Recovery of degraded areas through technosols and mineral nanoparticles: a review
Anthropogenic sources such as urban and agricultural runoff, fossil fuel combustion, domestic and industrial wastewater effluents, and atmospheric deposition generate large volumes of nutrient-rich organic and inorganic waste. In their original state under subsurface conditions, they can be inert an...
- Autores:
-
Gonçalves, Janaína
Moreno Fruto, Carolina
Jaraba Barranco, Mauricio
Silva Oliveira, Marcos Leandro
Gindri Ramos, Claudete
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9209
- Acceso en línea:
- https://hdl.handle.net/11323/9209
https://doi.org/10.3390/su14020993
https://repositorio.cuc.edu.co/
- Palabra clave:
- Technosol
Artificial soil
Sustainability
Solid waste
Degraded soil recovery
Clean production
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_ebab7ac662d9b4cb8ae7d09722ce7432 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9209 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Recovery of degraded areas through technosols and mineral nanoparticles: a review |
title |
Recovery of degraded areas through technosols and mineral nanoparticles: a review |
spellingShingle |
Recovery of degraded areas through technosols and mineral nanoparticles: a review Technosol Artificial soil Sustainability Solid waste Degraded soil recovery Clean production |
title_short |
Recovery of degraded areas through technosols and mineral nanoparticles: a review |
title_full |
Recovery of degraded areas through technosols and mineral nanoparticles: a review |
title_fullStr |
Recovery of degraded areas through technosols and mineral nanoparticles: a review |
title_full_unstemmed |
Recovery of degraded areas through technosols and mineral nanoparticles: a review |
title_sort |
Recovery of degraded areas through technosols and mineral nanoparticles: a review |
dc.creator.fl_str_mv |
Gonçalves, Janaína Moreno Fruto, Carolina Jaraba Barranco, Mauricio Silva Oliveira, Marcos Leandro Gindri Ramos, Claudete |
dc.contributor.author.spa.fl_str_mv |
Gonçalves, Janaína Moreno Fruto, Carolina Jaraba Barranco, Mauricio Silva Oliveira, Marcos Leandro Gindri Ramos, Claudete |
dc.subject.proposal.eng.fl_str_mv |
Technosol Artificial soil Sustainability Solid waste Degraded soil recovery Clean production |
topic |
Technosol Artificial soil Sustainability Solid waste Degraded soil recovery Clean production |
description |
Anthropogenic sources such as urban and agricultural runoff, fossil fuel combustion, domestic and industrial wastewater effluents, and atmospheric deposition generate large volumes of nutrient-rich organic and inorganic waste. In their original state under subsurface conditions, they can be inert and thermodynamically stable, although when some of their components are exposed to surface conditions, they undergo great physicochemical and mineralogical transformations, thereby mobilizing their constituents, which often end up contaminating the environment. These residues can be used in the production of technosols as agricultural inputs and the recovery of degraded areas. Technosol is defined as artificial soil made from organic and inorganic waste, capable of performing environmental and productive functions in a similar way to natural ones. This study presents results of international research on the use of technosol to increase soil fertility levels and recover degraded areas in some countries. The conclusions of the various studies served to expand the field of applicability of this line of research on technosols in contaminated spaces. The review indicated very promising results that support the sustainability of our ecosystem, and the improvement achieved with this procedure in soils is comparable to the hybridization and selection of plants that agriculture has performed for centuries to obtain better harvests. Thus, the use of a technosol presupposes a much faster recovery without the need for any other type of intervention. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-02T20:01:45Z |
dc.date.available.none.fl_str_mv |
2022-06-02T20:01:45Z |
dc.date.issued.none.fl_str_mv |
2022-01-17 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Gonçalves, J.O.; Fruto, C.M.; Barranco, M.J.; Oliveira, M.L.S.; Ramos, C.G. Recovery of Degraded Areas through Technosols and Mineral Nanoparticles: A Review. Sustainability 2022, 14, 993. https://doi.org/10.3390/su14020993 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9209 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.3390/su14020993 |
dc.identifier.doi.spa.fl_str_mv |
10.3390/su14020993 |
dc.identifier.eissn.spa.fl_str_mv |
