Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island
This study investigates and compares the various combinations of renewable energies (solar, wind) and storage technologies (battery, pumped hydro storage, hybrid storage) for an off-grid power supply system. Four configurations (i.e., single RE source system, double RE source system, single storage,...
- Autores:
-
Shahzad Javed, Muhammad
Ma, Tao
Jurasz, Jakub
Canales, Fausto A
Lin, Shaoquan
Ahmed, Salman
Zhang, Yijie
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7702
- Acceso en línea:
- https://hdl.handle.net/11323/7702
https://doi.org/10.1016/j.renene.2020.10.063
https://repositorio.cuc.edu.co/
- Palabra clave:
- Off-grid renewable energy system
Hybrid pumped battery storage
Particle swarm optimization
Cost of energy
Energy balance analysis
Sensitivity analysis
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_eb68b3b6b6905e06680fd7160728eb6a |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7702 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island |
title |
Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island |
spellingShingle |
Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island Off-grid renewable energy system Hybrid pumped battery storage Particle swarm optimization Cost of energy Energy balance analysis Sensitivity analysis |
title_short |
Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island |
title_full |
Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island |
title_fullStr |
Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island |
title_full_unstemmed |
Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island |
title_sort |
Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island |
dc.creator.fl_str_mv |
Shahzad Javed, Muhammad Ma, Tao Jurasz, Jakub Canales, Fausto A Lin, Shaoquan Ahmed, Salman Zhang, Yijie |
dc.contributor.author.spa.fl_str_mv |
Shahzad Javed, Muhammad Ma, Tao Jurasz, Jakub Canales, Fausto A Lin, Shaoquan Ahmed, Salman Zhang, Yijie |
dc.subject.spa.fl_str_mv |
Off-grid renewable energy system Hybrid pumped battery storage Particle swarm optimization Cost of energy Energy balance analysis Sensitivity analysis |
topic |
Off-grid renewable energy system Hybrid pumped battery storage Particle swarm optimization Cost of energy Energy balance analysis Sensitivity analysis |
description |
This study investigates and compares the various combinations of renewable energies (solar, wind) and storage technologies (battery, pumped hydro storage, hybrid storage) for an off-grid power supply system. Four configurations (i.e., single RE source system, double RE source system, single storage, and double storage system) based on two scenarios (self-discharge equal to 0% and 1%) are considered, and their operational performance is compared and analyzed. The energy management strategy created for the hybrid pumped battery storage (HPBS) considers that batteries cover low energy surplus/shortages while pumped hydro storage (PHS) is the primary energy storage device for serving high-energy generations/deficits. The developed mathematical model is optimized using Particle Swarm Optimization and the performance and results of the optimizer are discussed in particular detail. The results evidence that self-discharge has a significant impact on the cost of energy (13%–50%) for all configurations due to the substantial increase in renewable energy (RE) generators size compared to the energy storage capacity. Even though solar-wind-PHS is the cost-optimal arrangement, it exhibits lower reliability when compared to solar-wind-HPBS. The study reveals the significance of HPBS in the off-grid RE environment, allowing more flexible energy management, enabling to guarantee a 100% power supply with minimum cost and reducing energy curtailment. Additionally, this study presents and discuss the results of a sensitivity analysis conducted by varying load demand and energy balance of all considered configurations is performed, which reveals the effectiveness of the supplementary functionality of both storages in hybrid mode. Overall, the role of energy storage in hybrid mode improved, and the total energy covered by hybrid storage increased (48%), which reduced the direct dependency on variable RE generation. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-01-15T21:46:14Z |
