 106(Pt A), 177–185. https://doi.org/10.1016/j.bioelechem.2015.04.001Ieropoulos, I. A., Greenman, J., Melhuish, C., & Hart, J. (2005). Comparative study of three types of microbial fuel cell. Enzyme and Microbial Technology, 37(2), 238–245. https://doi.org/10.1016/j.enzmictec.2005.03.006IES Río Caribe. (2016). La Fotosíntesis. La Fotosíntesis, 6. http://mc142.uib.es:8080/rid=1Q4QJD886-1Y1YB11-3W7/T_205_Fotos__ntesis.pdfJain, R., Tiwari, D. C., Sharma, S., & Mishra, P. (2015). Efficiency and stability of carbon cloth electrodes for electricity production from different types of waste water using duel chamber microbial fuel cell. Journal of Scientific and Industrial Research, 74(5), 308–314Jardine, O., Gough, J., Chothia, C., & Teichmann, S. A. (n.d.). Comparison of the Small Molecule Metabolic Enzymes of Escherichia coli and Saccharomyces cerevisiae. https://doi.org/10.1101/gr.228002Jiang, H., Halverson, L. J., & Dong, L. (2022). A miniaturized bioelectricity generation device using plant root exudates to feed electrogenic bacteria. Sensors and Actuators A: Physical, 342(May), 113649. https://doi.org/10.1016/j.sna.2022.113649Jiang, Y., Han, K., Chen, S., Wang, Y., & Zhang, Z. (2016). Characterization and expression analysis of Lc-Sox4 in large yellow croaker Larimichthys crocea. Comparative Biochemistry and Physiology Part - B: Biochemistry and Molecular Biology, 196–197, 1–10. https://doi.org/10.1016/j.cbpb.2016.01.009José, J., Rivera, R., & Arteta, A. L. (n.d.). AVANCES Y DESAFÍOS DE COLOMBIA PARA EL ALCANCE DEL ODS-7 DE LA AGENDA 2030 DE LAS NACIONES UNIDAS Asunción Lucía Rodríguez Vital Lainet María Nieto Ramos. https://doi.org/10.5281/zenodo.4758625Jyoti Sarma, P., & Mohanty, K. (2022). A novel three-chamber modular PMFC with bentonite/flyash based clay membrane and oxygen reducing biocathode for long term sustainable bioelectricity generation. Bioelectrochemistry, 144, 107996. https://doi.org/10.1016/j.bioelechem.2021.107996Kalaichelvan, P. T. (2012). Electricity generation from bacteria Staphylococcus aureus and Enterobacteriaceae bacterium using microbial fuel cell-an alternative source of energy and its use application.Kim, G. T., Hyun, M. S., Chang, I. S., Kim, H. J., Park, H. S., Kim, B. H., Kim, S. D., Wimpenny, J. W. T., & Weightman, A. J. (2005). Dissimilatory Fe (III) reduction by an electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. Journal of Applied Microbiology, 99(4), 978–987. https://doi.org/10.1111/j.1365-2672.2004.02514.xKim, M., Li, S., Kong, D. S., Song, Y. E., Park, S. Y., Kim, H. il, Jae, J., Chung, I., & Kim, J. R. (2023a). Polydopamine/polypyrrole-modified graphite felt enhances biocompatibility for electroactive bacteria and power density of microbial fuel cell. Chemosphere, 313. https://doi.org/10.1016/j.chemosphere.2022.137388Kim, M., Li, S., Kong, D. S., Song, Y. E., Park, S. Y., Kim, H. il, Jae, J., Chung, I., & Kim, J. R. (2023b). Polydopamine/polypyrrole-modified graphite felt enhances biocompatibility for electroactive bacteria and power density of microbial fuel cell. Chemosphere, 313. https://doi.org/10.1016/j.chemosphere.2022.137388Koffi, N. J., & Okabe, S. (2020). High voltage generation from wastewater by microbial fuel cells equipped with a newly designed low voltage booster multiplier (LVBM). Scientific Reports, 10(1), 18985. https://doi.org/10.1038/s41598-020-75916-7Koffi, N. J., & Okabe, S. (2022). High electrical energy harvesting performance of an integrated