A note on preservation of spectra for two given operators

We study the relationships between the spectra derived from Fredholm theory corresponding to two given bounded linear operators acting on the same space. The main goal of this paper is to obtain sufficient conditions for which the spectra derived from Fredholm theory and other parts of the spectra c...

Full description

Autores:
Carpintero, Carlos
Gutierrez, Alexander
Rosas, Ennis
Sanabria, Jose
Rosas, Ennis
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/3022
Acceso en línea:
https://hdl.handle.net/11323/3022
https://repositorio.cuc.edu.co/
Palabra clave:
restriction of an operator
spectral property
semi-Fredholm spectra
multiplication operator
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_e85f0a2ca7c5dd1b7f5327010928971f
oai_identifier_str oai:repositorio.cuc.edu.co:11323/3022
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv A note on preservation of spectra for two given operators
title A note on preservation of spectra for two given operators
spellingShingle A note on preservation of spectra for two given operators
restriction of an operator
spectral property
semi-Fredholm spectra
multiplication operator
title_short A note on preservation of spectra for two given operators
title_full A note on preservation of spectra for two given operators
title_fullStr A note on preservation of spectra for two given operators
title_full_unstemmed A note on preservation of spectra for two given operators
title_sort A note on preservation of spectra for two given operators
dc.creator.fl_str_mv Carpintero, Carlos
Gutierrez, Alexander
Rosas, Ennis
Sanabria, Jose
Rosas, Ennis
dc.contributor.author.spa.fl_str_mv Carpintero, Carlos
Gutierrez, Alexander
Rosas, Ennis
Sanabria, Jose
dc.contributor.author.none.fl_str_mv Rosas, Ennis
dc.subject.spa.fl_str_mv restriction of an operator
spectral property
semi-Fredholm spectra
multiplication operator
topic restriction of an operator
spectral property
semi-Fredholm spectra
multiplication operator
description We study the relationships between the spectra derived from Fredholm theory corresponding to two given bounded linear operators acting on the same space. The main goal of this paper is to obtain sufficient conditions for which the spectra derived from Fredholm theory and other parts of the spectra corresponding to two given operators are preserved. As an application of our results, we give conditions for which the above mentioned spectra corresponding to two multiplication operators acting on the space of functions of bounded p-variation in Wiener’s sense coincide. Additional illustrative results are given too.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-04-09T19:35:30Z
dc.date.available.none.fl_str_mv 2019-04-09T19:35:30Z
dc.date.issued.none.fl_str_mv 2019
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0862-7959
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/3022
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0862-7959
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/3022
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] P. Aiena: Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer Academic Publishers, Dordrecht, 2004. zbl MR doi [2] P. Aiena: Quasi-Fredholm operators and localized SVEP. Acta Sci. Mat. 73 (2007), 251–263. zbl MR [3] P. Aiena, M. T. Biondi, C. Carpintero: On Drazin invertibility. Proc. Am. Math. Soc. 136 (2008), 2839-2848. zbl MR doi [4] F. R. Astudillo-Villaba, R. E. Castillo, J. C. Ramos-Fern´andez: Multiplication operators on the spaces of functions of bounded p-variation in Wiener’s sense. Real Anal. Exch. 42 (2017), 329–344. zbl MR doi [5] B. A. Barnes: The spectral and Fredholm theory of extensions of bounded linear operators. Proc. Am. Math. Soc. 105 (1989), 941–949. zbl MR doi [6] B. A. Barnes: Restrictions of bounded linear operators: Closed range. Proc. Am. Math. Soc. 135 (2007), 1735–1740. zbl MR doi [7] M. Berkani: On a class of quasi-Fredholm operators. Integral Equations Oper. Theory 34 (1999), 244–249. zbl MR doi [8] M. Berkani, M. Sarih: On semi B-Fredholm operators. Glasg. Math. J. 43 (2001), 457–465. zbl MR doi [9] C. Carpintero, D. Mu˜noz, E. Rosas, J. Sanabria, O. Garc´ıa: Weyl type theorems and restrictions. Mediterr. J. Math. 11 (2014), 1215–1228. zbl MR doi [10] J. K. Finch: The single valued extension property on a Banach space. Pac. J. Math. 58 (1975), 61–69. zbl MR doi [11] H. G. Heuser: Functional Analysis. A Wiley-Interscience Publication. John Wiley & Sons, Chichester, 1982.
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Mathematica Bohemica
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/b6ac4c5e-e392-4191-bf23-f01827d379d2/download
https://repositorio.cuc.edu.co/bitstreams/381bbde5-cdd5-4a68-a076-aa50b2b17fe9/download
https://repositorio.cuc.edu.co/bitstreams/a3b6e37a-cabf-44a1-a24a-2c84d71f25f7/download
https://repositorio.cuc.edu.co/bitstreams/6948446c-8845-4304-9263-0c5575167052/download
bitstream.checksum.fl_str_mv 5e804424206949551aa741311ede9017
8a4605be74aa9ea9d79846c1fba20a33
cc2b1edc999694db9fb633178b8edc78
aef3b151c865feae93835b55e0668fdb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166835542949888
spelling Carpintero, CarlosGutierrez, AlexanderRosas, EnnisSanabria, JoseRosas, Ennisvirtual::977-12019-04-09T19:35:30Z2019-04-09T19:35:30Z20190862-7959https://hdl.handle.net/11323/3022Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/We study the relationships between the spectra derived from Fredholm theory corresponding to two given bounded linear operators acting on the same space. The main goal of this paper is to obtain sufficient conditions for which the spectra derived from Fredholm theory and other parts of the spectra corresponding to two given operators are preserved. As an application of our results, we give conditions for which the above mentioned spectra corresponding to two multiplication operators acting on the space of functions of bounded p-variation in Wiener’s sense coincide. Additional illustrative results are given too.Carpintero, Carlos-a355945f-e98f-41c1-bf2e-c139d8aa37cb-600Gutierrez, Alexander-0feb16e8-5789-4bfa-94db-54cfe52a4c13-600Rosas, Ennis-c145ef77-57b4-4c48-a23b-bd05bfbc6248-600Sanabria, Jose-e2f74121-9173-4ba0-a989-9057f046d7a4-600engMathematica BohemicaAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2restriction of an operatorspectral propertysemi-Fredholm spectramultiplication operatorA note on preservation of spectra for two given operatorsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] P. Aiena: Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer Academic Publishers, Dordrecht, 2004. zbl MR doi [2] P. Aiena: Quasi-Fredholm operators and localized SVEP. Acta Sci. Mat. 73 (2007), 251–263. zbl MR [3] P. Aiena, M. T. Biondi, C. Carpintero: On Drazin invertibility. Proc. Am. Math. Soc. 136 (2008), 2839-2848. zbl MR doi [4] F. R. Astudillo-Villaba, R. E. Castillo, J. C. Ramos-Fern´andez: Multiplication operators on the spaces of functions of bounded p-variation in Wiener’s sense. Real Anal. Exch. 42 (2017), 329–344. zbl MR doi [5] B. A. Barnes: The spectral and Fredholm theory of extensions of bounded linear operators. Proc. Am. Math. Soc. 105 (1989), 941–949. zbl MR doi [6] B. A. Barnes: Restrictions of bounded linear operators: Closed range. Proc. Am. Math. Soc. 135 (2007), 1735–1740. zbl MR doi [7] M. Berkani: On a class of quasi-Fredholm operators. Integral Equations Oper. Theory 34 (1999), 244–249. zbl MR doi [8] M. Berkani, M. Sarih: On semi B-Fredholm operators. Glasg. Math. J. 43 (2001), 457–465. zbl MR doi [9] C. Carpintero, D. Mu˜noz, E. Rosas, J. Sanabria, O. Garc´ıa: Weyl type theorems and restrictions. Mediterr. J. Math. 11 (2014), 1215–1228. zbl MR doi [10] J. K. Finch: The single valued extension property on a Banach space. Pac. J. Math. 58 (1975), 61–69. zbl MR doi [11] H. G. Heuser: Functional Analysis. A Wiley-Interscience Publication. John Wiley & Sons, Chichester, 1982.Publicationcb99d9b4-4dcd-4481-8c8a-83af4176c505virtual::977-1cb99d9b4-4dcd-4481-8c8a-83af4176c505virtual::977-1https://scholar.google.com/citations?user=KZvdbkwAAAAJ&hl=esvirtual::977-10000-0001-8123-9344virtual::977-1ORIGINALA note on preservation of spectra for two given operators.pdfA note on preservation of spectra for two given operators.pdfapplication/pdf169525https://repositorio.cuc.edu.co/bitstreams/b6ac4c5e-e392-4191-bf23-f01827d379d2/download5e804424206949551aa741311ede9017MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/381bbde5-cdd5-4a68-a076-aa50b2b17fe9/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILA note on preservation of spectra for two given operators.pdf.jpgA note on preservation of spectra for two given operators.pdf.jpgimage/jpeg36947https://repositorio.cuc.edu.co/bitstreams/a3b6e37a-cabf-44a1-a24a-2c84d71f25f7/downloadcc2b1edc999694db9fb633178b8edc78MD54TEXTA note on preservation of spectra for two given operators.pdf.txtA note on preservation of spectra for two given operators.pdf.txttext/plain30435https://repositorio.cuc.edu.co/bitstreams/6948446c-8845-4304-9263-0c5575167052/downloadaef3b151c865feae93835b55e0668fdbMD5511323/3022oai:repositorio.cuc.edu.co:11323/30222025-03-07 16:32:24.908open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=