dc.date.available.none.fl_str_mv |
2021-01-15T21:46:14Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7702 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.renene.2020.10.063 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/7702 https://doi.org/10.1016/j.renene.2020.10.063 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] IRENA Renewable Power Generations Costs in 2018 978-92-9260-126-3, International Renewable Energy Agency, Abu Dhabi (2019) 2019 [2] M.S. Javed, T. Ma, J. Jurasz, M.Y. Amin Solar-wind-pumped hydro energy storage systems: review and future perspective Renew. Energy, 148 (2019), pp. 176-192 [3] M.S. Javed, A. Song, T. Ma Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm Energy, 176 (2019), pp. 704-717 [4] M. Fasihi, C. Breyer Baseload electricity and hydrogen supply based on hybrid PV-wind power plants J. Clean. Prod., 243 (2020), p. 118466 [5] T. Ma, H. Yang, L. Lu, J. Peng Optimal design of an autonomous solar–wind-pumped storage power supply system Appl. Energy, 160 (2015), pp. 728-736 [6] M.Z. Jacobson, M.A. Delucchi Providing all global energy with wind, water, and solar power, Part I: technologies, energy resources, quantities and areas of infrastructure, and materials Energy Pol., 39 (2011), pp. 1154-1169 [7] J. Jurasz, F.A. Canales, A. Kies, M. Guezgouz, A. Beluco A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions Sol. Energy, 195 (2020), pp. 703-724 [8] A. Chatzivasileiadi, E. Ampatzi, I. Knight Characteristics of electrical energy storage technologies and their applications in buildings Renew. Sustain. Energy Rev., 25 (2013), pp. 814-830 [9] H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding Progress in electrical energy storage system: a critical review Prog. Nat. Sci., 19 (2009), pp. 291-312 [10] O. Paish Small hydro power: technology and current status Renew. Sustain. Energy Rev., 6 (2002), pp. 537-556 [11] C. Zhang, Y.-L. Wei, P.-F. Cao, M.-C. Lin Energy storage system: current studies on batteries and power condition system Renew. Sustain. Energy Rev., 82 (2018), pp. 3091-3106 [12] J. Baker New technology and possible advances in energy storage Energy Pol., 36 (2008), pp. 4368-4373 [13] A.A.K. Arani, H. Karami, G.B. Gharehpetian, M.S.A. Hejazi Review of Flywheel Energy Storage Systems structures and applications in power systems and microgrids Renew. Sustain. Energy Rev., 69 (2017), pp. 9-18 [14] T. Ma, H. Yang, L. Lu Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems Appl. Energy, 153 (2015), pp. 56-62 [15] I. Janghorban Esfahani, P. Ifaei, J. Kim, C. Yoo Design of hybrid renewable energy systems with battery/hydrogen storage considering practical power losses: a MEPoPA (modified extended-power pinch analysis) Energy, 100 (2016), pp. 40-50 [16] I. San Martín, A. Ursúa, P. Sanchis Integration of fuel cells and supercapacitors in electrical microgrids: analysis, modelling and experimental validation Int. J. Hydrogen Energy, 38 (2013), pp. 11655-11671 [17] G.N. Prodromidis, F.A. Coutelieris Simulations of economical and technical feasibility of battery and flywheel hybrid energy storage systems in autonomous projects Renew. Energy, 39 (2012), pp. 149-153 [18] J. Li, Q. Yang, F. Robinson, F. Liang, M. Zhang, W. Yuan Design and test of a new droop control algorithm for a SMES/battery hybrid energy storage system Energy, 118 (2017), pp. 1110-1122 [19] M. Guezgouz, J. Jurasz, B. Bekkouche, T. Ma, M.S. Javed, A. Kies Optimal hybrid pumped hydro-battery storage scheme for off-grid renewable energy systems Energy Convers. Manag., 199 (2019), p. 112046 [20] X. Luo, J. Wang, M. Dooner, J. Clarke Overview of current development in electrical energy storage technologies and the application potential in power system operation Appl. Energy, 137 (2015), pp. 511-536 [21] T. Ma, M.S. Javed Integrated sizing of hybrid PV-wind-battery system for remote island considering the saturation of each renewable energy resource Energy Convers. Manag., 182 (2019), pp. 178-190 [22] L. Liu, Q. Sun, H. Li, H. Yin, X. Ren, R. Wennersten Evaluating the benefits of integrating floating photovoltaic and pumped storage power system Energy Convers. Manag., 194 (2019), pp. 173-185 [23] S. Ben Elghali, R. Outbib, M. Benbouzid Selecting and optimal sizing of hybridized energy storage systems for tidal energy integration into power grid J. Modern Power Syst. Clean Energy, 7 (2019), pp. 113-122 [24] N. Destro, A. Benato, A. Stoppato, A. Mirandola Components design and daily operation optimization of a hybrid system with energy storages Energy, 117 (2016), pp. 569-577 [25] M. Zare Oskouei, A. Sadeghi Yazdankhah Scenario-based stochastic optimal operation of wind, photovoltaic, pump-storage hybrid system in frequency- based pricing Energy Convers. Manag., 105 (2015), pp. 1105-1114 [26] T. Ma, H. Yang, L. Lu Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island Energy Convers. Manag., 79 (2014), pp. 387-397 [27] T. Ma, H. Yang, L. Lu Study on stand-alone power supply options for an isolated community Int. J. Electr. Power Energy Syst., 65 (2015), pp. 1-11 [28] D. Çelik, M.E. Meral A novel control strategy for grid connected distributed generation system to maximize power delivery capability Energy, 186 (2019), p. 115850 [29] M.S. Javed, T. Ma Techno-economic assessment of a hybrid solar-wind-battery system with genetic algorithm Energy Procedia, 158 (2019), pp. 6384-6392 [30] A. Biswas, A. Kumar Techno-Economic Optimization of a Stand-alone PV/PHS/Battery systems for very low load situation Int. J. Renew. Energy Resour., 7 (2017), pp. 844-856 [31] T. Ma, H. Yang, L. Lu, J. Peng Pumped storage-based standalone photovoltaic power generation system: modeling and techno-economic optimization Appl. Energy, 137 (2015), pp. 649-659 [32] A.S. Aziz, M.F.N. Tajuddin, M.R. Adzman, A. Azmi, M.A.M. Ramli Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: a case study of Iraq Renew. Energy, 138 (2019), pp. 775-792 [33] M. Guezgouz, J. Jurasz, B. Bekkouche Techno-economic and environmental analysis of a hybrid PV-WT-PSH/BB standalone system supplying various loads Energies, 12 (2019), p. 514 [34] Y. Sawle, S. Gupta, A.K. Bohre Socio-techno-economic design of hybrid renewable energy system using optimization techniques Renew. Energy, 119 (2018), pp. 459-472 [35] S. Chen, G. Fang, X. Huang, M. Yan A joint optimal dispatching method of wind-solar-hydro generation system IOP Conf. Ser. Earth Environ. Sci., 227 (2019), Article 032004 [36] S. Mirjalili, S. Saremi, S.M. Mirjalili, LdS. Coelho Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization Expert Syst. Appl., 47 (2016), pp. 106-119 [37] T. Niknam, A.K. Fard, A. Seifi Distribution feeder reconfiguration considering fuel cell/wind/photovoltaic power plants Renew. Energy, 37 (2012), pp. 213-225 [38] A. Maleki, A. Askarzadeh Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: a case study of Rafsanjan, Iran Sustain. Energy Technol. Assess,, 7 (2014), pp. 147-153 [39] G. Zhang, B. Wu, A. Maleki, W. Zhang Simulated annealing-chaotic search algorithm based optimization of reverse osmosis hybrid desalination system driven by wind and solar energies Sol. Energy, 173 (2018), pp. 964-975 [40] A. Maleki, M. Ameri, F. Keynia Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system