microbial fuel cell and low voltage booster-rectifier system treating domestic wastewater. Bioresource Technology, 359. https://doi.org/10.1016/j.biortech.2022.127455Kuleshovа, T. E., Ivanova, A. G., Galushko, A. S., Kruchinina, I. Y., Shilova, O. A., Udalova, O. R., Zhestkov, A. S., Panova, G. G., & Gall, N. R. (2022). Influence of the electrode systems parameters on the electricity generation and the possibility of hydrogen production in a plant-microbial fuel cell. International Journal of Hydrogen Energy, xxxx, 1–13. https://doi.org/10.1016/j.ijhydene.2022.06.001Kumar, S. S., Kumar, V., Gnaneswar Gude, V., Malyan, S. K., & Pugazhendhi, A. (2020). Alkalinity and salinity favor bioelectricity generation potential of Clostridium, Tetrathiobacter and Desulfovibrio consortium in Microbial Fuel Cells (MFC) treating sulfate-laden wastewater. Bioresource Technology, 306, 123110. https://doi.org/10.1016/J.BIORTECH.2020.123110Li, M., Zhou, M., Tian, X., Tan, C., Mcdaniel, C. T., Hassett, D. J., & Gu, T. (2018). Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. https://doi.org/10.1016/j.biotechadv.2018.04.010Li, Y., Li, X., Sun, Y., Zhao, X., & Li, Y. (2018). Cathodic microbial community adaptation to the removal of chlorinated herbicide in soil microbial fuel cells. Environmental Science and Pollution Research, 25(17), 16900–16912. https://doi.org/10.1007/S11356-018-1871-ZLogan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. In Environmental Science and Technology (Vol. 40, Issue 17, pp. 5181–5192). American Chemical Society. https://doi.org/10.1021/es0605016Logan, B. E., Murano, C., Scott, K., Gray, N. D., & Head, I. M. (2005). Electricity generation from cysteine in a microbial fuel cell. Water Research, 39(5), 942–952. https://doi.org/10.1016/j.watres.2004.11.019López-Hincapié, J. D., Picos-Benítez, A. R., Cercado, B., Rodríguez, F., & Rodríguez-García, A. (2020). Improving the configuration and architecture of a small-scale air-cathode single chamber microbial fuel cell (MFC) for biosensing organic matter in wastewater samples. Journal of Water Process Engineering, 38, 101671. https://doi.org/10.1016/j.jwpe.2020.101671Lovley, D. R. (2006a). Bug juice: Harvesting electricity with microorganisms. In Nature Reviews Microbiology (Vol. 4, Issue 7, pp. 497–508). Nature Publishing Group. https://doi.org/10.1038/nrmicro1442Lovley, D. R. (2006b). Microbial fuel cells: novel microbial physiologies and engineering approaches. In Current Opinion in Biotechnology (Vol. 17, Issue 3, pp. 327–332). Elsevier Current Trends. https://doi.org/10.1016/j.copbio.2006.04.006Lu, Z., Yin, D., Chen, P., Wang, H., Yang, Y., Huang, G., Cai, L., & Zhang, L. (2020). Power-generating trees: Direct bioelectricity production from plants with microbial fuel cells. Applied Energy, 268, 115040. https://doi.org/10.1016/j.apenergy.2020.115040Mardiana, U., Innocent, C., Cretin, M., Buchari, B., & Gandasasmita, S. (2016). Yeast fuel cell: Application for desalination. IOP Conference Series: Materials Science and Engineering, 107(1). https://doi.org/10.1088/1757-899X/107/1/012049Mardiana, U., Innocent, C., Jarrar, H., Cretin, M., Buchari, & Gandasasmita, S. (2015). Electropolymerized neutral red as redox mediator for yeast fuel cell. International Journal of Electrochemical Science, 10(11), 8886–8898.Masih, S. A., & Zimik, M. (2012). Optimization of power generation in a dual chambered aerated membrane microbial fuel cell with E. coli as biocatalyst “Genomics assisted tagging of restorer-of-male-fertility (Ms) locus for hybrid development in short day Indian onion (Allium cepa L.)” View project. In Article in Journal of Scientific and Industrial Research. https://www.researchgate.net/publication/334612978Mastropietro, P., Rodilla, P., Rangel, L. E., & Batlle, C. (2020). Reforming the colombian electricity market for an efficient integration of renewables: A proposal. Energy Policy, 139. https://doi.org/10.1016/j.enpol.2020.111346Mateo, S., Cantone, A., Cañizares, P., Fernández-Morales, F. J., Scialdone, O., & Rodrigo, M. A. (2018). Development of a module of stacks of air-breathing microbial fuel cells to light-up a strip of LEDs. Electrochimica Acta, 274, 152–159. https://doi.org/10.1016/j.electacta.2018.04.095Menezes, H. (n.d.). Os Objetivos de Desenvolvimento Sustentável e as Relaç\~{o}es Internacionais Cite this paper.Mohyudin, S., Farooq, R., Jubeen, F., Rasheed, T., Fatima, M., & Sher, F. (2022). Microbial fuel cells a state-of-the-art technology for wastewater treatment and bioelectricity generation. Environmental Research, 204. https://doi.org/10.1016/j.envres.2021.112387Moradian, J. M., Fang, Z., & Yong, Y.-C. (2021). Recent advances on biomass-fueled microbial fuel cell. Bioresour. Bioprocess, 8, 14. https://doi.org/10.1186/s40643-021-00365-7Motta Escobar, S., Salazar Cabezas, L. D., & Sánchez Leal, L. C. (2022). Perspectiva del uso de Pseudomonas spp. como biocontrol de fitopatógenos en cultivos de hortalizas en Colombia: una revisión sistemática. Revista Mutis, 12(2). https://doi.org/10.21789/22561498.1862Nguyen, H. T. H., & Min, B. (2020). Using multiple carbon brush cathode in a novel tubular photosynthetic microbial fuel cell for enhancing bioenergy generation and advanced wastewater treatment. Bioresource Technology, 316, 123928. https://doi.org/10.1016/j.biortech.2020.123928Niessen, J., Schröder, U., & Scholz, F. (2004). Exploiting complex carbohydrates for microbial electricity generation - A bacterial fuel cell operating on starch. Electrochemistry Communications, 6(9), 955–958. https://doi.org/10.1016/j.elecom.2004.07.010Oro, P. D. el. (2021). Jorge Luis Lecaro-Zambrano. 6(12), 670–685. https://doi.org/10.23857/pc.v6i12.3397Osorio-De-La-Rosa, E., Vazquez-Castillo, J., Castillo-Atoche, A., Heredia-Lozano, J., Castillo-Atoche, A., Becerra-Nunez, G., & Barbosa, R. (2021). Arrays of Plant Microbial Fuel Cells for Implementing Self-Sustainable Wireless Sensor Networks. IEEE Sensors Journal, 21(2), 1965–1974. https://doi.org/10.1109/JSEN.2020.3019986Ozkaya, B., Akoglu, B., Karadag, D., Acı, G., Taskan, E., & Hasar, H. (2012). Bioelectricity production using a new electrode in a microbial fuel cell. Bioprocess and Biosystems Engineering, 35(7), 1219–1227. https://doi.org/10.1007/s00449-012-0709-1Park, H. S., Kim, B. H., Kim, H. S., Kim, H. J., Kim, G. T., Kim, M., Chang, I. S., Park, Y. K., & Chang, H. I. (2001). A Novel Electrochemically Active and Fe (III)-reducing Bacterium Phylogenetically Related to Clostridium butyricum Isolated from a Microbial Fuel Cell. Anaerobe, 7(6), 297–306. https://doi.org/10.1006/ANAE.2001.0399Pereira-Blanco M. J. y Turizo-Pereira, L. A. (2020). Medidas para la implementación del uso racional y eficiente de la energía. Caso de las energías renovables en Colombia: Estado del Arte, avances y retos. Revista Jurídica, 17, 43–72.Perez, A., & Garcia-Rendon, J. J. (2021). Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia. Renewable Energy, 167, 146–161. https://doi.org/10.1016/j.renene.2020.11.067Peter H. Raven, Ray Franklin Evert, S. E. E. (1992). Biología de las plantas. Bogotá. https://books.google.com.co/books?id=xvNd3udrh1YC&pg=PA521&dq=Componentes+para+la+Transferencia+de+Electrones&hl=es-419&sa=X&ved=2ahUKEwixpdj4wLfvAhXIslkKHbO_D9IQ6AEwAHoECAAQAg#v=onepage&q=Componentes para la Transferencia de Electrones&f=falsePetrovič, U. (2015). Next-generation biofuels: A new challenge for yeast. Yeast, 32(9), 583–593. https://doi.org/10.1002/yea.3082Piyare, R., Murphy, A. L., Tosato, P., & Brunelli, D. (2017). Plug into a Plant: Using a Plant Microbial Fuel Cell and a Wake-Up Radio for an Energy Neutral Sensing System. Proceedings - 2017 IEEE 42nd Conference on Local Computer Networks Workshops, LCN Workshops 2017, 18–25. https://doi.org/10.1109/LCN.Workshops.2017.60Pokorna, D., & Zabranska, J. (2015). Sulfur-oxidizing bacteria in environmental technology. In Biotechnology Advances (Vol. 33, Issue 6, pp. 1246–1259). Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2015.02.007Potter, M. C. (1911a). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 84(571), 260–276. https://doi.org/10.1098/rspb.1911.0073Potter, M. C. (1911b). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 84(571), 260–276. https://doi.org/10.1098/rspb.1911.0073Prasad, J., & Tripathi, R. K. (2019). Energy harvesting from sediment microbial fuel cell to supply uninterruptible regulated power for small devices. International Journal of Energy Research, 43(7), 2821–2831. https://doi.org/10.1002/ER.4370Prasad, J., & Tripathi, R. K. (2020). Voltage control of sediment microbial fuel cell to power the AC load. Journal of Power Sources, 450. https://doi.org/10.1016/j.jpowsour.2020.2277Prasad, J., & Tripathi, R. K. (2021). Scale-up and control the voltage of sediment microbial fuel cell for charging a cell phone. Biosensors and Bioelectronics, 172. https://doi.org/10.1016/j.bios.2020.112767Prathiba, S., Kumar, P. S., & Vo, D. V. N. (2022). Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. Chemosphere, 286(P3), 131856. https://doi.org/10.1016/j.chemosphere.2021.131856Programa Naciones Unidas para el desarrollo. (2019). Objetivo 7: Energía asequible y No contaminante | PNUD. In Objetivos del desarrollo sostenible. https://www1.undp.org/content/undp/es/home/sustainable-development-goals/goal-7-affordable-and-clean-energy.htmlRabaey, K., Lissens, G., Siciliano, S. D., & Verstraete, W. (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology Letters, 25(18), 1531–1535. https://doi.org/10.1023/A:1025484009367Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: Novel biotechnology for energy generation. In Trends in Biotechnology (Vol. 23, Issue 6, pp. 291–298). Elsevier Current Trends. https://doi.org/10.1016/j.tibtech.2005.04.008Rahimnejad, M., Bakeri, G., Najafpour, G., Ghasemi, M., & Oh, S. E. (2014). A review on the effect of proton exchange membranes in microbial fuel cells. In Biofuel Research Journal (Vol. 1, Issue 1, pp. 7–15). Green Wave Publishing of Canada. https://doi.org/10.18331/BRJ2015.1.1.4Raj, B.S, Solomon, R.D, Solomon, J., Prathipa. R, & Kumar.M, A. (2013). Production of Electricity From Agricultural Soil and Dye Industrial Effluent Soil Using Microbial Fuel Cell. International Journal of Research in Engineering and Technology, 02(10), 140–148. https://doi.org/10.15623/ijret.2013.0210019Ramirez, J., Angelino Velázquez, D., & Vélez-Zapata, C. (2022). The