2071-1050 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Gonçalves, J.O.; Fruto, C.M.; Barranco, M.J.; Oliveira, M.L.S.; Ramos, C.G. Recovery of Degraded Areas through Technosols and Mineral Nanoparticles: A Review. Sustainability 2022, 14, 993. https://doi.org/10.3390/su14020993 10.3390/su14020993 2071-1050 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9209 https://doi.org/10.3390/su14020993 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Sustainability |
dc.relation.references.spa.fl_str_mv |
1. Hoang, A.T.; Nižeti´c, S.; Olcer, A.I.; Ong, H.C.; Chen, W.-H.; Chong, C.T.; Thomas, S.; Bandh, S.A.; Nguyen, X.P. Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications. Energy Policy 2021, 154, 112322. [CrossRef] [PubMed] 2. Chofreh, A.G.; Goni, F.A.; Klemeš, J.J.; Moosavi, S.M.S.; Davoudi, M.; Zeinalnezhad, M. COVID-19 shock: Development of strategic management framework for global energy. Renew. Sustain. Energy Rev. 2021, 139, 110643. [CrossRef] 3. Hoang, A.T.; Nguyen, T.H.; Nguyen, H.P. Scrap tire pyrolysis as a potential strategy for waste management pathway: A review. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 1–18. [CrossRef] 4. Gonçalves, J.O.; da Silva, K.A.; Rios, E.C.; Crispim, M.M.; Dotto, G.L.; de Almeida Pinto, L.A. Chitosan hydrogel scaffold modified with carbon nanotubes and its application for food dyes removal in single and binary aqueous systems. Int. J. Biol. Macromol. 2020, 142, 85–93. [CrossRef] 5. Silva, L.F.; Lozano, L.P.; Oliveira, M.L.; da Boit, K.; Gonçalves, J.O.; Neckel, A. Identification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects. Mar. Pollut. Bull. 2021, 168, 112425. [CrossRef] [PubMed] 6. Gonçalves, J.O.; Crissien, T.J.; Sampaio, C.H.; Oliveira, M.L.; Silva, L.F. The role of roots plants and soil characteristics in coal mining areas: Geochemical and nanomineralogy information still without details. J. Environ. Chem. Eng. 2021, 9, 106539. [CrossRef] 7. Andrade, G.R.P.; Furquim, S.A.C.; Nascimento, T.T.V.; Brito, A.C.; Camargo, G.R.; de Souza, G.C. Transformation of clay minerals in salt-affected soils, Pantanal wetland, Brazil. Geoderma 2020, 371, 114380. [CrossRef] 8. Bujor, L.; Benciu, F.; Vilcu, D.M.; Bogan, E.; Constantin, D.; Grigore, E. Evaluation of the Anthropic Impact on the Environmental– Soil Factor Case Study: Alba Iulia Forest District, Romania. Int. J. Acad. Res. Environ. Geogr. 2021, 8, 11–29. 9. Zamulina, I.V.; Gorovtsov, A.V.; Minkina, T.M.; Mandzhieva, S.S.; Bauer, T.V.; Burachevskaya, M.V. The influence of long-term Zn and Cu contamination in Spolic Technosols on water-soluble organic matter and soil biological activity. Ecotoxicol. Environ. Saf. 2021, 208, 111471. [CrossRef] [PubMed] 10. Firpo, B.A.; Weiler, J.; Schneider, I.A. Technosol made from coal waste as a strategy to plant growth and environmental control. Energy Geosci. 2021, 2, 160–166. [CrossRef] 11. Bolaños-Guerrón, D.; Capa, J.; Flores, L.C. Retention of heavy metals from mine tailings using Technosols prepared with native soils and nanoparticles. Heliyon 2021, 7, e07631. [CrossRef] [PubMed] 12. IUSS Working Group. WRB World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports N; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; Volume 106, ISBN 978-92-5-108369-7. 13. Asensio, V.; Guala, S.; Vega, F.A.; Covelo, E.F. A soil quality index for reclaimed mine soils. Environ. Toxicol. Chem. 2013, 32, 2240–2248. [CrossRef] 14. Hafeez, F.; Spor, A.; Breuil, M.-C.; Schwartz, C.; Martin-Laurent, F.; Philippot, L. Distribution of bacteria and nitrogen-cycling microbial communities along constructed Technosol depth-profiles. J. Hazard. Mater. 2012, 231–232, 88–97. [CrossRef] 15. Xunta de Galicia. 2008. Available online: https://www.xunta.gal/dog/Publicados/2008/20080125/Anuncio58E2_es.html (accessed on 10 October 2021). 16. Macias, F. Recuperación de Suelos Degradados, Reutilización de Residuos Y Secuestro de Carbono. Una Alternativa Integral de Mejora de la Calidad Ambiental; Recursos Rurais Serie Cursos 1; Instituto de Biodiversidade Agraria e Desenvolvemento Rural (IBADER): Lugo, Spain, 2004; pp. 49–56. 17. Macías, F.; Macías-García, F.; Bao, M.; Camps, M. Tecnosoles, Biocarbones Y Humedales Reactivos Diseñados, Formulados Y Elaborados “A la Carta Y a Imagen de Suelos Naturales” Para la Recuperación de Suelos, Aguas Y Ecosistemas Degradados O Contaminados; Laboratorio de Tecnología Ambiental, Instituto de Investigaciones Tecnológicas, USC. Dpto. Ingeniería Química, USC. Centro de Valorización Ambiental del Norte, Massey University: Palmerston, New Zealand, 2016. 18. VATOP. 2020. Available online: https://cvatop.es/restauracion-mina-touro (accessed on 12 October 2021). 