Renew. Energy, 80 (2015), pp. 552-563 [41] K. Karakoulidis, K. Mavridis, D.V. Bandekas, P. Adoniadis, C. Potolias, N. Vordos Techno-economic analysis of a stand-alone hybrid photovoltaic-diesel–battery-fuel cell power system Renew. Energy, 36 (2011), pp. 2238-2244 [42] I.B. Askari, M. Ameri Techno-economic feasibility analysis of stand-alone renewable energy systems (PV/bat, wind/bat and hybrid PV/wind/bat) in Kerman, Iran Energy Sources B Energy Econ. Plann., 7 (2012), pp. 45-60 [43] S.V. Papaefthymiou, S.A. Papathanassiou Optimum sizing of wind-pumped-storage hybrid power stations in island systems Renew. Energy, 64 (2014), pp. 187-196 [44] S. Lin, T. Ma, M. Shahzad Javed Prefeasibility study of a distributed photovoltaic system with pumped hydro storage for residential buildings Energy Convers. Manag., 222 (2020), p. 113199 [45] T. Ma, H. Yang, L. Lu A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island Appl. Energy, 121 (2014), pp. 149-158 [46] M.S. Javed, D. Zhong, T. Ma, A. Song, S. Ahmed Hybrid pumped hydro and battery storage for renewable energy based power supply system Appl. Energy, 257 (2020), p. 114026 [47] J. Jurasz, B. Ciapała Integrating photovoltaics into energy systems by using a run-off-river power plant with pondage to smooth energy exchange with the power gird Appl. Energy, 198 (2017), pp. 21-35 [48] J. Jurasz Modeling and forecasting energy flow between national power grid and a solar–wind–pumped-hydroelectricity (PV–WT–PSH) energy source Energy Convers. Manag., 136 (2017), pp. 382-394 [49] A. Kaabeche, S. Diaf, R. Ibtiouen Firefly-inspired algorithm for optimal sizing of renewable hybrid system considering reliability criteria Sol. Energy, 155 (2017), pp. 727-738 [50] M.D.A. Al-falahi, S.D.G. Jayasinghe, H. Enshaei A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system Energy Convers. Manag., 143 (2017), pp. 252-274 [51] M.S. Javed, T. Ma, J. Jurasz, S. Ahmed, J. Mikulik Performance comparison of heuristic algorithms for optimization of hybrid off-grid renewable energy systems Energy, 210 (2020), p. 118599 [52] A. Stoppato, G. Cavazzini, G. Ardizzon, A. Rossetti A PSO (particle swarm optimization)-based model for the optimal management of a small PV(Photovoltaic)-pump hydro energy storage in a rural dry area Energy, 76 (2014), pp. 168-174 [53] R. Luna-Rubio, M. Trejo-Perea, D. Vargas-Vázquez, G.J. Ríos-Moreno Optimal sizing of renewable hybrids energy systems: a review of methodologies Sol. Energy, 86 (2012), pp. 1077-1088 [54] Y. Sawle, S.C. Gupta, A.K. Bohre Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system Renew. Sustain. Energy Rev., 81 (2018), pp. 2217-2235 [55] G. Bekele, G. Tadesse Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia Appl. Energy, 97 (2012), pp. 5-15 [56] D.M. Gioutsos, K. Blok, L. van Velzen, S. Moorman Cost-optimal electricity systems with increasing renewable energy penetration for islands across the globe Appl. Energy, 226 (2018), pp. 437-449 57] E.M. Nfah, J.M. Ngundam Feasibility of pico-hydro and photovoltaic hybrid power systems for remote villages in Cameroon Renew. Energy, 34 (2009), pp. 1445-1450 [58] N. Yimen, O. Hamandjoda, L. Meva’a, B. Ndzana, J. Nganhou Analyzing of a photovoltaic/wind/biogas/pumped-hydro off-grid hybrid system for rural electrification in Sub-Saharan Africa—case study of Djoundé in Northern Cameroon Energies, 11 (2018), p. 2644 [59] Kircher KJ. Pumped Hydroelectric Storage Balances a Solar Microgrid. [60] A. Rathore, N. Patidar Reliability assessment using probabilistic modelling of pumped storage hydro plant with PV-Wind based standalone microgrid Int. J. Electr. Power Energy Syst., 106 (2019), pp. 17-32 [61] T. Ma, H. Yang, L. Lu, J. Peng Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong Renew. Energy, 69 (2014), pp. 7-15 |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Renewable Energy |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/abs/pii/S0960148120316293 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/7d94b1f4-07ea-4b85-8538-00beea76e07f/download https://repositorio.cuc.edu.co/bitstreams/a0697550-2b08-49c0-aebc-b733639a0865/download https://repositorio.cuc.edu.co/bitstreams/4b2220e9-7841-48e3-b305-7940a79ada43/download https://repositorio.cuc.edu.co/bitstreams/29fc895d-684a-4ef9-a8d7-70388fb8cec3/download https://repositorio.cuc.edu.co/bitstreams/4773a6f9-b576-4e00-94e0-c6fb24e6cbd4/download |