potential role of peace, justice, and strong institutions in Colombia’s areas of limited statehood for energy diversification towards governance in energy democracy. Energy Policy, 168, 113135. https://doi.org/10.1016/j.enpol.2022.113135Reddy, L., Kumar, S. P., & Wee, Y. (2010). Microbial Fuel Cells (MFCs) - a novel source of energy for new millennium. Undefined.Ritika, B., & Utpal, D. (2014). Biofertilizer, a way towards organic agriculture: A review. African Journal of Microbiology Research, 8(24), 2332–2343. https://doi.org/10.5897/ajmr2013.6374Rojas Flores, S., Aburto Custodio, A., Espilco Soriano, N., Minchola Gallardo, J., Rodríguez Yupanqui, M., Fernando Ugaz, O., & Mendoza Villanueva, K. (2018). Electricidad a partir de plantas vivas. REVISTA CIENTIFI-K, 6(1). https://doi.org/10.18050/cientifi-k.v6n1a4.2018Rudra, R., Kumar, V., & Kundu, P. P. (2015). Acid catalysed cross-linking of poly vinyl alcohol (PVA) by glutaraldehyde: effect of crosslink density on the characteristics of PVA membranes used in single chambered microbial fuel cells. RSC Advances, 5(101), 83436–83447. https://doi.org/10.1039/c5ra16068eRusyn, I. (2021). Role of microbial community and plant species in performance of plant microbial fuel cells. In Renewable and Sustainable Energy Reviews (Vol. 152). Elsevier Ltd. https://doi.org/10.1016/j.rser.2021.111697Sampieri Roberto Hernández. (n.d.). Metodologia-de-la-investigacion-sexta-edicion.Sampieri et al.Sánchez R., & Guerra P. (2022). Pseudomonas spp. benéficas en la agricultura. 715–725.Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 356, 225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109Santos, A. M., Martín-Sastre, C., & González-Arechavala, Y. (2014). Uso y aplicaciones potenciales de las microalgas. Anales de Mecanica y Electricidad, 91(1), 20–28.Sarma, P. J., & Mohanty, K. (2019). An insight into plant microbial fuel cells. In Bioelectrochemical Interface Engineering (pp. 137–148). wiley. https://doi.org/10.1002/9781119611103.ch8Sayed, E. T., Barakat, N. A. M., Abdelkareem, M. A., Fouad, H., & Nakagawa, N. (2015). Yeast extract as an effective and safe mediator for the baker’s-yeast-based microbial fuel cell. Industrial and Engineering Chemistry Research, 54(12), 3116–3122. https://doi.org/10.1021/ie5042325Schiffer, H.-W., Kober, T., & Panos, E. (2018). World Energy Council’s Global Energy Scenarios to 2060. Zeitschrift Für Energiewirtschaft, 42(2), 91–102. https://doi.org/10.1007/s12398-018-0225-3Shaikh, R., Rizvi, A., Quraishi, M., Pandit, S., Mathuriya, A. S., Gupta, P. K., Singh, J., & Prasad, R. (2021). Bioelectricity production using plant-microbial fuel cell: Present state of art. South African Journal of Botany, 140, 393–408. https://doi.org/10.1016/j.sajb.2020.09.025Shi, R., Li, J., Jiang, J., Mehmood, K., Liu, Y., Xu, R., & Qian, W. (2017). Characteristics of biomass ashes from different materials and their ameliorative effects on acid soils. Journal of Environmental Sciences (China), 55, 294–302. https://doi.org/10.1016/j.jes.2016.07.015Shyu, C.-W. (2021). A framework for ‘right to energy’’ to meet UN SDG7: Policy implications to meet basic human energy needs, eradicate energy poverty, enhance energy justice, and uphold energy democracy.’ Energy Research & Social Science, 79(July), 102199. https://doi.org/10.1016/j.erss.2021.102199Srivastava, R. K., Boddula, R., & Pothu, R. (2022). Microbial fuel cells: Technologically advanced devices and approach for sustainable/renewable energy development. Energy Conversion and Management: X, 13. https://doi.org/10.1016/j.ecmx.2021.100160Sulistiyawati, I., Laila Rahayu, N., & Septiana Purwitaningrum, F. (2020). Produksi Biolistrik menggunakan Microbial Fuel Cell (MFC) Lactobacillus bulgaricus dengan Substrat Limbah Tempe dan Tahu. https://doi.org/10.20884/1.mib.2020.37.2.1147Tang, L., Su, C., Chen, Y., Xian, Y., Hui, X., Ye, Z., Chen, M., Zhu, F., & Zhong, H. (2021). Influence of biodegradable polybutylene succinate and non-biodegradable polyvinyl chloride microplastics on anammox sludge: Performance evaluation, suppression effect and metagenomic analysis. Journal of Hazardous Materials, 401(May 2020), 123337. https://doi.org/10.1016/j.jhazmat.2020.123337Tapia, N. F., Rojas, C., Bonilla, C. A., & Vargas, I. T. (2018). A new method for sensing soil water content in green roofs using plant microbial fuel cells. Sensors (Switzerland), 18(1), 1–9. https://doi.org/10.3390/s18010071Taşkan, B. (2020). Increased power generation from a new sandwich-type microbial fuel cell (ST-MFC) with a membrane-aerated cathode. Biomass and Bioenergy, 142, 105781. https://doi.org/10.1016/j.biombioe.2020.105781Thapa, B. sen, Kim, T., Pandit, S., Song, Y. E., Afsharian, Y. P., Rahimnejad, M., Kim, J. R., & Oh, S. E. (2022). Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry. Bioresource Technology, 347(December 2021), 126579. https://doi.org/10.1016/j.biortech.2021.126579The next generation of microbial fuel cells | EVOBLISS Project | Results in brief | FP7 | CORDIS | European Commission. (2018). https://cordis.europa.eu/article/id/241030-the-next-generation-of-microbial-fuel-cellsTommasi, T., & Lombardelli, G. (2017). Energy sustainability of Microbial Fuel Cell (MFC): A case study. https://doi.org/10.1016/j.jpowsour.2017.03.122Tyagi, A., Dwivedi, S. P., Mishra, S., & Srivastav, A. (2012). Studies on the optimization of bioelectricity production from industrial and domestic waste using immobilization of microbial cells. ISABB Journal of Biotechnology and Bioinformatics, 2(2), 18–25. https://doi.org/10.5897/ISAAB-JBB11.019Unidad de Planeación Minero-Energética UPME. (2021). UPME_Proyeccion_Demanda_Energia_Junio_2021.Unidas, N. (2022). Temas estadísticos de la CEPAL No 5. La energía de América Latina y el Caribe: acceso renovabilidad y eficiencia.UPME. (2015). Plan Energetico Nacional Colombia: Ideario Energético 2050. Unidad de Planeación Minero-Energética, Republica de Colombia, 184. http://www.upme.gov.co/Docs/PEN/PEN_IdearioEnergetico2050.pdfVaghari, H., Jafarizadeh-Malmiri, H., Berenjian, A., & Anarjan, N. (2013). Recent advances in application of chitosan in fuel cells. Sustainable Chemical Processes, 1(1). https://doi.org/10.1186/2043-7129-1-16Van Limbergen, T., Bonné, R., Hustings, J., Valcke, R., Thijs, S., Vangronsveld, J., & Manca, J. v. (2022). Plant microbial fuel cells from the perspective of photovoltaics: Efficiency, power, and applications. In Renewable and Sustainable Energy Reviews (Vol. 169). Elsevier Ltd. https://doi.org/10.1016/j.rser.2022.112953Veerubhotla, R., Nag, S., & Das, D. (2019). Internet of Things temperature sensor powered by bacterial fuel cells on paper. Journal of Power Sources, 438. https://doi.org/10.1016/j.jpowsour.2019.226947Vilas Boas, J., Oliveira, V. B., Marcon, L. R. C., Pinto, D. P., Simões, M., & Pinto, A. M. F. R. (2015). Effect of operating and design parameters on the performance of a microbial