19. Ruiz, F.; Perlatti, F.; Oliveira, D.P.; Ferreira, T.O. Revealing Tropical Technosols as an Alternative for Mine Reclamation and Waste Management. Minerals 2020, 10, 110. [CrossRef] 20. Villenave, C.; Séré, G.; Schwartz, C.; Watteau, F.; Jimenez, A.; Cortet, J. Rapid Changes in Soil Nematodes in the First Years after Technosol Construction for the Remediation of an Industrial Wasteland. Eurasian Soil Sci. 2018, 51, 1266–1273. [CrossRef] 21. Asensio, V.; Flórido, F.G.; Ruiz, F.; Perlatti, F.; Otero, X.L.; Oliveira, D.P.; Ferreira, T.O. The potential of a Technosol and tropical native trees for reclamation of copper-polluted soils. Chemosphere 2019, 220, 892–899. [CrossRef] 22. FAO. World Reference Base for Soil Resources; FAO: Rome, Italy, 2006. 23. Martinat, S.; Dvorak, P.; Frantal, B.; Klusacek, P.; Kunc, J.; Navratil, J.; Osman, R.; Tureckova, K.; Reed, M. Sustainable urban development in a city affected by heavy industry and mining? Case study of brownfields in Karvina, Czech Republic. J. Clean. Prod. 2016, 118, 78–87. [CrossRef] 24. Kozłowski, M.; Otremba, K.; Tatu´sko-Krygier, N.; Komisarek, J.; Wiatrowska, K. The effect of an extended agricultural reclamation on changes in physical properties of technosols in post-lignite-mining areas: A case study from central Europe. Geoderma 2022, 410, 115664. [CrossRef] 25. Forján, R.; Rodríguez-Vila, A.; Covelo, E.F. Increasing the Nutrient Content in a Mine Soil Through the Application of Technosol and Biochar and Grown with Brassica juncea L. Waste Biomass Valorization 2019, 10, 103–119. [CrossRef] 26. Soria, R.; González-Pérez, J.A.; de la Rosa, J.M.; Emeterio, L.M.S.; Domene, M.A.; Ortega, R.; Miralles, I. Effects of technosols based on organic amendments addition for the recovery of the functionality of degraded quarry soils under semiarid Mediterranean climate: A field study. Sci. Total Environ. 2021, 151572. [CrossRef] [PubMed] 27. Slukovskaya, M.V.; Vasenev, V.I.; Ivashchenko, K.V.; Morev, D.V.; Drogobuzhskaya, S.V.; Ivanova, L.A.; Kremenetskaya, I.P. Technosols on mining wastes in the subarctic: Efficiency of remediation under Cu-Ni atmospheric pollution. Int. Soil Water Conserv. Res. 2019, 7, 297–307. [CrossRef] 28. Vidal-Beaudet, L.; Rokia, S.; Nehls, T.; Schwartz, C. Aggregation and availability of phosphorus in a Technosol constructed from urban wastes. J. Soils Sediments 2018, 18, 456–466. [CrossRef] 29. Ahirwal, J.; Kumar, A.; Pietrzykowski, M.; Maiti, S.K. Reclamation of coal mine spoil and its effect on Technosol quality and carbon sequestration: A case study from India. Environ. Sci. Pollut. Res. 2018, 25, 27992–28003. [CrossRef] 30. Fourvel, G.J.; Vidal-Beaudet, L.; Le Bocq, A.; Thery, F.; Brochier, V.; Cannavo, P. Fertilidad de tecnosoles construidos con sedimentos de presas para el enverdecimiento urbano y la recuperación de tierras. J. Soils Sediments 2019, 19, 3178–3192. [CrossRef] 31. Cortinhas, A.; Caperta, A.D.; Teixeira, G.; Carvalho, L.; Abreu, M.M. Harnessing sediments of coastal aquaculture ponds through technosols construction for halophyte cultivation using saline water irrigation. J. Environ. Manag. 2020, 261, 109907. [CrossRef] 32. Ruiz, F.; Cherubin, M.R.; Ferreira, T.O. Soil quality assessment of constructed Technosols: Towards the validation of a promising strategy for land reclamation, waste management and the recovery of soil functions. J. Environ. Manag. 2020, 276, 111344. [CrossRef] [PubMed] 33. Uzarowicz, Ł.; Woli ´nska, A.; Bło ´nska, E.; Szafranek-Nakonieczna, A.; Ku ´zniar, A.; Słodczyk, Z.; Kwasowski, W. Technogenic soils (Technosols) developed from mine spoils containing Fe sulphides: Microbiological activity as an indicator of soil development following land reclamation. Appl. Soil Ecol. 2020, 156, 103699. [CrossRef] 34. Santorufo, L.; Joimel, S.; Auclerc, A.; Deremiens, J.; Grisard, G.; Hedde, M.; Nahmani, J.; Pernin, C.; Cortet, J. Early colonization of constructed technosol by microarthropods. Ecol. Eng. 2021, 162, 106174. [CrossRef] 35. Pruvost, C.; Mathieu, J.; Nunan, N.; Gigon, A.; Pando, A.; Lerch, T.Z.; Blouin, M. Tree growth and macrofauna colonization in Technosols constructed from recycled urban wastes. Ecol. Eng. 2020, 153, 105886. [CrossRef] 36. Foti, L.; Dubs, F.; Gignoux, J.; Lata, J.-C.; Lerch, T.Z.; Mathieu, J.; Nold, F.; Nunan, N.; Raynaud, X.; Abbadie, L.; et al. Trace element concentrations along a gradient of urban pressure in forest and lawn soils of the Paris region (France). Sci. Total Environ. 2017, 598, 938–948. [CrossRef] [PubMed] 37. Benhabylès, L.; Djebbar, R.; Miard, F.; Nandillon, R.; Morabito, D.; Bourgerie, S. Biochar and compost effects on the remediative capacities of Oxalis pes-caprae L. growing on mining technosol polluted by Pb and As. Environ. Sci. Pollut. Res. 2020, 27, 30133–30144. [CrossRef] 38. Lebrun, M.; Miard, F.; Nandillon, R.; Morabito, D.; Bourgerie, S. Biochar Application Rate: Improving Soil Fertility and Linum usitatissimum Growth on an Arsenic and Lead Contaminated Technosol. Int. J. Environ. Res. 2021, 15, 125–134. [CrossRef] 39. Bodlák, L.; K´rováková, K.; Kobesová, M.; Štástny, J.; Pecharov ˆ á, E. SOC content—An appropriate tool for evaluating the soil quality in a reclaimed post-mining landscape. Ecol. Eng. 2012, 43, 53–59. [CrossRef] 40. Yin, N.; Zhang, Z.; Wang, L.; Qian, K. Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ashreconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation. Environ. Sci. Pollut. Res. 2016, 23, 17840–17849. [CrossRef] [PubMed] 41. Halecki, W.; Klatka, S. Aplication of Soil Productivity Index after Eight Years of Soil Reclamation with Sewage Sludge Amendments. Environ. Manag. 2021, 67, 822–832. [CrossRef] 42. Forján, R.; Rodríguez-Vila, A.; Cerqueira, B.; Covelo, E.F. Effects of compost and technosol amendments on metal concentrations in a mine soil planted with Brassica juncea L. Environ. Sci. Pollut. Res. 2018, 25, 19713–19727. [CrossRef] [PubMed] 43. Nandillon, R.; Lebrun, M.; Miard, F.; Gaillard, M.; Sabatier, S.; Villar, M.; Bourgerie, S.; Morabito, D. Capability of amendments (biochar, compost and garden soil) added to a mining technosol contaminated by Pb and As to allow poplar seed (Populus nigra L.) germination. Environ. Monit. Assess. 2019, 191, 465. [CrossRef] [PubMed] 44. Uzarowicz, Ł. Microscopic and microchemical study of iron sulphide weathering in a chronosequence of technogenic and natural soils. Geoderma 2013, 197, 137–150. [CrossRef] 45. Séré, G.; Schwartz, C.; Ouvrard, S.; Renat, J.-C.; Watteau, F.; Villemin, G.; Morel, J.L. Early pedogenic evolution of constructed Technosols. J. Soils Sediments 2010, 10, 1246–1254. [CrossRef] 46. Huot, H.; Simonnot, M.-O.; Morel, J.L. Pedogenetic Trends in Soils Formed in Technogenic Parent Materials. Soil Sci. 2015, 180, 182–192. [CrossRef] 47. Rennert, T.; Kaufhold, S.; Händel, M.; Schuth, S.; Meißner, S.; Totsche, K.U. Characterization of a Technosol developed from deposited flue-dust slurry and release of inorganic contaminants. J. Plant Nutr. Soil Sci. 2011, 174, 721–731. [CrossRef] 48. Huot, H.; Simonnot, M.-O.; Watteau, F.; Marion, P.; Yvon, J.; De Donato, P.; Morel, J.L. Early transformation and transfer processes in a Technosol developing on iron industry deposits. Eur. J. Soil Sci. 2014, 65, 470–484. [CrossRef] 49. Scalenghe, R.; Ferraris, S. The First Forty Years of a Technosol. Pedosphere 2009, 19, 40–52. [CrossRef] 50. 5Hoang, A.T.; Nižeti´c, S.; Cheng, C.K.; Luque, R.; Thomas, S.; Banh, T.L.; Nguyen, X.P. Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review. Chemosphere 2022, 287, 131959. 51. Weiler, J.; Firpo, B.A.; Schneider, I.A. Technosol as an integrated management tool for turning urban and coal mining waste into a resource. Miner. Eng. 2020, 147, 106179. [CrossRef] 52. Pereira, H.A.; Hernandes, P.R.T.; Netto, M.S.; Reske, G.D.; Vieceli, V.; Oliveira, L.F.S.; Dotto, G.L. Adsorbents for glyphosate removal in contaminated waters: A review. Environ. Chem. Lett. 2020, 19, 1525–1543. [CrossRef] 53. Streit, A.F.; Collazzo, G.C.; Druzian, S.P.; Verdi, R.S.; Foletto, E.L.; Oliveira, L.F.; Dotto, G.L. Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry. Chemosphere 2021, 262, 128322. [CrossRef] [PubMed] 54. Sellaoui, L.; Hessou, E.P.; Badawi, M.; Netto, M.S.; Dotto, G.L.; Silva, L.F.O.; Tielens, F.; Ifthikar, J.; Bonilla-Petriciolet, A.; Chen, Z. Trapping of Ag+ , Cu2+, and Co2+ by faujasite zeolite Y: New interpretations of the adsorption mechanism via DFT and statistical modeling investigation. Chem. Eng. J. 2021, 420, 127712. [CrossRef] 55. Ferrari, V.; Taffarel, S.R.; Espinosa-Fuentes, E.; Oliveira, M.L.; Saikia, B.K.; Oliveira, L.F. Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. J. Clean. Prod. 2019, 208, 297–306. [CrossRef] 56. Oliveira, M.L.; Izquierdo, M.; Querol, X.; Lieberman, R.N.; Saikia, B.K.; Silva, L.F.O. Nanoparticles from construction wastes: A problem to health and the environment. J. Clean. Prod. 2019, 219, 236–243. [CrossRef] 57. Rodriguez-Iruretagoiena, A.; de Vallejuelo, S.F.-O.; Gredilla, A.; Ramos, C.G.; Oliveira, M.L.S.; Arana, G.; de Diego, A.; Madariaga, J.M.; Silva, L.F. Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil). Sci. Total Environ. 2015, 508, 374–382. [CrossRef] [PubMed] 58. Sánchez-Peña, N.E.; Narváez-Semanate, J.L.; Pabón-Patiño, D.; Fernández-Mera, J.E.; Oliveira, M.; da Boit, K.; Tutikian, B.; Crissien, T.J.; Pinto, D.; Serrano, I.D.; et al. Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: Experimental evidence. Chemosphere 2018, 191, 1048–1055. [CrossRef] [PubMed] 59. Sehn, J.L.; De Leão, F.B.; Da Boit, K.; Oliveira, M.; Hidalgo, G.E.; Sampaio, C.H.; Silva, L.F. Nanomineralogy in the real world: A perspective on nanoparticles in the environmental impacts of coal fire. Chemosphere 2016, 147, 439–443. [CrossRef] [PubMed] 60. Martinello, K.; Oliveira, M.; Molossi, F.A.; Ramos, C.G.; Teixeira, E.C.; Kautzmann, R.M.; Silva, L.F. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci. Total Environ. 2014, 470–471, 444–452. [CrossRef] |