bitstream.checksum.fl_str_mv |
8acf0242ab47b25ff2d8746534cb0f22 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad d4ae96d34eb26af4bbef1a6c8191c329 cf22adddc338a8981c4caa66c39be03b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760663012311040 |
spelling |
Shahzad Javed, MuhammadMa, TaoJurasz, JakubCanales, Fausto ALin, ShaoquanAhmed, SalmanZhang, Yijie2021-01-15T21:46:14Z2021-01-15T21:46:14Z2021https://hdl.handle.net/11323/7702https://doi.org/10.1016/j.renene.2020.10.063Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This study investigates and compares the various combinations of renewable energies (solar, wind) and storage technologies (battery, pumped hydro storage, hybrid storage) for an off-grid power supply system. Four configurations (i.e., single RE source system, double RE source system, single storage, and double storage system) based on two scenarios (self-discharge equal to 0% and 1%) are considered, and their operational performance is compared and analyzed. The energy management strategy created for the hybrid pumped battery storage (HPBS) considers that batteries cover low energy surplus/shortages while pumped hydro storage (PHS) is the primary energy storage device for serving high-energy generations/deficits. The developed mathematical model is optimized using Particle Swarm Optimization and the performance and results of the optimizer are discussed in particular detail. The results evidence that self-discharge has a significant impact on the cost of energy (13%–50%) for all configurations due to the substantial increase in renewable energy (RE) generators size compared to the energy storage capacity. Even though solar-wind-PHS is the cost-optimal arrangement, it exhibits lower reliability when compared to solar-wind-HPBS. The study reveals the significance of HPBS in the off-grid RE environment, allowing more flexible energy management, enabling to guarantee a 100% power supply with minimum cost and reducing energy curtailment. Additionally, this study presents and discuss the results of a sensitivity analysis conducted by varying load demand and energy balance of all considered configurations is performed, which reveals the effectiveness of the supplementary functionality of both storages in hybrid mode. Overall, the role of energy storage in hybrid mode improved, and the total energy covered by hybrid storage increased (48%), which reduced the direct dependency on variable RE generation.Shahzad Javed, MuhammadMa, TaoJurasz, JakubCanales, Fausto ALin, ShaoquanAhmed, SalmanZhang, Yijieapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Renewable Energyhttps://www.sciencedirect.com/science/article/abs/pii/S0960148120316293Off-grid renewable energy systemHybrid pumped battery storageParticle swarm optimizationCost of energyEnergy balance analysisSensitivity analysisEconomic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote islandArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] IRENA Renewable Power Generations Costs in 2018 978-92-9260-126-3, International Renewable Energy Agency, Abu Dhabi (2019) 2019[2] M.S. Javed, T. Ma, J. Jurasz, M.Y. Amin Solar-wind-pumped hydro energy storage systems: review and future perspective Renew. Energy, 148 (2019), pp. 