fuel cell with Lactobacillus pentosus. Biochemical Engineering Journal, 104, 34–40. https://doi.org/10.1016/j.bej.2015.05.009Vilas Boas, J., Oliveira, V. B., Marcon, L. R. C., Simões, M., & Pinto, A. M. F. R. (2019). Optimization of a single chamber microbial fuel cell using Lactobacillus pentosus: Influence of design and operating parameters. Science of The Total Environment, 648, 263–270. https://doi.org/10.1016/J.SCITOTENV.2018.08.061Viteri, J. P., Henao, F., Cherni, J., & Dyner, I. (2019). Optimizing the insertion of renewable energy in the off-grid regions of Colombia. Journal of Cleaner Production, 235, 535–548. https://doi.org/10.1016/J.JCLEPRO.2019.06.327Wang, C.-T., Chen, W.-J., & Huang, R.-Y. (2010). Influence of growth curve phase on electricity performance of microbial fuel cell by Escherichia coli. International Journal of Hydrogen Energy, 35(13), 7217–7223. https://doi.org/10.1016/j.ijhydene.2010.01.038Widharyanti, I. D., Hendrawan, M. A., & Christwardana, M. (2020). Membraneless plant microbial fuel cell using water hyacinth (Eichhornia crassipes) for green energy generation and biomass production. International Journal of Renewable Energy Development, 10(1), 71–78. https://doi.org/10.14710/ijred.2021.32403World Organization for Animal Health [OIE]. (2010). E. Coli enterohemorrágica.Yadav, G., Sharma, I., Ghangrekar, M., & Sen, R. (2020). A live bio-cathode to enhance power output steered by bacteria-microalgae synergistic metabolism in microbial fuel cell. Journal of Power Sources, 449(October 2019), 227560. https://doi.org/10.1016/j.jpowsour.2019.227560Yee, M. O., Deutzmann, J., & Spormann, A. (2020). Cultivating electroactive microbes — from fi eld to bench.Zhang, T., Cui, C., Chen, S., Ai, X., Yang, H., Shen, P., & Peng, Z. (2006). A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. Chemical Communications, 21, 2257–2259. https://doi.org/10.1039/b600876cZhong, H., Liu, X., Tian, Y., Zhang, Y., & Liu, C. (2021). Biological power generation and earthworm assisted sludge treatment wetland to remove organic matter in sludge and synchronous power generation. Science of the Total Environment, 776. https://doi.org/10.1016/j.scitotenv.2021.145909Celdas de combustible microbianaOrganismos bioelectroquímicosTransferencia de electronesRizodeposiciónElectrodosMateria orgánicaPublicationORIGINALPotencial de Generación Eléctrica en Celdas de Combustible.pdfPotencial de Generación Eléctrica en Celdas de Combustible.pdfTesisapplication/pdf15368455https://repositorio.cuc.edu.co/bitstreams/7e44b2ca-1e0d-40d5-b1ec-c94d3096dd76/download82e1035ee265a9cf976209273b6dbc56MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/99eca198-4ae0-4251-a7c3-3de7a0aa2811/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTPotencial de Generación Eléctrica en Celdas de Combustible.pdf.txtPotencial de Generación Eléctrica en Celdas de Combustible.pdf.txtExtracted texttext/plain189917https://repositorio.cuc.edu.co/bitstreams/f321ec10-2938-4ecc-9592-78650173de28/downloadd7e50fc51fa9a744569d4794dfc7aac9MD53THUMBNAILPotencial de Generación Eléctrica en Celdas de Combustible.pdf.jpgPotencial de Generación Eléctrica en Celdas de Combustible.pdf.jpgGenerated Thumbnailimage/jpeg8252https://repositorio.cuc.edu.co/bitstreams/957a97af-04ee-4166-8b5f-46dc98ad8458/downloaddb13391bef7b4ae0816846cffa467aacMD5411323/9985oai:repositorio.cuc.edu.co:11323/99852024-09-16 16:39:45.76https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=