dc.relation.citationendpage.spa.fl_str_mv |
13 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationissue.spa.fl_str_mv |
2 |
dc.relation.citationvolume.spa.fl_str_mv |
14 |
dc.rights.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2022 by the authors. Licensee MDPI, Basel, Switzerland. |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2022 by the authors. Licensee MDPI, Basel, Switzerland. https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
13 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
MDPI AG |
dc.publisher.place.spa.fl_str_mv |
Switzerland |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.mdpi.com/2071-1050/14/2/993 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/6e831755-4c20-4c43-b18e-f513c5152d61/download https://repositorio.cuc.edu.co/bitstreams/6de0adc0-89d2-432c-b01f-ff233590ae0c/download https://repositorio.cuc.edu.co/bitstreams/44da3b08-38bc-402d-8156-1cc9b68e450d/download https://repositorio.cuc.edu.co/bitstreams/2f95a37f-0361-400c-afe2-84389d880cb3/download |
bitstream.checksum.fl_str_mv |
057d7285b496f047128ef521d92a135b e30e9215131d99561d40d6b0abbe9bad 2a1fe561306bc1310c6cc2cbc2c6a0cc 7d331b448e87b4bbfe3f39dbbc4f45ad |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760846223704064 |
spelling |
Gonçalves, JanaínaMoreno Fruto, CarolinaJaraba Barranco, MauricioSilva Oliveira, Marcos LeandroGindri Ramos, Claudete2022-06-02T20:01:45Z2022-06-02T20:01:45Z2022-01-17Gonçalves, J.O.; Fruto, C.M.; Barranco, M.J.; Oliveira, M.L.S.; Ramos, C.G. Recovery of Degraded Areas through Technosols and Mineral Nanoparticles: A Review. Sustainability 2022, 14, 993. https://doi.org/10.3390/su14020993https://hdl.handle.net/11323/9209https://doi.org/10.3390/su1402099310.3390/su140209932071-1050Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Anthropogenic sources such as urban and agricultural runoff, fossil fuel combustion, domestic and industrial wastewater effluents, and atmospheric deposition generate large volumes of nutrient-rich organic and inorganic waste. In their original state under subsurface conditions, they can be inert and thermodynamically stable, although when some of their components are exposed to surface conditions, they undergo great physicochemical and mineralogical transformations, thereby mobilizing their constituents, which often end up contaminating the environment. These residues can be used in the production of technosols as agricultural inputs and the recovery of degraded areas. Technosol is defined as artificial soil made from organic and inorganic waste, capable of performing environmental and productive functions in a similar way to natural ones. This study presents results of international research on the use of technosol to increase soil fertility levels and recover degraded areas in some countries. The conclusions of the various studies served to expand the field of applicability of this line of research on technosols in contaminated spaces. The review indicated very promising results that support the sustainability of our ecosystem, and the improvement achieved with this procedure in soils is comparable to the hybridization and selection of plants that agriculture has performed for centuries to obtain better harvests. Thus, the use of a technosol presupposes a much faster recovery without the need for any other type of intervention.13 páginasapplication/pdfengMDPI AGSwitzerlandAtribución 4.0 Internacional (CC BY 4.0)© 2022 by the authors. Licensee MDPI, Basel, Switzerland.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Recovery of degraded areas through technosols and mineral nanoparticles: a reviewArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.mdpi.com/2071-1050/14/2/993Sustainability1. Hoang, A.T.; Nižeti´c, S.; Olcer, A.I.; Ong, H.C.; Chen, W.-H.; Chong, C.T.; Thomas, S.; Bandh, S.A.; Nguyen, X.P. Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications. Energy Policy 2021, 154, 112322. [CrossRef] [PubMed]2. Chofreh, A.G.; Goni, F.A.; Klemeš, J.J.; Moosavi, S.M.S.; Davoudi, M.; Zeinalnezhad, M. COVID-19 shock: Development of strategic management framework for global energy. Renew. Sustain. Energy Rev. 2021, 139, 110643. [CrossRef]3. Hoang, A.T.; Nguyen, T.H.; Nguyen, H.P. Scrap tire pyrolysis as a potential strategy for waste management pathway: A review. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 1–18. [CrossRef]4. Gonçalves, J.O.; da Silva, K.A.; Rios, E.C.; Crispim, M.M.; Dotto, G.L.; de Almeida Pinto, L.A. Chitosan hydrogel scaffold modified with carbon nanotubes and its application for food dyes removal in single and binary aqueous systems. Int. J. Biol. Macromol. 