176-192[3] M.S. Javed, A. Song, T. Ma Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm Energy, 176 (2019), pp. 704-717[4] M. Fasihi, C. Breyer Baseload electricity and hydrogen supply based on hybrid PV-wind power plants J. Clean. Prod., 243 (2020), p. 118466[5] T. Ma, H. Yang, L. Lu, J. Peng Optimal design of an autonomous solar–wind-pumped storage power supply system Appl. Energy, 160 (2015), pp. 728-736[6] M.Z. Jacobson, M.A. Delucchi Providing all global energy with wind, water, and solar power, Part I: technologies, energy resources, quantities and areas of infrastructure, and materials Energy Pol., 39 (2011), pp. 1154-1169[7] J. Jurasz, F.A. Canales, A. Kies, M. Guezgouz, A. Beluco A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions Sol. Energy, 195 (2020), pp. 703-724[8] A. Chatzivasileiadi, E. Ampatzi, I. Knight Characteristics of electrical energy storage technologies and their applications in buildings Renew. Sustain. Energy Rev., 25 (2013), pp. 814-830[9] H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding Progress in electrical energy storage system: a critical review Prog. Nat. Sci., 19 (2009), pp. 291-312[10] O. Paish Small hydro power: technology and current status Renew. Sustain. Energy Rev., 6 (2002), pp. 537-556[11] C. Zhang, Y.-L. Wei, P.-F. Cao, M.-C. Lin Energy storage system: current studies on batteries and power condition system Renew. Sustain. Energy Rev., 82 (2018), pp. 3091-3106[12] J. Baker New technology and possible advances in energy storage Energy Pol., 36 (2008), pp. 4368-4373[13] A.A.K. Arani, H. Karami, G.B. Gharehpetian, M.S.A. Hejazi Review of Flywheel Energy Storage Systems structures and applications in power systems and microgrids Renew. Sustain. Energy Rev., 69 (2017), pp. 9-18[14] T. Ma, H. Yang, L. Lu Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems Appl. Energy, 153 (2015), pp. 56-62[15] I. Janghorban Esfahani, P. Ifaei, J. Kim, C. Yoo Design of hybrid renewable energy systems with battery/hydrogen storage considering practical power losses: a MEPoPA (modified extended-power pinch analysis) Energy, 100 (2016), pp. 40-50[16] I. San Martín, A. Ursúa, P. Sanchis Integration of fuel cells and supercapacitors in electrical microgrids: analysis, modelling and experimental validation Int. J. Hydrogen Energy, 38 (2013), pp. 11655-11671[17] G.N. Prodromidis, F.A. Coutelieris Simulations of economical and technical feasibility of battery and flywheel hybrid energy storage systems in autonomous projects Renew. Energy, 39 (2012), pp. 149-153[18] J. Li, Q. Yang, F. Robinson, F. Liang, M. Zhang, W. Yuan Design and test of a new droop control algorithm for a SMES/battery hybrid energy storage system Energy, 118 (2017), pp. 1110-1122[19] M. Guezgouz, J. Jurasz, B. Bekkouche, T. Ma, M.S. Javed, A. Kies Optimal hybrid pumped hydro-battery storage scheme for off-grid renewable energy systems Energy Convers. Manag., 199 (2019), p. 112046[20] X. Luo, J. Wang, M. Dooner, J. Clarke Overview of current development in electrical energy storage technologies and the application potential in power system operation Appl. Energy, 137 (2015), pp. 511-536[21] T. Ma, M.S. Javed Integrated sizing of hybrid PV-wind-battery system for remote island considering the saturation of each renewable energy resource Energy Convers. Manag., 182 (2019), pp. 178-190[22] L. Liu, Q. Sun, H. Li, H. Yin, X. Ren, R. Wennersten Evaluating the benefits of integrating floating photovoltaic and pumped storage power system Energy Convers. Manag., 194 (2019), pp. 173-185[23] S. Ben Elghali, R. Outbib, M. Benbouzid Selecting and optimal sizing of hybridized energy storage systems for tidal energy integration into power grid J. Modern Power Syst. Clean Energy, 7 (2019), pp. 113-122[24] N. Destro, A. Benato, A. Stoppato, A. Mirandola Components design and daily operation optimization of a hybrid system with energy storages