Method for classifying images in databases through deep convolutional networks

Since 2006, deep structured learning, or more commonly called deep learning or hierarchical learning, has become a new area of research in machine learning. In recent years, techniques developed from deep learning research have impacted on a wide range of information and particularly image processin...

Full description

Autores:
Varela, Noel
Comas-González, Zoe
Ternera-Muñoz, Yesith R
Esmeral-Romero, Ernesto F
Lizardo Zelaya, Nelson Alberto
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7660
Acceso en línea:
https://hdl.handle.net/11323/7660
https://doi.org/10.1016/j.procs.2020.07.022
https://repositorio.cuc.edu.co/
Palabra clave:
Dynamic training
Deep convolutional networks
Image classification
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_eb49d42f0b4922c469462accf1de247b
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7660
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Method for classifying images in databases through deep convolutional networks
title Method for classifying images in databases through deep convolutional networks
spellingShingle Method for classifying images in databases through deep convolutional networks
Dynamic training
Deep convolutional networks
Image classification
title_short Method for classifying images in databases through deep convolutional networks
title_full Method for classifying images in databases through deep convolutional networks
title_fullStr Method for classifying images in databases through deep convolutional networks
title_full_unstemmed Method for classifying images in databases through deep convolutional networks
title_sort Method for classifying images in databases through deep convolutional networks
dc.creator.fl_str_mv Varela, Noel
Comas-González, Zoe
Ternera-Muñoz, Yesith R
Esmeral-Romero, Ernesto F
Lizardo Zelaya, Nelson Alberto
dc.contributor.author.spa.fl_str_mv Varela, Noel
Comas-González, Zoe
Ternera-Muñoz, Yesith R
Esmeral-Romero, Ernesto F
Lizardo Zelaya, Nelson Alberto
dc.subject.spa.fl_str_mv Dynamic training
Deep convolutional networks
Image classification
topic Dynamic training
Deep convolutional networks
Image classification
description Since 2006, deep structured learning, or more commonly called deep learning or hierarchical learning, has become a new area of research in machine learning. In recent years, techniques developed from deep learning research have impacted on a wide range of information and particularly image processing studies, within traditional and new fields, including key aspects of machine learning and artificial intelligence. This paper proposes an alternative scheme for training data management in CNNs, consisting of selective-adaptive data sampling. By means of experiments with the CIFAR10 database for image classification.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-01-05T21:45:46Z
dc.date.available.none.fl_str_mv 2021-01-05T21:45:46Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1877-0509
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7660
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.procs.2020.07.022
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1877-0509
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7660
https://doi.org/10.1016/j.procs.2020.07.022
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Singh, R., Khurana, R., Kushwaha, A. K. S., & Srivastava, R. (2020). Combining CNN streams of dynamic image and depth data for action recognition. Multimedia Systems, 1-10.
[2] Mostafa, H., & Wang, X. (2019). Parameter efficient training of deep convolutional neural networks by dynamic sparse reparameterization. arXiv preprint arXiv:1902.05967.
[3] Viloria, A., Angulo, M. G., Kamatkar, S. J., de la Hoz – Hernandez, J., Guiliany, J. G., Bilbao, O. R., & Hernandez-P, H. (2020). Prediction Rules in E-Learning Systems Using Genetic Programming. In Smart Innovation, Systems and Technologies (Vol. 164, pp. 55–63). Springer. https://doi.org/10.1007/978-981-32-9889-7_5.
[4] Zheng, Q., Yang, M., Tian, X., Jiang, N., & Wang, D. (2020). A Full Stage Data Augmentation Method in Deep Convolutional Neural Network for Natural Image Classification. Discrete Dynamics in Nature and Society, 2020.
[5] Haque, N., Reddy, N. D., & Krishna, K. M. (2017). Joint semantic and motion segmentation for dynamic scenes using deep convolutional networks. arXiv preprint arXiv:1704.08331.
[6] Wang, H. M. X. (2019). Parameter Efficient Training of Deep Convolutional Neural Networks by Dynamic Sparse Reparameterization. arXiv preprint arXiv:1902.05967.
[7] Tang, M., Liu, Y., & Durlofsky, L. J. (2020). A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems. Journal of Computational Physics, 109456.
[8] Yang, J., Liang, J., Shen, H., Wang, K., Rosin, P. L., & Yang, M. H. (2018). Dynamic match kernel with deep convolutional features for image retrieval. IEEE Transactions on Image Processing, 27(11), 5288-5302.
[9] Popov, V., Shakev, N., Ahmed, S., & Toplaov, A. (2018, September). Recognition of Dynamic Targets using a Deep Convolutional Neural Network. In ANNA'18; Advances in Neural Networks and Applications 2018 (pp. 1-6). VDE.
[10] Aimone, J. B., & Severa, W. M. (2017). Context-modulation of hippocampal dynamics and deep convolutional networks. arXiv preprint arXiv:1711.09876.
[11] Nah, S., Hyun Kim, T., & Mu Lee, K. (2017). Deep multi-scale convolutional neural network for dynamic scene deblurring. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3883-3891).
[12] Manessi, F., Rozza, A., & Manzo, M. (2020). Dynamic graph convolutional networks. Pattern Recognition, 97, 107000.
[13] Mo, S., Zhu, Y., Zabaras, N., Shi, X., & Wu, J. (2019). Deep convolutional encoder‐decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media. Water Resources Research, 55(1), 703-728.
[14] Viloria, A., Varela, N., Lezama, O. B. P., Llinás, N. O., Flores, Y., Palma, H. H., … Marín-González, F. (2020). Classification of Digitized Documents Applying Neural Networks. In Lecture Notes in Electrical Engineering (Vol. 637, pp. 213–220). Springer. https://doi.org/10.1007/978-981-15-2612-1_20.
[15] Shao, R., Lan, X., & Yuen, P. C. (2017, October). Deep convolutional dynamic texture learning with adaptive channel-discriminability for 3D mask face anti-spoofing. In 2017 IEEE International Joint Conference on Biometrics (IJCB) (pp. 748-755). IEEE.
[16] Bak, C., Erdem, A., & Erdem, E. (2016). Two-stream convolutional networks for dynamic saliency prediction. arXiv preprint arXiv:1607.04730, 2(3), 6.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Procedia Computer Science
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1877050920317014
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/807d7e40-9468-47a3-a560-0e04ecdc534d/download
https://repositorio.cuc.edu.co/bitstreams/4754bdec-6918-4c74-8c3d-4ecb85c9eee7/download
https://repositorio.cuc.edu.co/bitstreams/846debed-f6c2-46c3-8e90-22f2b86c5afd/download
https://repositorio.cuc.edu.co/bitstreams/9cef13a0-6159-45a0-bf5b-056c25f2915f/download
https://repositorio.cuc.edu.co/bitstreams/8f0da30c-d362-487c-bdee-a426422af3ad/download
bitstream.checksum.fl_str_mv 952555b8fcb24fd3faac787b9ed11e3a
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
b21703a4d16891344ec3fbb0751fd591
b29a11585eb13b8743c87c0719ab8f47
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760679477051392
spelling Varela, NoelComas-González, ZoeTernera-Muñoz, Yesith REsmeral-Romero, Ernesto FLizardo Zelaya, Nelson Alberto2021-01-05T21:45:46Z2021-01-05T21:45:46Z20201877-0509https://hdl.handle.net/11323/7660https://doi.org/10.1016/j.procs.2020.07.022Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Since 2006, deep structured learning, or more commonly called deep learning or hierarchical learning, has become a new area of research in machine learning. In recent years, techniques developed from deep learning research have impacted on a wide range of information and particularly image processing studies, within traditional and new fields, including key aspects of machine learning and artificial intelligence. This paper proposes an alternative scheme for training data management in CNNs, consisting of selective-adaptive data sampling. By means of experiments with the CIFAR10 database for image classification.Varela, NoelComas-González, ZoeTernera-Muñoz, Yesith REsmeral-Romero, Ernesto FLizardo Zelaya, Nelson Albertoapplication/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Procedia Computer Sciencehttps://www.sciencedirect.com/science/article/pii/S1877050920317014Dynamic trainingDeep convolutional networksImage classificationMethod for classifying images in databases through deep convolutional networksArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Singh, R., Khurana, R., Kushwaha, A. K. S., & Srivastava, R. (2020). Combining CNN streams of dynamic image and depth data for action recognition. Multimedia Systems, 1-10.[2] Mostafa, H., & Wang, X. (2019). Parameter efficient training of deep convolutional neural networks by dynamic sparse reparameterization. arXiv preprint arXiv:1902.05967.