2020, 142, 85–93. [CrossRef]5. Silva, L.F.; Lozano, L.P.; Oliveira, M.L.; da Boit, K.; Gonçalves, J.O.; Neckel, A. Identification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects. Mar. Pollut. Bull. 2021, 168, 112425. [CrossRef] [PubMed]6. Gonçalves, J.O.; Crissien, T.J.; Sampaio, C.H.; Oliveira, M.L.; Silva, L.F. The role of roots plants and soil characteristics in coal mining areas: Geochemical and nanomineralogy information still without details. J. Environ. Chem. Eng. 2021, 9, 106539. [CrossRef]7. Andrade, G.R.P.; Furquim, S.A.C.; Nascimento, T.T.V.; Brito, A.C.; Camargo, G.R.; de Souza, G.C. Transformation of clay minerals in salt-affected soils, Pantanal wetland, Brazil. Geoderma 2020, 371, 114380. [CrossRef]8. Bujor, L.; Benciu, F.; Vilcu, D.M.; Bogan, E.; Constantin, D.; Grigore, E. Evaluation of the Anthropic Impact on the Environmental– Soil Factor Case Study: Alba Iulia Forest District, Romania. Int. J. Acad. Res. Environ. Geogr. 2021, 8, 11–29.9. Zamulina, I.V.; Gorovtsov, A.V.; Minkina, T.M.; Mandzhieva, S.S.; Bauer, T.V.; Burachevskaya, M.V. The influence of long-term Zn and Cu contamination in Spolic Technosols on water-soluble organic matter and soil biological activity. Ecotoxicol. Environ. Saf. 2021, 208, 111471. [CrossRef] [PubMed]10. Firpo, B.A.; Weiler, J.; Schneider, I.A. Technosol made from coal waste as a strategy to plant growth and environmental control. Energy Geosci. 2021, 2, 160–166. [CrossRef]11. Bolaños-Guerrón, D.; Capa, J.; Flores, L.C. Retention of heavy metals from mine tailings using Technosols prepared with native soils and nanoparticles. Heliyon 2021, 7, e07631. [CrossRef] [PubMed]12. IUSS Working Group. WRB World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports N; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; Volume 106, ISBN 978-92-5-108369-7.13. Asensio, V.; Guala, S.; Vega, F.A.; Covelo, E.F. A soil quality index for reclaimed mine soils. Environ. Toxicol. Chem. 2013, 32, 2240–2248. [CrossRef]14. Hafeez, F.; Spor, A.; Breuil, M.-C.; Schwartz, C.; Martin-Laurent, F.; Philippot, L. Distribution of bacteria and nitrogen-cycling microbial communities along constructed Technosol depth-profiles. J. Hazard. Mater. 2012, 231–232, 88–97. [CrossRef]15. Xunta de Galicia. 2008. Available online: https://www.xunta.gal/dog/Publicados/2008/20080125/Anuncio58E2_es.html (accessed on 10 October 2021).16. Macias, F. Recuperación de Suelos Degradados, Reutilización de Residuos Y Secuestro de Carbono. Una Alternativa Integral de Mejora de la Calidad Ambiental; Recursos Rurais Serie Cursos 1; Instituto de Biodiversidade Agraria e Desenvolvemento Rural (IBADER): Lugo, Spain, 2004; pp. 49–56.17. Macías, F.; Macías-García, F.; Bao, M.; Camps, M. Tecnosoles, Biocarbones Y Humedales Reactivos Diseñados, Formulados Y Elaborados “A la Carta Y a Imagen de Suelos Naturales” Para la Recuperación de Suelos, Aguas Y Ecosistemas Degradados O Contaminados; Laboratorio de Tecnología Ambiental, Instituto de Investigaciones Tecnológicas, USC. Dpto. Ingeniería Química, USC. Centro de Valorización Ambiental del Norte, Massey University: Palmerston, New Zealand, 2016.18. VATOP. 2020. Available online: https://cvatop.es/restauracion-mina-touro (accessed on 12 October 2021).19. Ruiz, F.; Perlatti, F.; Oliveira, D.P.; Ferreira, T.O. Revealing Tropical Technosols as an Alternative for Mine Reclamation and Waste Management. Minerals 2020, 10, 110. [CrossRef]20. Villenave, C.; Séré, G.; Schwartz, C.; Watteau, F.; Jimenez, A.; Cortet, J. Rapid Changes in Soil Nematodes in the First Years after Technosol Construction for the Remediation of an Industrial Wasteland. Eurasian Soil Sci. 2018, 51, 1266–1273. [CrossRef]21. Asensio, V.; Flórido, F.G.; Ruiz, F.; Perlatti, F.; Otero, X.L.; Oliveira, D.P.; Ferreira, T.O. The potential of a Technosol and tropical native trees for reclamation of copper-polluted soils. Chemosphere 2019, 220, 892–899. [CrossRef]22. FAO. World Reference Base for Soil Resources; FAO: Rome, Italy, 2006.23. Martinat, S.; Dvorak, P.; Frantal, B.; Klusacek, P.; Kunc, J.; Navratil, J.; Osman, R.; Tureckova, K.; Reed, M. Sustainable urban development in a city affected by heavy industry and mining? Case study of brownfields in Karvina, Czech Republic. J. Clean. Prod. 2016, 118, 78–87. [CrossRef]24. Kozłowski, M.; Otremba, K.; Tatu´sko-Krygier, N.; Komisarek, J.; Wiatrowska, K. The effect of an extended agricultural reclamation on changes in physical properties of technosols in post-lignite-mining areas: A case study from central Europe. Geoderma 2022, 410, 115664. [CrossRef]25. Forján, R.; Rodríguez-Vila, A.; Covelo, E.F. Increasing the Nutrient Content in a Mine Soil Through the Application of Technosol and Biochar and Grown with Brassica juncea L. Waste Biomass Valorization 2019, 10, 103–119. [CrossRef]26. Soria, R.; González-Pérez, J.A.; de la Rosa, J.M.; Emeterio, L.M.S.; Domene, M.A.; Ortega, R.; Miralles, I. Effects of technosols based on organic amendments addition for the recovery of the functionality of degraded quarry soils under semiarid Mediterranean climate: A field study. Sci. Total Environ. 