Energy, 117 (2016), pp. 569-577[25] M. Zare Oskouei, A. Sadeghi Yazdankhah Scenario-based stochastic optimal operation of wind, photovoltaic, pump-storage hybrid system in frequency- based pricing Energy Convers. Manag., 105 (2015), pp. 1105-1114[26] T. Ma, H. Yang, L. Lu Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island Energy Convers. Manag., 79 (2014), pp. 387-397[27] T. Ma, H. Yang, L. Lu Study on stand-alone power supply options for an isolated community Int. J. Electr. Power Energy Syst., 65 (2015), pp. 1-11[28] D. Çelik, M.E. Meral A novel control strategy for grid connected distributed generation system to maximize power delivery capability Energy, 186 (2019), p. 115850[29] M.S. Javed, T. Ma Techno-economic assessment of a hybrid solar-wind-battery system with genetic algorithm Energy Procedia, 158 (2019), pp. 6384-6392[30] A. Biswas, A. Kumar Techno-Economic Optimization of a Stand-alone PV/PHS/Battery systems for very low load situation Int. J. Renew. Energy Resour., 7 (2017), pp. 844-856[31] T. Ma, H. Yang, L. Lu, J. Peng Pumped storage-based standalone photovoltaic power generation system: modeling and techno-economic optimization Appl. Energy, 137 (2015), pp. 649-659[32] A.S. Aziz, M.F.N. Tajuddin, M.R. Adzman, A. Azmi, M.A.M. Ramli Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: a case study of Iraq Renew. Energy, 138 (2019), pp. 775-792[33] M. Guezgouz, J. Jurasz, B. Bekkouche Techno-economic and environmental analysis of a hybrid PV-WT-PSH/BB standalone system supplying various loads Energies, 12 (2019), p. 514[34] Y. Sawle, S. Gupta, A.K. Bohre Socio-techno-economic design of hybrid renewable energy system using optimization techniques Renew. Energy, 119 (2018), pp. 459-472[35] S. Chen, G. Fang, X. Huang, M. Yan A joint optimal dispatching method of wind-solar-hydro generation system IOP Conf. Ser. Earth Environ. Sci., 227 (2019), Article 032004[36] S. Mirjalili, S. Saremi, S.M. Mirjalili, LdS. Coelho Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization Expert Syst. Appl., 47 (2016), pp. 106-119[37] T. Niknam, A.K. Fard, A. Seifi Distribution feeder reconfiguration considering fuel cell/wind/photovoltaic power plants Renew. Energy, 37 (2012), pp. 213-225[38] A. Maleki, A. Askarzadeh Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: a case study of Rafsanjan, Iran Sustain. Energy Technol. Assess,, 7 (2014), pp. 147-153[39] G. Zhang, B. Wu, A. Maleki, W. Zhang Simulated annealing-chaotic search algorithm based optimization of reverse osmosis hybrid desalination system driven by wind and solar energies Sol. Energy, 173 (2018), pp. 964-975[40] A. Maleki, M. Ameri, F. Keynia Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system Renew. Energy, 80 (2015), pp. 552-563[41] K. Karakoulidis, K. Mavridis, D.V. Bandekas, P. Adoniadis, C. Potolias, N. Vordos Techno-economic analysis of a stand-alone hybrid photovoltaic-diesel–battery-fuel cell power system Renew. Energy, 36 (2011), pp. 2238-2244[42] I.B. Askari, M. Ameri Techno-economic feasibility analysis of stand-alone renewable energy systems (PV/bat, wind/bat and hybrid PV/wind/bat) in Kerman, Iran Energy Sources B Energy Econ. Plann., 7 (2012), pp. 45-60[43] S.V. Papaefthymiou, S.A. Papathanassiou Optimum sizing of wind-pumped-storage hybrid power stations in island systems Renew. Energy, 64 (2014), pp. 187-196[44] S. Lin, T. Ma, M. Shahzad Javed Prefeasibility study of a distributed photovoltaic system with pumped hydro storage for residential buildings Energy Convers. Manag., 222 (2020), p. 113199[45] T. Ma, H. Yang, L. Lu A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island Appl. Energy, 121 (2014), pp. 149-158[46] M.S. Javed, D. Zhong, T. Ma, A. Song, S. Ahmed Hybrid pumped hydro and battery storage for renewable energy based power supply system Appl. Energy, 257 (2020), p. 114026[47] J. Jurasz, B. Ciapała