[3] Viloria, A., Angulo, M. G., Kamatkar, S. J., de la Hoz – Hernandez, J., Guiliany, J. G., Bilbao, O. R., & Hernandez-P, H. (2020). Prediction Rules in E-Learning Systems Using Genetic Programming. In Smart Innovation, Systems and Technologies (Vol. 164, pp. 55–63). Springer. https://doi.org/10.1007/978-981-32-9889-7_5.[4] Zheng, Q., Yang, M., Tian, X., Jiang, N., & Wang, D. (2020). A Full Stage Data Augmentation Method in Deep Convolutional Neural Network for Natural Image Classification. Discrete Dynamics in Nature and Society, 2020.[5] Haque, N., Reddy, N. D., & Krishna, K. M. (2017). Joint semantic and motion segmentation for dynamic scenes using deep convolutional networks. arXiv preprint arXiv:1704.08331.[6] Wang, H. M. X. (2019). Parameter Efficient Training of Deep Convolutional Neural Networks by Dynamic Sparse Reparameterization. arXiv preprint arXiv:1902.05967.[7] Tang, M., Liu, Y., & Durlofsky, L. J. (2020). A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems. Journal of Computational Physics, 109456.[8] Yang, J., Liang, J., Shen, H., Wang, K., Rosin, P. L., & Yang, M. H. (2018). Dynamic match kernel with deep convolutional features for image retrieval. IEEE Transactions on Image Processing, 27(11), 5288-5302.[9] Popov, V., Shakev, N., Ahmed, S., & Toplaov, A. (2018, September). Recognition of Dynamic Targets using a Deep Convolutional Neural Network. In ANNA'18; Advances in Neural Networks and Applications 2018 (pp. 1-6). VDE.[10] Aimone, J. B., & Severa, W. M. (2017). Context-modulation of hippocampal dynamics and deep convolutional networks. arXiv preprint arXiv:1711.09876.[11] Nah, S., Hyun Kim, T., & Mu Lee, K. (2017). Deep multi-scale convolutional neural network for dynamic scene deblurring. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3883-3891).[12] Manessi, F., Rozza, A., & Manzo, M. (2020). Dynamic graph convolutional networks. Pattern Recognition, 97, 107000.[13] Mo, S., Zhu, Y., Zabaras, N., Shi, X., & Wu, J. (2019). Deep convolutional encoder‐decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media. Water Resources Research, 55(1), 703-728.[14] Viloria, A., Varela, N., Lezama, O. B. P., Llinás, N. O., Flores, Y., Palma, H. H., … Marín-González, F. (2020). Classification of Digitized Documents Applying Neural Networks. In Lecture Notes in Electrical Engineering (Vol. 637, pp. 213–220). Springer. https://doi.org/10.1007/978-981-15-2612-1_20.[15] Shao, R., Lan, X., & Yuen, P. C. (2017, October). Deep convolutional dynamic texture learning with adaptive channel-discriminability for 3D mask face anti-spoofing. In 2017 IEEE International Joint Conference on Biometrics (IJCB) (pp. 748-755). IEEE.[16] Bak, C., Erdem, A., & Erdem, E. (2016). Two-stream convolutional networks for dynamic saliency prediction. arXiv preprint arXiv:1607.04730, 2(3), 6.PublicationORIGINALMethod for classifying images in databases through deep convolutional networks.pdfMethod for classifying images in databases through deep convolutional networks.pdfapplication/pdf1578152https://repositorio.cuc.edu.co/bitstreams/807d7e40-9468-47a3-a560-0e04ecdc534d/download952555b8fcb24fd3faac787b9ed11e3aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/4754bdec-6918-4c74-8c3d-4ecb85c9eee7/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/846debed-f6c2-46c3-8e90-22f2b86c5afd/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILMethod for classifying images in databases through deep convolutional networks.pdf.jpgMethod for classifying images in databases through deep convolutional networks.pdf.jpgimage/jpeg45386https://repositorio.cuc.edu.co/bitstreams/9cef13a0-6159-45a0-bf5b-056c25f2915f/downloadb21703a4d16891344ec3fbb0751fd591MD54TEXTMethod for classifying images in databases through deep convolutional networks.pdf.txtMethod for classifying images in databases through deep convolutional networks.pdf.txttext/plain22510https://repositorio.cuc.edu.co/bitstreams/8f0da30c-d362-487c-bdee-a426422af3ad/downloadb29a11585eb13b8743c87c0719ab8f47MD5511323/7660oai:repositorio.cuc.edu.co:11323/76602024-09-16 16:45:41.44http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==