Sale forecast for basic commodities based on artificial neural networks prediction

The objective of this paper is to carry out the comparison and selection of a method to forecast sales of basic food products efficiently. The source of data comes from a set of popular markets in the main departments of Colombia. The methods and methodologies used are: Hold Method, Winters, the Box...

Full description

Autores:
silva d, jesus g
Jesús Vargas Villa
Cabrera, Danelys
Tipo de recurso:
http://purl.org/coar/resource_type/c_f744
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5129
Acceso en línea:
https://hdl.handle.net/11323/5129
https://repositorio.cuc.edu.co/
Palabra clave:
Artificial Neural Networks (ANN)
Commodities
Sales forecast
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_e942702b24ea90ac9660ec6784fd3da3
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5129
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Sale forecast for basic commodities based on artificial neural networks prediction
title Sale forecast for basic commodities based on artificial neural networks prediction
spellingShingle Sale forecast for basic commodities based on artificial neural networks prediction
Artificial Neural Networks (ANN)
Commodities
Sales forecast
title_short Sale forecast for basic commodities based on artificial neural networks prediction
title_full Sale forecast for basic commodities based on artificial neural networks prediction
title_fullStr Sale forecast for basic commodities based on artificial neural networks prediction
title_full_unstemmed Sale forecast for basic commodities based on artificial neural networks prediction
title_sort Sale forecast for basic commodities based on artificial neural networks prediction
dc.creator.fl_str_mv silva d, jesus g
Jesús Vargas Villa
Cabrera, Danelys
dc.contributor.author.spa.fl_str_mv silva d, jesus g
Jesús Vargas Villa
Cabrera, Danelys
dc.subject.spa.fl_str_mv Artificial Neural Networks (ANN)
Commodities
Sales forecast
topic Artificial Neural Networks (ANN)
Commodities
Sales forecast
description The objective of this paper is to carry out the comparison and selection of a method to forecast sales of basic food products efficiently. The source of data comes from a set of popular markets in the main departments of Colombia. The methods and methodologies used are: Hold Method, Winters, the Box Jenkins methodology (ARIMA) and an Artificial Neural Network. The results show that the artificial neural network obtained a better performance achieving the lowest mean square error.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-07-31T22:45:24Z
dc.date.available.none.fl_str_mv 2019-07-31T22:45:24Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Documento de Conferencia
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_f744
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/EC
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_f744
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5129
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/5129
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv 10.1007/978-3-030-23887-2_5
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/463167be-4566-43a2-873a-bf1f33a9a1fb/download
https://repositorio.cuc.edu.co/bitstreams/3f7b1abd-0447-4fba-8ecd-149d728fdb18/download
https://repositorio.cuc.edu.co/bitstreams/53c74ba1-f8b2-4b77-932d-cfd8746c6091/download
https://repositorio.cuc.edu.co/bitstreams/a143dc90-c8da-4492-901a-fa99941f74e1/download
https://repositorio.cuc.edu.co/bitstreams/802d0803-0f6f-49cd-8861-a4ad364a2548/download
bitstream.checksum.fl_str_mv b48eff5ef9ed8f9521692b6ddb1ef5f7
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
9d38d3915e24eb3784f3bf6e820c2b8d
e5f816ec1c00cb025395730e5d79a856
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760754825625600
spelling silva d, jesus gJesús Vargas VillaCabrera, Danelys2019-07-31T22:45:24Z2019-07-31T22:45:24Z2020https://hdl.handle.net/11323/5129Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The objective of this paper is to carry out the comparison and selection of a method to forecast sales of basic food products efficiently. The source of data comes from a set of popular markets in the main departments of Colombia. The methods and methodologies used are: Hold Method, Winters, the Box Jenkins methodology (ARIMA) and an Artificial Neural Network. The results show that the artificial neural network obtained a better performance achieving the lowest mean square error.silva d, jesus g-will be generated-orcid-0000-0003-3555-9149-0Jesús Vargas VillaCabrera, Danelys-will be generated-orcid-0000-0002-9486-9764-0engUniversidad de la Costa10.1007/978-3-030-23887-2_5CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Artificial Neural Networks (ANN)CommoditiesSales forecastSale forecast for basic commodities based on artificial neural networks predictionDocumento de Conferenciahttp://purl.org/coar/resource_type/c_f744http://purl.org/coar/resource_type/c_c94fTextinfo:eu-repo/semantics/conferenceObjecthttp://purl.org/redcol/resource_type/ECinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALSale forecast for basic commodities based on artificial neural networks prediction.pdfSale forecast for basic commodities based on artificial neural networks prediction.pdfapplication/pdf175136https://repositorio.cuc.edu.co/bitstreams/463167be-4566-43a2-873a-bf1f33a9a1fb/downloadb48eff5ef9ed8f9521692b6ddb1ef5f7MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/3f7b1abd-0447-4fba-8ecd-149d728fdb18/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/53c74ba1-f8b2-4b77-932d-cfd8746c6091/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILSale forecast for basic commodities based on artificial neural networks prediction.pdf.jpgSale forecast for basic commodities based on artificial neural networks prediction.pdf.jpgimage/jpeg27745https://repositorio.cuc.edu.co/bitstreams/a143dc90-c8da-4492-901a-fa99941f74e1/download9d38d3915e24eb3784f3bf6e820c2b8dMD55TEXTSale forecast for basic commodities based on artificial neural networks prediction.pdf.txtSale forecast for basic commodities based on artificial neural networks prediction.pdf.txttext/plain698https://repositorio.cuc.edu.co/bitstreams/802d0803-0f6f-49cd-8861-a4ad364a2548/downloade5f816ec1c00cb025395730e5d79a856MD5611323/5129oai:repositorio.cuc.edu.co:11323/51292024-09-17 10:59:33.403http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=