2021, 151572. [CrossRef] [PubMed]27. Slukovskaya, M.V.; Vasenev, V.I.; Ivashchenko, K.V.; Morev, D.V.; Drogobuzhskaya, S.V.; Ivanova, L.A.; Kremenetskaya, I.P. Technosols on mining wastes in the subarctic: Efficiency of remediation under Cu-Ni atmospheric pollution. Int. Soil Water Conserv. Res. 2019, 7, 297–307. [CrossRef]28. Vidal-Beaudet, L.; Rokia, S.; Nehls, T.; Schwartz, C. Aggregation and availability of phosphorus in a Technosol constructed from urban wastes. J. Soils Sediments 2018, 18, 456–466. [CrossRef]29. Ahirwal, J.; Kumar, A.; Pietrzykowski, M.; Maiti, S.K. Reclamation of coal mine spoil and its effect on Technosol quality and carbon sequestration: A case study from India. Environ. Sci. Pollut. Res. 2018, 25, 27992–28003. [CrossRef]30. Fourvel, G.J.; Vidal-Beaudet, L.; Le Bocq, A.; Thery, F.; Brochier, V.; Cannavo, P. Fertilidad de tecnosoles construidos con sedimentos de presas para el enverdecimiento urbano y la recuperación de tierras. J. Soils Sediments 2019, 19, 3178–3192. [CrossRef]31. Cortinhas, A.; Caperta, A.D.; Teixeira, G.; Carvalho, L.; Abreu, M.M. Harnessing sediments of coastal aquaculture ponds through technosols construction for halophyte cultivation using saline water irrigation. J. Environ. Manag. 2020, 261, 109907. [CrossRef]32. Ruiz, F.; Cherubin, M.R.; Ferreira, T.O. Soil quality assessment of constructed Technosols: Towards the validation of a promising strategy for land reclamation, waste management and the recovery of soil functions. J. Environ. Manag. 2020, 276, 111344. [CrossRef] [PubMed]33. Uzarowicz, Ł.; Woli ´nska, A.; Bło ´nska, E.; Szafranek-Nakonieczna, A.; Ku ´zniar, A.; Słodczyk, Z.; Kwasowski, W. Technogenic soils (Technosols) developed from mine spoils containing Fe sulphides: Microbiological activity as an indicator of soil development following land reclamation. Appl. Soil Ecol. 2020, 156, 103699. [CrossRef]34. Santorufo, L.; Joimel, S.; Auclerc, A.; Deremiens, J.; Grisard, G.; Hedde, M.; Nahmani, J.; Pernin, C.; Cortet, J. Early colonization of constructed technosol by microarthropods. Ecol. Eng. 2021, 162, 106174. [CrossRef]35. Pruvost, C.; Mathieu, J.; Nunan, N.; Gigon, A.; Pando, A.; Lerch, T.Z.; Blouin, M. Tree growth and macrofauna colonization in Technosols constructed from recycled urban wastes. Ecol. Eng. 2020, 153, 105886. [CrossRef]36. Foti, L.; Dubs, F.; Gignoux, J.; Lata, J.-C.; Lerch, T.Z.; Mathieu, J.; Nold, F.; Nunan, N.; Raynaud, X.; Abbadie, L.; et al. Trace element concentrations along a gradient of urban pressure in forest and lawn soils of the Paris region (France). Sci. Total Environ. 2017, 598, 938–948. [CrossRef] [PubMed]37. Benhabylès, L.; Djebbar, R.; Miard, F.; Nandillon, R.; Morabito, D.; Bourgerie, S. Biochar and compost effects on the remediative capacities of Oxalis pes-caprae L. growing on mining technosol polluted by Pb and As. Environ. Sci. Pollut. Res. 2020, 27, 30133–30144. [CrossRef]38. Lebrun, M.; Miard, F.; Nandillon, R.; Morabito, D.; Bourgerie, S. Biochar Application Rate: Improving Soil Fertility and Linum usitatissimum Growth on an Arsenic and Lead Contaminated Technosol. Int. J. Environ. Res. 2021, 15, 125–134. [CrossRef]39. Bodlák, L.; K´rováková, K.; Kobesová, M.; Štástny, J.; Pecharov ˆ á, E. SOC content—An appropriate tool for evaluating the soil quality in a reclaimed post-mining landscape. Ecol. Eng. 2012, 43, 53–59. [CrossRef]40. Yin, N.; Zhang, Z.; Wang, L.; Qian, K. Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ashreconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation. Environ. Sci. Pollut. Res. 2016, 23, 17840–17849. [CrossRef] [PubMed]41. Halecki, W.; Klatka, S. Aplication of Soil Productivity Index after Eight Years of Soil Reclamation with Sewage Sludge Amendments. Environ. Manag. 2021, 67, 822–832. [CrossRef]42. Forján, R.; Rodríguez-Vila, A.; Cerqueira, B.; Covelo, E.F. Effects of compost and technosol amendments on metal concentrations in a mine soil planted with Brassica juncea L. Environ. Sci. Pollut. Res. 2018, 25, 19713–19727. [CrossRef] [PubMed]43. Nandillon, R.; Lebrun, M.; Miard, F.; Gaillard, M.; Sabatier, S.; Villar, M.; Bourgerie, S.; Morabito, D. Capability of amendments (biochar, compost and garden soil) added to a mining technosol contaminated by Pb and As to allow poplar seed (Populus nigra L.) germination. Environ. Monit. Assess. 2019, 191, 465. [CrossRef] [PubMed]44. Uzarowicz, Ł. Microscopic and microchemical study of iron sulphide weathering in a chronosequence of technogenic and natural soils. Geoderma 2013, 197, 137–150. [CrossRef]45. Séré, G.; Schwartz, C.; Ouvrard, S.; Renat, J.