Integrating photovoltaics into energy systems by using a run-off-river power plant with pondage to smooth energy exchange with the power gird Appl. Energy, 198 (2017), pp. 21-35[48] J. Jurasz Modeling and forecasting energy flow between national power grid and a solar–wind–pumped-hydroelectricity (PV–WT–PSH) energy source Energy Convers. Manag., 136 (2017), pp. 382-394[49] A. Kaabeche, S. Diaf, R. Ibtiouen Firefly-inspired algorithm for optimal sizing of renewable hybrid system considering reliability criteria Sol. Energy, 155 (2017), pp. 727-738[50] M.D.A. Al-falahi, S.D.G. Jayasinghe, H. Enshaei A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system Energy Convers. Manag., 143 (2017), pp. 252-274[51] M.S. Javed, T. Ma, J. Jurasz, S. Ahmed, J. Mikulik Performance comparison of heuristic algorithms for optimization of hybrid off-grid renewable energy systems Energy, 210 (2020), p. 118599[52] A. Stoppato, G. Cavazzini, G. Ardizzon, A. Rossetti A PSO (particle swarm optimization)-based model for the optimal management of a small PV(Photovoltaic)-pump hydro energy storage in a rural dry area Energy, 76 (2014), pp. 168-174[53] R. Luna-Rubio, M. Trejo-Perea, D. Vargas-Vázquez, G.J. Ríos-Moreno Optimal sizing of renewable hybrids energy systems: a review of methodologies Sol. Energy, 86 (2012), pp. 1077-1088[54] Y. Sawle, S.C. Gupta, A.K. Bohre Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system Renew. Sustain. Energy Rev., 81 (2018), pp. 2217-2235[55] G. Bekele, G. Tadesse Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia Appl. Energy, 97 (2012), pp. 5-15[56] D.M. Gioutsos, K. Blok, L. van Velzen, S. Moorman Cost-optimal electricity systems with increasing renewable energy penetration for islands across the globe Appl. Energy, 226 (2018), pp. 437-44957] E.M. Nfah, J.M. Ngundam Feasibility of pico-hydro and photovoltaic hybrid power systems for remote villages in Cameroon Renew. Energy, 34 (2009), pp. 1445-1450[58] N. Yimen, O. Hamandjoda, L. Meva’a, B. Ndzana, J. Nganhou Analyzing of a photovoltaic/wind/biogas/pumped-hydro off-grid hybrid system for rural electrification in Sub-Saharan Africa—case study of Djoundé in Northern Cameroon Energies, 11 (2018), p. 2644[59] Kircher KJ. Pumped Hydroelectric Storage Balances a Solar Microgrid.[60] A. Rathore, N. Patidar Reliability assessment using probabilistic modelling of pumped storage hydro plant with PV-Wind based standalone microgrid Int. J. Electr. Power Energy Syst., 106 (2019), pp. 17-32[61] T. Ma, H. Yang, L. Lu, J. Peng Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong Renew. Energy, 69 (2014), pp. 7-15PublicationORIGINALEconomic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island.pdfEconomic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island.pdfapplication/pdf102456https://repositorio.cuc.edu.co/bitstreams/7d94b1f4-07ea-4b85-8538-00beea76e07f/download8acf0242ab47b25ff2d8746534cb0f22MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/a0697550-2b08-49c0-aebc-b733639a0865/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/4b2220e9-7841-48e3-b305-7940a79ada43/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILEconomic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island.pdf.jpgEconomic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island.pdf.jpgimage/jpeg49081https://repositorio.cuc.edu.co/bitstreams/29fc895d-684a-4ef9-a8d7-70388fb8cec3/downloadd4ae96d34eb26af4bbef1a6c8191c329MD54TEXTEconomic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island.pdf.txtEconomic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island.pdf.txttext/plain2397https://repositorio.cuc.edu.co/bitstreams/4773a6f9-b576-4e00-94e0-c6fb24e6cbd4/downloadcf22adddc338a8981c4caa66c39be03bMD5511323/7702oai:repositorio.cuc.edu.co:11323/77022024-09-16 16:37:01.663http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |