DFT based kinetic Monte Carlo study of metal surface growth: comparison of a restricted and an unrestricted diffusion model
The growth behavior of Cr and W surfaces using kinetic Monte Carlo (KMC) simulations based on Density-Functional Theory (DFT) is presented in this study. Three models, a growth model with random deposition and no diffusion, a growth model with restricted diffusion and a growth model with unrestricte...
- Autores:
-
García García, Sebastian
Ortiz González, Angel Santiago
Amaya Roncancio, Sebastian
Arellano Ramirez, Ivan D.
Nelphy De la Cruz , Felix
Gimenez M., Cecilia
Augusto Torres, Ceron Darwin
Restrepo Parra, Elisabeth
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13567
- Acceso en línea:
- https://hdl.handle.net/11323/13567
https://repositorio.cuc.edu.co/
- Palabra clave:
- Surface Growth
Surface Diffusion
DFT
KMC
Metal Surfaces
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
Summary: | The growth behavior of Cr and W surfaces using kinetic Monte Carlo (KMC) simulations based on Density-Functional Theory (DFT) is presented in this study. Three models, a growth model with random deposition and no diffusion, a growth model with restricted diffusion and a growth model with unrestricted diffusion model, were compared to understand their influence on the predicted surface roughness and layer density. The impact of deposition rate and temperature on surface growth for both metals were analyzed. For deposition rate studies, five different rates (0.01 ML/s, 0.1 ML/s, 1.0 ML/s, 10.0 ML/s, and 100 ML/s) were considered at 550 K for Cr and W respectively. The effect of temperature on roughness was also studied employing various temperatures from 300 K to 1100 K for both metals and under the two different evolution models. The results show that the unrestricted diffusion model exhibits higher roughness compared to the restricted model for both metals. The restricted model shows a stable region of roughness, whereas the unrestricted model shows a continuous increase in roughness throughout the simulation. Furthermore, layer density analysis revealed that temperature affects the filling of lower monolayers. Finally, dynamic exponents β and α for each studied model were calculated and discussed. The results highlight the influence of diffusion models, deposition rate and temperature on surface, roughness, and layer density. |
---|