-C.; Watteau, F.; Villemin, G.; Morel, J.L. Early pedogenic evolution of constructed Technosols. J. Soils Sediments 2010, 10, 1246–1254. [CrossRef]46. Huot, H.; Simonnot, M.-O.; Morel, J.L. Pedogenetic Trends in Soils Formed in Technogenic Parent Materials. Soil Sci. 2015, 180, 182–192. [CrossRef]47. Rennert, T.; Kaufhold, S.; Händel, M.; Schuth, S.; Meißner, S.; Totsche, K.U. Characterization of a Technosol developed from deposited flue-dust slurry and release of inorganic contaminants. J. Plant Nutr. Soil Sci. 2011, 174, 721–731. [CrossRef]48. Huot, H.; Simonnot, M.-O.; Watteau, F.; Marion, P.; Yvon, J.; De Donato, P.; Morel, J.L. Early transformation and transfer processes in a Technosol developing on iron industry deposits. Eur. J. Soil Sci. 2014, 65, 470–484. [CrossRef]49. Scalenghe, R.; Ferraris, S. The First Forty Years of a Technosol. Pedosphere 2009, 19, 40–52. [CrossRef]50. 5Hoang, A.T.; Nižeti´c, S.; Cheng, C.K.; Luque, R.; Thomas, S.; Banh, T.L.; Nguyen, X.P. Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review. Chemosphere 2022, 287, 131959.51. Weiler, J.; Firpo, B.A.; Schneider, I.A. Technosol as an integrated management tool for turning urban and coal mining waste into a resource. Miner. Eng. 2020, 147, 106179. [CrossRef]52. Pereira, H.A.; Hernandes, P.R.T.; Netto, M.S.; Reske, G.D.; Vieceli, V.; Oliveira, L.F.S.; Dotto, G.L. Adsorbents for glyphosate removal in contaminated waters: A review. Environ. Chem. Lett. 2020, 19, 1525–1543. [CrossRef]53. Streit, A.F.; Collazzo, G.C.; Druzian, S.P.; Verdi, R.S.; Foletto, E.L.; Oliveira, L.F.; Dotto, G.L. Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry. Chemosphere 2021, 262, 128322. [CrossRef] [PubMed]54. Sellaoui, L.; Hessou, E.P.; Badawi, M.; Netto, M.S.; Dotto, G.L.; Silva, L.F.O.; Tielens, F.; Ifthikar, J.; Bonilla-Petriciolet, A.; Chen, Z. Trapping of Ag+ , Cu2+, and Co2+ by faujasite zeolite Y: New interpretations of the adsorption mechanism via DFT and statistical modeling investigation. Chem. Eng. J. 2021, 420, 127712. [CrossRef]55. Ferrari, V.; Taffarel, S.R.; Espinosa-Fuentes, E.; Oliveira, M.L.; Saikia, B.K.; Oliveira, L.F. Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. J. Clean. Prod. 2019, 208, 297–306. [CrossRef]56. Oliveira, M.L.; Izquierdo, M.; Querol, X.; Lieberman, R.N.; Saikia, B.K.; Silva, L.F.O. Nanoparticles from construction wastes: A problem to health and the environment. J. Clean. Prod. 2019, 219, 236–243. [CrossRef]57. Rodriguez-Iruretagoiena, A.; de Vallejuelo, S.F.-O.; Gredilla, A.; Ramos, C.G.; Oliveira, M.L.S.; Arana, G.; de Diego, A.; Madariaga, J.M.; Silva, L.F. Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil). Sci. Total Environ. 2015, 508, 374–382. [CrossRef] [PubMed]58. Sánchez-Peña, N.E.; Narváez-Semanate, J.L.; Pabón-Patiño, D.; Fernández-Mera, J.E.; Oliveira, M.; da Boit, K.; Tutikian, B.; Crissien, T.J.; Pinto, D.; Serrano, I.D.; et al. Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: Experimental evidence. Chemosphere 2018, 191, 1048–1055. [CrossRef] [PubMed]59. Sehn, J.L.; De Leão, F.B.; Da Boit, K.; Oliveira, M.; Hidalgo, G.E.; Sampaio, C.H.; Silva, L.F. Nanomineralogy in the real world: A perspective on nanoparticles in the environmental impacts of coal fire. Chemosphere 2016, 147, 439–443. [CrossRef] [PubMed]60. Martinello, K.; Oliveira, M.; Molossi, F.A.; Ramos, C.G.; Teixeira, E.C.; Kautzmann, R.M.; Silva, L.F. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci. Total Environ. 2014, 470–471, 444–452. [CrossRef]131214TechnosolArtificial soilSustainabilitySolid wasteDegraded soil recoveryClean productionPublicationORIGINALRecovery of Degraded Areas through Technosols and Mineral Nanoparticles. A Review.pdfRecovery of Degraded Areas through Technosols and Mineral Nanoparticles. A Review.pdfapplication/pdf1017443https://repositorio.cuc.edu.co/bitstreams/6e831755-4c20-4c43-b18e-f513c5152d61/download057d7285b496f047128ef521d92a135bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/6de0adc0-89d2-432c-b01f-ff233590ae0c/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTRecovery of Degraded Areas through Technosols and Mineral Nanoparticles. A Review.pdf.txtRecovery of Degraded Areas through Technosols and Mineral Nanoparticles. A Review.pdf.txttext/plain58100https://repositorio.cuc.edu.co/bitstreams/44da3b08-38bc-402d-8156-1cc9b68e450d/download2a1fe561306bc1310c6cc2cbc2c6a0ccMD53THUMBNAILRecovery of Degraded Areas through Technosols and Mineral Nanoparticles. A Review.pdf.jpgRecovery of Degraded Areas through Technosols and Mineral Nanoparticles. A Review.pdf.jpgimage/jpeg16256https://repositorio.cuc.edu.co/bitstreams/2f95a37f-0361-400c-afe2-84389d880cb3/download7d331b448e87b4bbfe3f39dbbc4f45adMD5411323/9209oai:repositorio.cuc.edu.co:11323/92092024-09-17 14:10:08.4https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |