DFT based kinetic Monte Carlo study of metal surface growth: comparison of a restricted and an unrestricted diffusion model

The growth behavior of Cr and W surfaces using kinetic Monte Carlo (KMC) simulations based on Density-Functional Theory (DFT) is presented in this study. Three models, a growth model with random deposition and no diffusion, a growth model with restricted diffusion and a growth model with unrestricte...

Full description

Autores:
García García, Sebastian
Ortiz González, Angel Santiago
Amaya Roncancio, Sebastian
Arellano Ramirez, Ivan D.
Nelphy De la Cruz , Felix
Gimenez M., Cecilia
Augusto Torres, Ceron Darwin
Restrepo Parra, Elisabeth
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13567
Acceso en línea:
https://hdl.handle.net/11323/13567
https://repositorio.cuc.edu.co/
Palabra clave:
Surface Growth
Surface Diffusion
DFT
KMC
Metal Surfaces
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_ea4c091a79efd25d6b684e4c8329fa6a
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13567
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv DFT based kinetic Monte Carlo study of metal surface growth: comparison of a restricted and an unrestricted diffusion model
title DFT based kinetic Monte Carlo study of metal surface growth: comparison of a restricted and an unrestricted diffusion model
spellingShingle DFT based kinetic Monte Carlo study of metal surface growth: comparison of a restricted and an unrestricted diffusion model
Surface Growth
Surface Diffusion
DFT
KMC
Metal Surfaces
title_short DFT based kinetic Monte Carlo study of metal surface growth: comparison of a restricted and an unrestricted diffusion model
title_full DFT based kinetic Monte Carlo study of metal surface growth: comparison of a restricted and an unrestricted diffusion model
title_fullStr DFT based kinetic Monte Carlo study of metal surface growth: comparison of a restricted and an unrestricted diffusion model
title_full_unstemmed DFT based kinetic Monte Carlo study of metal surface growth: comparison of a restricted and an unrestricted diffusion model
title_sort DFT based kinetic Monte Carlo study of metal surface growth: comparison of a restricted and an unrestricted diffusion model
dc.creator.fl_str_mv García García, Sebastian
Ortiz González, Angel Santiago
Amaya Roncancio, Sebastian
Arellano Ramirez, Ivan D.
Nelphy De la Cruz , Felix
Gimenez M., Cecilia
Augusto Torres, Ceron Darwin
Restrepo Parra, Elisabeth
dc.contributor.author.none.fl_str_mv García García, Sebastian
Ortiz González, Angel Santiago
Amaya Roncancio, Sebastian
Arellano Ramirez, Ivan D.
Nelphy De la Cruz , Felix
Gimenez M., Cecilia
Augusto Torres, Ceron Darwin
Restrepo Parra, Elisabeth
dc.subject.proposal.eng.fl_str_mv Surface Growth
Surface Diffusion
DFT
KMC
Metal Surfaces
topic Surface Growth
Surface Diffusion
DFT
KMC
Metal Surfaces
description The growth behavior of Cr and W surfaces using kinetic Monte Carlo (KMC) simulations based on Density-Functional Theory (DFT) is presented in this study. Three models, a growth model with random deposition and no diffusion, a growth model with restricted diffusion and a growth model with unrestricted diffusion model, were compared to understand their influence on the predicted surface roughness and layer density. The impact of deposition rate and temperature on surface growth for both metals were analyzed. For deposition rate studies, five different rates (0.01 ML/s, 0.1 ML/s, 1.0 ML/s, 10.0 ML/s, and 100 ML/s) were considered at 550 K for Cr and W respectively. The effect of temperature on roughness was also studied employing various temperatures from 300 K to 1100 K for both metals and under the two different evolution models. The results show that the unrestricted diffusion model exhibits higher roughness compared to the restricted model for both metals. The restricted model shows a stable region of roughness, whereas the unrestricted model shows a continuous increase in roughness throughout the simulation. Furthermore, layer density analysis revealed that temperature affects the filling of lower monolayers. Finally, dynamic exponents β and α for each studied model were calculated and discussed. The results highlight the influence of diffusion models, deposition rate and temperature on surface, roughness, and layer density.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-10-05
dc.date.accessioned.none.fl_str_mv 2024-10-28T12:10:52Z
dc.date.available.none.fl_str_mv 2024-10-28T12:10:52Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Sebastián García-García, Angel Santiago Ortiz-González, Sebastian Amaya-Roncancio, Ivan D. Arellano-Ramirez, Nelphy de la Cruz Felix, M. Cecilia Gimenez, Darwin Augusto Torres-Ceron, Elisabeth Restrepo-Parra, DFT based kinetic Monte Carlo study of metal surface Growth: Comparison of a restricted and an unrestricted diffusion model, Computational Materials Science, Volume 231, 2024, 112546, ISSN 0927-0256, https://doi.org/10.1016/j.commatsci.2023.112546.
dc.identifier.issn.none.fl_str_mv 0927-0256
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13567
dc.identifier.doi.none.fl_str_mv 10.1016/j.commatsci.2023.112546
dc.identifier.eissn.none.fl_str_mv 1879-0801
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Sebastián García-García, Angel Santiago Ortiz-González, Sebastian Amaya-Roncancio, Ivan D. Arellano-Ramirez, Nelphy de la Cruz Felix, M. Cecilia Gimenez, Darwin Augusto Torres-Ceron, Elisabeth Restrepo-Parra, DFT based kinetic Monte Carlo study of metal surface Growth: Comparison of a restricted and an unrestricted diffusion model, Computational Materials Science, Volume 231, 2024, 112546, ISSN 0927-0256, https://doi.org/10.1016/j.commatsci.2023.112546.
0927-0256
10.1016/j.commatsci.2023.112546
1879-0801
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13567
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Computational Materials Science
dc.relation.references.none.fl_str_mv N.D.L.C. F´elix, P.M. Centres, A.J. Ramirez-Pastor, S. Bustingorry, Surface growth during random and irreversible multilayer deposition of straight semirigid rods, Phys. Rev. E 104 (2021), 034103, https://doi.org/10.1103/PhysRevE.104.034103.
N.S. Samarasingha, S. Zollner, D. Pal, R. Singh, S. Chattopadhyay, Thickness dependence of infrared lattice absorption and excitonic absorption in ZnO layers on Si and SiO2 grown by atomic layer deposition, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 38 (2020), https:// doi.org/10.1116/6.0000184.
U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, J.T. Gudmundsson, Ionized physical vapor deposition (IPVD): A review of technology and applications, Thin Solid Films 513 (2006) 1–24, https://doi.org/10.1016/j.tsf.2006.03.033.
S.M. Rossnagel, Thin film deposition with physical vapor deposition and related technologies, J. Vac. Sci. Technol. A 21 (2003) S74–S87, https://doi.org/10.1116/ 1.1600450.
X. Wang, A. Yoshikawa, Molecular beam epitaxy growth of GaN, AlN and InN, Prog. Cryst. Growth Charact. Mater. 48–49 (2004) 42–103, https://doi.org/ 10.1016/j.pcrysgrow.2005.03.002.
E. Budevski, G. Staikov, W.J. Lorenz, Electrochemical Phase Formation and Growth, Wiley (1996), https://doi.org/10.1002/9783527614936.
M.C. Gim´enez, M.G. Del Popolo, ´ E.P.M. Leiva, Kinetic Monte Carlo Study of Electrochemical Growth in a Heteroepitaxial System, Langmuir 18 (2002) 9087–9094, https://doi.org/10.1021/la020505y.
M.C. Gim´enez, M.G. Del Popolo, ´ E.P.M. Leiva, S.G. Garcıa, ́ D.R. Salinas, C. E. Mayer, W.J. Lorenz, Theoretical Considerations of Electrochemical Phase Formation for an Ideal Frank-van der Merwe System, J. Electrochem. Soc. 149 (2002) E109, https://doi.org/10.1149/1.1457986.
V. Tiron, G. Bulai, C. Costin, I.-L. Velicu, P. Dinca, ˘ D. Iancu, I. Burducea, Growth and characterization of W thin films with controlled Ne and Ar contents deposited by bipolar HiPIMS, Nuclear Mater. Energy. 29 (2021), 101091, https://doi.org/ 10.1016/j.nme.2021.101091.
P. Yiu, N. Bonninghoff, ¨ J.P. Chu, Evaluation of Cr-based thin film metallic glass as a potential replacement of PVD chromium coating on plastic mold surface, Surf. Coat. Technol. 442 (2022), 128274, https://doi.org/10.1016/j. surfcoat.2022.128274.
D.T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys. 22 (1976) 403–434, https://doi.org/10.1016/0021-9991(76)90041-3.
X. Zhou, X. Yu, D. Jacobson, G.B. Thompson, A molecular dynamics study on stress generation during thin film growth, Appl. Surf. Sci. 469 (2019) 537–552, https:// doi.org/10.1016/j.apsusc.2018.09.253.
M. Andersen, C. Panosetti, K. Reuter, A Practical Guide to Surface Kinetic Monte Carlo Simulations, Front. Chem. 7 (2019), https://doi.org/10.3389/ fchem.2019.00202.
Q.Y. Zhang, J.Y. Tang, G.Q. Zhao, Investigation of the energetic deposition of Au (001) thin films by molecular-dynamics simulation, Nucl. Instrum. Methods Phys. Res. B. 135 (1998) 289–294, https://doi.org/10.1016/S0168-583X(97)00605-8.
Q. Li, X. Peng, T. Peng, Q. Tang, X. Zhang, C. Huang, Molecular dynamics simulation of Cu/Au thin films under temperature gradient, Appl. Surf. Sci. 357 (2015) 1823–1829, https://doi.org/10.1016/j.apsusc.2015.10.051.
C.-L. Kuo, P. Clancy, MEAM molecular dynamics study of a gold thin film on a silicon substrate, Surf. Sci. 551 (2004) 39–58, https://doi.org/10.1016/j. susc.2003.12.043.
S.-C. Lee, N.M. Hwang, B.D. Yu, D.-Y. Kim, Molecular dynamics simulation on the deposition behavior of nanometer-sized Au clusters on a Au (001) surface, J. Cryst. Growth 223 (2001) 311–320, https://doi.org/10.1016/S0022-0248(01)00599-1.
G. Niu, X. Li, Q. Xu, Z. Yang, G. Luo, Sputtering and reflection of self-bombardment of tungsten material, Nucl. Instrum. Methods Phys. Res. B. 349 (2015) 45–49, https://doi.org/10.1016/j.nimb.2015.01.051.
L. Xie, P. Brault, J.-M. Bauchire, A.-L. Thomann, L. Bedra, Molecular dynamics simulations of clusters and thin film growth in the context of plasma sputtering deposition, J. Phys. D Appl. Phys. 47 (2014), 224004, https://doi.org/10.1088/ 0022-3727/47/22/224004.
C.H. Claassens, J.J. Terblans, M.J.H. Hoffman, H.C. Swart, Kinetic Monte Carlo simulation of monolayer gold film growth on a graphite substrate, Surface and Interface, Analysis 37 (2005) 1021–1026, https://doi.org/10.1002/sia.2116.
L. Zu-Li, Z. Xue-Feng, Y. Kai-Lun, W. He-Lin, H. Yun-Mi, Modelling of an obliquely deposited thin film in three dimensions by kinetic Monte Carlo method, Chin. Phys. 13 (2004) 2115–2120, https://doi.org/10.1088/1009-1963/13/12/024.
F. Nita, C. Mastail, G. Abadias, Three-dimensional kinetic Monte Carlo simulations of cubic transition metal nitride thin film growth, Phys. Rev. B 93 (2016), 064107, https://doi.org/10.1103/PhysRevB.93.064107..{
L. Nurminen, A. Kuronen, K. Kaski, Kinetic Monte Carlo simulation of nucleation on patterned substrates, Phys. Rev. B 63 (2000), 035407, https://doi.org/10.1103/ PhysRevB.63.035407.
J.W. Evans, P.A. Thiel, M. Li, Kinetic Monte Carlo Simulation of Epitaxial Thin Film Growth: Formation of Submonolayer Islands and Multilayer Mounds, in: AIP Conf Proc, AIP, 2007, pp. 191–211, https://doi.org/10.1063/1.2751916.
M. Yamamoto, D. Matsunaka, Y. Shibutani, Modeling of Heteroepitaxial Thin Film Growth by Kinetic Monte Carlo, Jpn. J. Appl. Phys. 47 (2008) 7986–7992, https:// doi.org/10.1143/JJAP.47.7986.
E. Antoshchenkova, M. Hayoun, F. Finocchi, G. Geneste, Kinetic Monte-Carlo simulation of the homoepitaxial growth of MgO{001} thin films by molecular deposition, Surf. Sci. 606 (2012) 605–614, https://doi.org/10.1016/j. susc.2011.11.026.
M. Chugh, M. Ranganathan, Lattice kinetic Monte Carlo simulation study of the early stages of epitaxial GaN(0001) growth, Appl. Surf. Sci. 422 (2017) 1120–1128, https://doi.org/10.1016/j.apsusc.2017.06.067.
N.A. Kaufmann, L. Lahourcade, B. Hourahine, D. Martin, N. Grandjean, Critical impact of Ehrlich-Schwobel ¨ barrier on GaN surface morphology during homoepitaxial growth, J. Cryst. Growth. 433 (2016) 36–42, https://doi.org/ 10.1016/j.jcrysgro.2015.06.013.
F.G. Cougnon, A. Dulmaa, R. Dedoncker, R. Galbadrakh, D. Depla, Impurity dominated thin film growth, Appl. Phys. Lett. 112 (2018), https://doi.org/ 10.1063/1.5021528.
U. Kohler, ¨ C. Jensen, C. Wolf, A.C. Schindler, L. Brendel, D.E. Wolf, Investigation of homoepitaxial growth on bcc surfaces with STM and kinetic Monte Carlo simulation, Surf. Sci. 454–456 (2000) 676–680, https://doi.org/10.1016/S0039- 6028(00)00151-5.
C.C. Fang, F. Jones, R.R. Kola, G.K. Celler, V. Prasad, Stress and microstructure of sputter-deposited thin films: Molecular dynamics simulations and experiment, J. Vacuum Sci. Technol. B: Microelectron. Nanometer. Struct. Process. Measurem. Phenom. 11 (1993) 2947–2952, https://doi.org/10.1116/1.586566.
A. Kara, O. Trushin, H. Yildirim, T.S. Rahman, Off-lattice self-learning kinetic Monte Carlo: application to 2D cluster diffusion on the fcc(111) surface, J. Phys. Condens. Matter 21 (2009), 084213, https://doi.org/10.1088/0953-8984/21/8/ 084213.
T.B.T. To, V.B. de Sousa, F.D.A. Aarao ˜ Reis, Thin film growth models with long surface diffusion lengths, Phys. A Stat. Mech. Appl. 511 (2018) 240–250, https:// doi.org/10.1016/j.physa.2018.07.024.
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter 21 (2009), 395502, https://doi.org/10.1088/0953-8984/21/39/395502.
A. Dal Corso, http://pseudopotentials.quantum-espresso.org/legacy_tables/ps-l ibrary/w, (n.d.).
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868, https://doi.org/10.1103/ PhysRevLett.77.3865.
S. Amaya-Roncancio, L. Reinaudi, M. Cecilia, Gimenez, Adsorption and dissociation of CO on metal clusters, Mater. Today Commun. 24 (2020), 101158, https://doi.org/10.1016/j.mtcomm.2020.101158.
E.D.V. Gomez, ´ S. Amaya-Roncancio, L.B. Avalle, M.C. Gimenez, DFT Study of adsorption and diffusion of H2O and related species on Cu(100) surfaces, Surf. Sci. 714 (2021), https://doi.org/10.1016/j.susc.2021.121920.
G. Henkelman, B.P. Uberuaga, H. Jonsson, ´ A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901–9904, https://doi.org/10.1063/1.1329672.
S. Amaya-Roncancio, D. Linares, K. Sapag, E. Restrepo-Parra, Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces, J. Mol. Struct. 1255 (2022), 132397, https://doi.org/10.1016/j. molstruc.2022.132397.
E. del V Gomez, ´ M.A. Burgos Paci, S. Amaya-Roncancio, L.B. Avalle, M. Cecilia Gimenez, Adsorption and diffusion of O atoms on metallic (100) surfaces. Cluster and periodic slab approaches, Comput Theor Chem. 1208 (2022) 113556. https:// doi.org/https://doi.org/10.1016/j.comptc.2021.113556.
A. Kokalj, Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale, in: Comput Mater Sci, Elsevier, 2003: pp. 155–168. https://doi.org/10.1016/S0927-0256(03)00104-6.
A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Model Simul Mat Sci Eng. 18 (2010), 015012, https://doi.org/10.1088/0965-0393/18/1/015012.
D.A. Mirabella, C.M. Aldao, Surface growth by random deposition of rigid and wetting clusters, Surf. Sci. 646 (2016) 282–287, https://doi.org/10.1016/j. susc.2015.09.010.
F.L. Forgerini, W. Figueiredo, Random deposition of particles of different sizes, Phys. Rev. E 79 (2009), 041602, https://doi.org/10.1103/PhysRevE.79.041602.
J.A. Budagosky, A. García-Cristobal, ´ Multiscale Kinetic Monte Carlo Simulation of Self-Organized Growth of GaN/AlN Quantum Dots, Nanomaterials 12 (2022) 3052, https://doi.org/10.3390/nano12173052.
T.P. Schulze, P. Smereka, Kinetic Monte Carlo simulation of heteroepitaxial growth: Wetting layers, quantum dots, capping, and nanorings, Phys. Rev. B 86 (2012), 235313, https://doi.org/10.1103/PhysRevB.86.235313.
L. Ramírez-Montes, M.G. Moreno-Armenta, J. Guerrero-Sanchez, ´ R. Ponce-P´erez, R. Gonz´ alez-Hern´ andez, W. Lopez-P ´ ´erez, Tuning the electronic and thermoelectric properties of selenium monolayers through atomic impurities: A DFT study, Solid State Commun. 371 (2023), 115268, https://doi.org/10.1016/j.ssc.2023.115268.
G. Hu, J. Huang, G. Orkoulas, P.D. Christofides, Investigation of film surface roughness and porosity dependence on lattice size in a porous thin film deposition process, Phys. Rev. E 80 (2009), 041122, https://doi.org/10.1103/ PhysRevE.80.041122.
M. Abramson, H.J. Coleman, P.J. Simmonds, T.P. Schulze, C. Ratsch, Kinetic Monte Carlo simulations of quantum dot self-assembly, J. Cryst. Growth 597 (2022), 126846, https://doi.org/10.1016/j.jcrysgro.2022.126846.
N. De La Cruz F´elix, P.M. Centres, A.J. Ramirez-Pastor, E.E. Vogel, J.F. Vald´es, Irreversible multilayer adsorption of semirigid k-mers deposited on onedimensional lattices, Phys. Rev. E 102 (2020), 012106, https://doi.org/10.1103/ PhysRevE.102.012106.
C. Hu, Y. Li, C. Bi, L. Sun, S. Zhang, R. Sun, L. Wu, W. Zheng, Surface roughening transition induced by phase transformation in hafnium nitride films, Surf. Coat. Technol. 320 (2017) 414–420, https://doi.org/10.1016/j.surfcoat.2016.12.007.
dc.relation.citationendpage.none.fl_str_mv 12
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 231
dc.rights.none.fl_str_mv © 2023 Elsevier B.V.
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2023 Elsevier B.V.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 12 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.place.none.fl_str_mv Netherlands
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0927025623005402?via%3Dihub
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/e6585d32-1f8e-471d-8329-98cbf8d2517f/download
https://repositorio.cuc.edu.co/bitstreams/24348585-b951-45e3-b6af-bb8eda8667ed/download
https://repositorio.cuc.edu.co/bitstreams/8bdbb5f7-36f7-420e-b35d-696e6337d99e/download
https://repositorio.cuc.edu.co/bitstreams/085d72a0-4051-4237-8d14-d8e456e71788/download
bitstream.checksum.fl_str_mv 8b8fdd355c209a0a80d81d1d15adc484
73a5432e0b76442b22b026844140d683
916c4346652eecca3415804e286575d9
975e8926bdcc567545e4d669ddab4558
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166798988541952
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2023 Elsevier B.V.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2García García, SebastianOrtiz González, Angel SantiagoAmaya Roncancio, SebastianArellano Ramirez, Ivan D.Nelphy De la Cruz , FelixGimenez M., CeciliaAugusto Torres, Ceron DarwinRestrepo Parra, Elisabeth2024-10-28T12:10:52Z2024-10-28T12:10:52Z2023-10-05Sebastián García-García, Angel Santiago Ortiz-González, Sebastian Amaya-Roncancio, Ivan D. Arellano-Ramirez, Nelphy de la Cruz Felix, M. Cecilia Gimenez, Darwin Augusto Torres-Ceron, Elisabeth Restrepo-Parra, DFT based kinetic Monte Carlo study of metal surface Growth: Comparison of a restricted and an unrestricted diffusion model, Computational Materials Science, Volume 231, 2024, 112546, ISSN 0927-0256, https://doi.org/10.1016/j.commatsci.2023.112546.0927-0256https://hdl.handle.net/11323/1356710.1016/j.commatsci.2023.1125461879-0801Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The growth behavior of Cr and W surfaces using kinetic Monte Carlo (KMC) simulations based on Density-Functional Theory (DFT) is presented in this study. Three models, a growth model with random deposition and no diffusion, a growth model with restricted diffusion and a growth model with unrestricted diffusion model, were compared to understand their influence on the predicted surface roughness and layer density. The impact of deposition rate and temperature on surface growth for both metals were analyzed. For deposition rate studies, five different rates (0.01 ML/s, 0.1 ML/s, 1.0 ML/s, 10.0 ML/s, and 100 ML/s) were considered at 550 K for Cr and W respectively. The effect of temperature on roughness was also studied employing various temperatures from 300 K to 1100 K for both metals and under the two different evolution models. The results show that the unrestricted diffusion model exhibits higher roughness compared to the restricted model for both metals. The restricted model shows a stable region of roughness, whereas the unrestricted model shows a continuous increase in roughness throughout the simulation. Furthermore, layer density analysis revealed that temperature affects the filling of lower monolayers. Finally, dynamic exponents β and α for each studied model were calculated and discussed. The results highlight the influence of diffusion models, deposition rate and temperature on surface, roughness, and layer density.12 páginasapplication/pdfengElsevier B.V.Netherlandshttps://www.sciencedirect.com/science/article/pii/S0927025623005402?via%3DihubDFT based kinetic Monte Carlo study of metal surface growth: comparison of a restricted and an unrestricted diffusion modelArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Computational Materials ScienceN.D.L.C. F´elix, P.M. Centres, A.J. Ramirez-Pastor, S. Bustingorry, Surface growth during random and irreversible multilayer deposition of straight semirigid rods, Phys. Rev. E 104 (2021), 034103, https://doi.org/10.1103/PhysRevE.104.034103.N.S. Samarasingha, S. Zollner, D. Pal, R. Singh, S. Chattopadhyay, Thickness dependence of infrared lattice absorption and excitonic absorption in ZnO layers on Si and SiO2 grown by atomic layer deposition, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 38 (2020), https:// doi.org/10.1116/6.0000184.U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, J.T. Gudmundsson, Ionized physical vapor deposition (IPVD): A review of technology and applications, Thin Solid Films 513 (2006) 1–24, https://doi.org/10.1016/j.tsf.2006.03.033.S.M. Rossnagel, Thin film deposition with physical vapor deposition and related technologies, J. Vac. Sci. Technol. A 21 (2003) S74–S87, https://doi.org/10.1116/ 1.1600450.X. Wang, A. Yoshikawa, Molecular beam epitaxy growth of GaN, AlN and InN, Prog. Cryst. Growth Charact. Mater. 48–49 (2004) 42–103, https://doi.org/ 10.1016/j.pcrysgrow.2005.03.002.E. Budevski, G. Staikov, W.J. Lorenz, Electrochemical Phase Formation and Growth, Wiley (1996), https://doi.org/10.1002/9783527614936.M.C. Gim´enez, M.G. Del Popolo, ´ E.P.M. Leiva, Kinetic Monte Carlo Study of Electrochemical Growth in a Heteroepitaxial System, Langmuir 18 (2002) 9087–9094, https://doi.org/10.1021/la020505y.M.C. Gim´enez, M.G. Del Popolo, ´ E.P.M. Leiva, S.G. Garcıa, ́ D.R. Salinas, C. E. Mayer, W.J. Lorenz, Theoretical Considerations of Electrochemical Phase Formation for an Ideal Frank-van der Merwe System, J. Electrochem. Soc. 149 (2002) E109, https://doi.org/10.1149/1.1457986.V. Tiron, G. Bulai, C. Costin, I.-L. Velicu, P. Dinca, ˘ D. Iancu, I. Burducea, Growth and characterization of W thin films with controlled Ne and Ar contents deposited by bipolar HiPIMS, Nuclear Mater. Energy. 29 (2021), 101091, https://doi.org/ 10.1016/j.nme.2021.101091.P. Yiu, N. Bonninghoff, ¨ J.P. Chu, Evaluation of Cr-based thin film metallic glass as a potential replacement of PVD chromium coating on plastic mold surface, Surf. Coat. Technol. 442 (2022), 128274, https://doi.org/10.1016/j. surfcoat.2022.128274.D.T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys. 22 (1976) 403–434, https://doi.org/10.1016/0021-9991(76)90041-3.X. Zhou, X. Yu, D. Jacobson, G.B. Thompson, A molecular dynamics study on stress generation during thin film growth, Appl. Surf. Sci. 469 (2019) 537–552, https:// doi.org/10.1016/j.apsusc.2018.09.253.M. Andersen, C. Panosetti, K. Reuter, A Practical Guide to Surface Kinetic Monte Carlo Simulations, Front. Chem. 7 (2019), https://doi.org/10.3389/ fchem.2019.00202.Q.Y. Zhang, J.Y. Tang, G.Q. Zhao, Investigation of the energetic deposition of Au (001) thin films by molecular-dynamics simulation, Nucl. Instrum. Methods Phys. Res. B. 135 (1998) 289–294, https://doi.org/10.1016/S0168-583X(97)00605-8.Q. Li, X. Peng, T. Peng, Q. Tang, X. Zhang, C. Huang, Molecular dynamics simulation of Cu/Au thin films under temperature gradient, Appl. Surf. Sci. 357 (2015) 1823–1829, https://doi.org/10.1016/j.apsusc.2015.10.051.C.-L. Kuo, P. Clancy, MEAM molecular dynamics study of a gold thin film on a silicon substrate, Surf. Sci. 551 (2004) 39–58, https://doi.org/10.1016/j. susc.2003.12.043.S.-C. Lee, N.M. Hwang, B.D. Yu, D.-Y. Kim, Molecular dynamics simulation on the deposition behavior of nanometer-sized Au clusters on a Au (001) surface, J. Cryst. Growth 223 (2001) 311–320, https://doi.org/10.1016/S0022-0248(01)00599-1.G. Niu, X. Li, Q. Xu, Z. Yang, G. Luo, Sputtering and reflection of self-bombardment of tungsten material, Nucl. Instrum. Methods Phys. Res. B. 349 (2015) 45–49, https://doi.org/10.1016/j.nimb.2015.01.051.L. Xie, P. Brault, J.-M. Bauchire, A.-L. Thomann, L. Bedra, Molecular dynamics simulations of clusters and thin film growth in the context of plasma sputtering deposition, J. Phys. D Appl. Phys. 47 (2014), 224004, https://doi.org/10.1088/ 0022-3727/47/22/224004.C.H. Claassens, J.J. Terblans, M.J.H. Hoffman, H.C. Swart, Kinetic Monte Carlo simulation of monolayer gold film growth on a graphite substrate, Surface and Interface, Analysis 37 (2005) 1021–1026, https://doi.org/10.1002/sia.2116.L. Zu-Li, Z. Xue-Feng, Y. Kai-Lun, W. He-Lin, H. Yun-Mi, Modelling of an obliquely deposited thin film in three dimensions by kinetic Monte Carlo method, Chin. Phys. 13 (2004) 2115–2120, https://doi.org/10.1088/1009-1963/13/12/024.F. Nita, C. Mastail, G. Abadias, Three-dimensional kinetic Monte Carlo simulations of cubic transition metal nitride thin film growth, Phys. Rev. B 93 (2016), 064107, https://doi.org/10.1103/PhysRevB.93.064107..{L. Nurminen, A. Kuronen, K. Kaski, Kinetic Monte Carlo simulation of nucleation on patterned substrates, Phys. Rev. B 63 (2000), 035407, https://doi.org/10.1103/ PhysRevB.63.035407.J.W. Evans, P.A. Thiel, M. Li, Kinetic Monte Carlo Simulation of Epitaxial Thin Film Growth: Formation of Submonolayer Islands and Multilayer Mounds, in: AIP Conf Proc, AIP, 2007, pp. 191–211, https://doi.org/10.1063/1.2751916.M. Yamamoto, D. Matsunaka, Y. Shibutani, Modeling of Heteroepitaxial Thin Film Growth by Kinetic Monte Carlo, Jpn. J. Appl. Phys. 47 (2008) 7986–7992, https:// doi.org/10.1143/JJAP.47.7986.E. Antoshchenkova, M. Hayoun, F. Finocchi, G. Geneste, Kinetic Monte-Carlo simulation of the homoepitaxial growth of MgO{001} thin films by molecular deposition, Surf. Sci. 606 (2012) 605–614, https://doi.org/10.1016/j. susc.2011.11.026.M. Chugh, M. Ranganathan, Lattice kinetic Monte Carlo simulation study of the early stages of epitaxial GaN(0001) growth, Appl. Surf. Sci. 422 (2017) 1120–1128, https://doi.org/10.1016/j.apsusc.2017.06.067.N.A. Kaufmann, L. Lahourcade, B. Hourahine, D. Martin, N. Grandjean, Critical impact of Ehrlich-Schwobel ¨ barrier on GaN surface morphology during homoepitaxial growth, J. Cryst. Growth. 433 (2016) 36–42, https://doi.org/ 10.1016/j.jcrysgro.2015.06.013.F.G. Cougnon, A. Dulmaa, R. Dedoncker, R. Galbadrakh, D. Depla, Impurity dominated thin film growth, Appl. Phys. Lett. 112 (2018), https://doi.org/ 10.1063/1.5021528.U. Kohler, ¨ C. Jensen, C. Wolf, A.C. Schindler, L. Brendel, D.E. Wolf, Investigation of homoepitaxial growth on bcc surfaces with STM and kinetic Monte Carlo simulation, Surf. Sci. 454–456 (2000) 676–680, https://doi.org/10.1016/S0039- 6028(00)00151-5.C.C. Fang, F. Jones, R.R. Kola, G.K. Celler, V. Prasad, Stress and microstructure of sputter-deposited thin films: Molecular dynamics simulations and experiment, J. Vacuum Sci. Technol. B: Microelectron. Nanometer. Struct. Process. Measurem. Phenom. 11 (1993) 2947–2952, https://doi.org/10.1116/1.586566.A. Kara, O. Trushin, H. Yildirim, T.S. Rahman, Off-lattice self-learning kinetic Monte Carlo: application to 2D cluster diffusion on the fcc(111) surface, J. Phys. Condens. Matter 21 (2009), 084213, https://doi.org/10.1088/0953-8984/21/8/ 084213.T.B.T. To, V.B. de Sousa, F.D.A. Aarao ˜ Reis, Thin film growth models with long surface diffusion lengths, Phys. A Stat. Mech. Appl. 511 (2018) 240–250, https:// doi.org/10.1016/j.physa.2018.07.024.P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter 21 (2009), 395502, https://doi.org/10.1088/0953-8984/21/39/395502.A. Dal Corso, http://pseudopotentials.quantum-espresso.org/legacy_tables/ps-l ibrary/w, (n.d.).J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868, https://doi.org/10.1103/ PhysRevLett.77.3865.S. Amaya-Roncancio, L. Reinaudi, M. Cecilia, Gimenez, Adsorption and dissociation of CO on metal clusters, Mater. Today Commun. 24 (2020), 101158, https://doi.org/10.1016/j.mtcomm.2020.101158.E.D.V. Gomez, ´ S. Amaya-Roncancio, L.B. Avalle, M.C. Gimenez, DFT Study of adsorption and diffusion of H2O and related species on Cu(100) surfaces, Surf. Sci. 714 (2021), https://doi.org/10.1016/j.susc.2021.121920.G. Henkelman, B.P. Uberuaga, H. Jonsson, ´ A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901–9904, https://doi.org/10.1063/1.1329672.S. Amaya-Roncancio, D. Linares, K. Sapag, E. Restrepo-Parra, Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces, J. Mol. Struct. 1255 (2022), 132397, https://doi.org/10.1016/j. molstruc.2022.132397.E. del V Gomez, ´ M.A. Burgos Paci, S. Amaya-Roncancio, L.B. Avalle, M. Cecilia Gimenez, Adsorption and diffusion of O atoms on metallic (100) surfaces. Cluster and periodic slab approaches, Comput Theor Chem. 1208 (2022) 113556. https:// doi.org/https://doi.org/10.1016/j.comptc.2021.113556.A. Kokalj, Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale, in: Comput Mater Sci, Elsevier, 2003: pp. 155–168. https://doi.org/10.1016/S0927-0256(03)00104-6.A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Model Simul Mat Sci Eng. 18 (2010), 015012, https://doi.org/10.1088/0965-0393/18/1/015012.D.A. Mirabella, C.M. Aldao, Surface growth by random deposition of rigid and wetting clusters, Surf. Sci. 646 (2016) 282–287, https://doi.org/10.1016/j. susc.2015.09.010.F.L. Forgerini, W. Figueiredo, Random deposition of particles of different sizes, Phys. Rev. E 79 (2009), 041602, https://doi.org/10.1103/PhysRevE.79.041602.J.A. Budagosky, A. García-Cristobal, ´ Multiscale Kinetic Monte Carlo Simulation of Self-Organized Growth of GaN/AlN Quantum Dots, Nanomaterials 12 (2022) 3052, https://doi.org/10.3390/nano12173052.T.P. Schulze, P. Smereka, Kinetic Monte Carlo simulation of heteroepitaxial growth: Wetting layers, quantum dots, capping, and nanorings, Phys. Rev. B 86 (2012), 235313, https://doi.org/10.1103/PhysRevB.86.235313.L. Ramírez-Montes, M.G. Moreno-Armenta, J. Guerrero-Sanchez, ´ R. Ponce-P´erez, R. Gonz´ alez-Hern´ andez, W. Lopez-P ´ ´erez, Tuning the electronic and thermoelectric properties of selenium monolayers through atomic impurities: A DFT study, Solid State Commun. 371 (2023), 115268, https://doi.org/10.1016/j.ssc.2023.115268.G. Hu, J. Huang, G. Orkoulas, P.D. Christofides, Investigation of film surface roughness and porosity dependence on lattice size in a porous thin film deposition process, Phys. Rev. E 80 (2009), 041122, https://doi.org/10.1103/ PhysRevE.80.041122.M. Abramson, H.J. Coleman, P.J. Simmonds, T.P. Schulze, C. Ratsch, Kinetic Monte Carlo simulations of quantum dot self-assembly, J. Cryst. Growth 597 (2022), 126846, https://doi.org/10.1016/j.jcrysgro.2022.126846.N. De La Cruz F´elix, P.M. Centres, A.J. Ramirez-Pastor, E.E. Vogel, J.F. Vald´es, Irreversible multilayer adsorption of semirigid k-mers deposited on onedimensional lattices, Phys. Rev. E 102 (2020), 012106, https://doi.org/10.1103/ PhysRevE.102.012106.C. Hu, Y. Li, C. Bi, L. Sun, S. Zhang, R. Sun, L. Wu, W. Zheng, Surface roughening transition induced by phase transformation in hafnium nitride films, Surf. Coat. Technol. 320 (2017) 414–420, https://doi.org/10.1016/j.surfcoat.2016.12.007.121231Surface GrowthSurface DiffusionDFTKMCMetal SurfacesPublicationORIGINALDFT based kinetic Monte Carlo study of metal surface Growth Comparison.pdfDFT based kinetic Monte Carlo study of metal surface Growth Comparison.pdfapplication/pdf10259320https://repositorio.cuc.edu.co/bitstreams/e6585d32-1f8e-471d-8329-98cbf8d2517f/download8b8fdd355c209a0a80d81d1d15adc484MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/24348585-b951-45e3-b6af-bb8eda8667ed/download73a5432e0b76442b22b026844140d683MD52TEXTDFT based kinetic Monte Carlo study of metal surface Growth Comparison.pdf.txtDFT based kinetic Monte Carlo study of metal surface Growth Comparison.pdf.txtExtracted texttext/plain64598https://repositorio.cuc.edu.co/bitstreams/8bdbb5f7-36f7-420e-b35d-696e6337d99e/download916c4346652eecca3415804e286575d9MD53THUMBNAILDFT based kinetic Monte Carlo study of metal surface Growth Comparison.pdf.jpgDFT based kinetic Monte Carlo study of metal surface Growth Comparison.pdf.jpgGenerated Thumbnailimage/jpeg13943https://repositorio.cuc.edu.co/bitstreams/085d72a0-4051-4237-8d14-d8e456e71788/download975e8926bdcc567545e4d669ddab4558MD5411323/13567oai:repositorio.cuc.edu.co:11323/135672024-10-29 03:01:58.997https://creativecommons.org/licenses/by-nc-nd/4.0/© 2023 Elsevier B.V.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K