Definición geométrica de andamios metálicos para posibles aplicaciones en ingeniería de tejidos

Introducción: El diseño de estructuras porosas tipo andamio en ingeniería de tejidos, se direcciona hacia el desarrollo de elementos que promuevan la consolidación ósea, estabilizando los fragmentos tisulares en dispositivos de fijación biodegradable. Objetivo: Obtener un modelo tridimensional digit...

Full description

Autores:
Acevedo Rueda, Oscar David
Fernández Morales, Gloria Patricia
Ramírez Patiño, Juan Fernando
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/12192
Acceso en línea:
https://hdl.handle.net/11323/12192
https://doi.org/10.17981/ingecuc.15.1.2019.02
Palabra clave:
digital model
geometric definition
metallic scaffolds
tissue engineering
modelo digital
definición geométrica
andamios metálicos
ingeniería de tejidos
Rights
openAccess
License
INGE CUC - 2019
id RCUC2_e7d847268c859ca572b4c650038310b3
oai_identifier_str oai:repositorio.cuc.edu.co:11323/12192
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Definición geométrica de andamios metálicos para posibles aplicaciones en ingeniería de tejidos
dc.title.translated.eng.fl_str_mv Digital geometric definition of metallic scaffolds for potential applications in tissue engineering
title Definición geométrica de andamios metálicos para posibles aplicaciones en ingeniería de tejidos
spellingShingle Definición geométrica de andamios metálicos para posibles aplicaciones en ingeniería de tejidos
digital model
geometric definition
metallic scaffolds
tissue engineering
modelo digital
definición geométrica
andamios metálicos
ingeniería de tejidos
title_short Definición geométrica de andamios metálicos para posibles aplicaciones en ingeniería de tejidos
title_full Definición geométrica de andamios metálicos para posibles aplicaciones en ingeniería de tejidos
title_fullStr Definición geométrica de andamios metálicos para posibles aplicaciones en ingeniería de tejidos
title_full_unstemmed Definición geométrica de andamios metálicos para posibles aplicaciones en ingeniería de tejidos
title_sort Definición geométrica de andamios metálicos para posibles aplicaciones en ingeniería de tejidos
dc.creator.fl_str_mv Acevedo Rueda, Oscar David
Fernández Morales, Gloria Patricia
Ramírez Patiño, Juan Fernando
dc.contributor.author.spa.fl_str_mv Acevedo Rueda, Oscar David
Fernández Morales, Gloria Patricia
Ramírez Patiño, Juan Fernando
dc.subject.eng.fl_str_mv digital model
geometric definition
metallic scaffolds
tissue engineering
topic digital model
geometric definition
metallic scaffolds
tissue engineering
modelo digital
definición geométrica
andamios metálicos
ingeniería de tejidos
dc.subject.spa.fl_str_mv modelo digital
definición geométrica
andamios metálicos
ingeniería de tejidos
description Introducción: El diseño de estructuras porosas tipo andamio en ingeniería de tejidos, se direcciona hacia el desarrollo de elementos que promuevan la consolidación ósea, estabilizando los fragmentos tisulares en dispositivos de fijación biodegradable. Objetivo: Obtener un modelo tridimensional digital para un metal celular que asemeje la morfología ósea cortical y trabecular, con características como geometría, tamaño de poro, porosidad y recubrimiento tipo piel, además de brindar una base para la materialización de estructuras que mejoren la regeneración ósea y faciliten el control de las propiedades mecánicas del andamio para los defectos biológicos de su aplicación. Metodología: Se presenta un código paramétrico de modelado 3D, mediante la definición de una geometría regular uniforme con una porosidad y tamaño de poro adecuadas, atendiendo a la esencia de los metales celulares y complementada con un cuerpo de recubrimiento tipo piel que envuelve el modelo tridimensional, para elevar la rigidez y la resistencia mecánica del andamio; además de viabilizar el mecanizado de geometrías propias y permitir aislamiento y protección para los casos en los que se requiera. Resultados: Se generó el desarrollo de dos modelos digitales para metales celulares con condiciones morfológicas complejas, permitiendo una buena interrelación de parámetros geométricos para la proliferación celular y una respuesta favorable a la solicitación estructural en aplicaciones de ingeniería de tejidos. Conclusiones: El modelo diseñado evidencia la posibilidad de aplicarse al desarrollo de alternativas de fijación ósea, que disminuyan la respuesta inflamatoria, eviten intervenciones secundarias y reduzcan las tasas de rechazo a los elementos actualmente utilizados para tratar afecciones osteomusculares.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-03-07 00:00:00
2024-04-09T20:14:55Z
dc.date.available.none.fl_str_mv 2019-03-07 00:00:00
2024-04-09T20:14:55Z
dc.date.issued.none.fl_str_mv 2019-03-07
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-6517
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/12192
dc.identifier.url.none.fl_str_mv https://doi.org/10.17981/ingecuc.15.1.2019.02
dc.identifier.doi.none.fl_str_mv 10.17981/ingecuc.15.1.2019.02
dc.identifier.eissn.none.fl_str_mv 2382-4700
identifier_str_mv 0122-6517
10.17981/ingecuc.15.1.2019.02
2382-4700
url https://hdl.handle.net/11323/12192
https://doi.org/10.17981/ingecuc.15.1.2019.02
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Inge Cuc
dc.relation.references.spa.fl_str_mv G. Falke, y A. Atala, “Reconstrucción de tejidos y órganos utilizando ingeniería tisular”, Arch Argent Pediatr, vol. 98, no. 2, pp. 103–115, Jan. 2000. Retrieved from: http://evunix.uevora.pt/~fcs/bioh16.pdf
C. García, y D. Ortega, “Elementos de Osteosíntesis de uso Habitual en Fracturas del Esqueleto Apendicular: Evaluación Radiológica", Rev. Chil. Radiol., vol. 11, no. 2, pp. 58–70, Jan. 2005. http://dx.doi.org/10.4067/S0717-93082005000200005
T. Albrektsson and C. Johansson, “Osteoinduction, osteoconduction and osseointegration”, Eur. Spine J., vol. 10, no. 2, pp. 96–101, Oct. 2001. http://dx.doi.org/10.1007/s005860100282
N. Jasmawati, J. Djuansjah, M. Kadir and I. Sukmana, “Porous Magnesium Scaffolds for Bone Implant Applications: A Review”, Advanced Materials Research, vol. 1125, no. 1, pp. 437–440, Oct. 2015. https://doi.org/10.4028/www.scientific.net/AMR.1125.437
M-Q. Cheng, T. Wahafu, G-F. Jiang, W. Liu, Y-Q. Qiao, X-C. Peng, T. Chen, X-L. Zhang, G. He & X-Y. Liu, “A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration”, Sci. Rep., vol. 6, no. 1, p. 24134, Apr. 2016. https://doi.org/10.1038/srep24134
Z. Zhen, T-F. Xi, and Y-F. Zheng, “A review on in vitro corrosion performance test of biodegradable metallic materials”, Trans. Nonferrous Met. Soc. China, vol. 23, no. 8, pp. 2283–2293, Aug. 2013. https://doi.org/10.1016/S1003-6326(13)62730-2
J. Mitra, G. Tripathi, A. Sharma and B. Basu, “Scaffolds for bone tissue engineering: role of surface patterning on osteoblast response”, RSC Adv., vol. 3, no. 28, pp. 11073–11094, 2013. https://doi.org/10.1039/C3RA23315D
K-J. Kim, S. Choi, Y. Sang Cho, S-J. Yang, Y-S. Cho and K. K. Kim, “Magnesium ions enhance infiltration of osteoblasts in scaffolds via increasing cell motility”, J. Mater. Sci. Mater. Med., vol. 28, no. 6, pp. 1–7, Jun. 2017. https://doi.org/10.1007/s10856-017-5908-5
A. R. Boccaccini, U. Kneser and A. Arkudas, “Scaffolds for vascularized bone regeneration: advances and challenges”, Expert Rev. Med. Devices, vol. 9, no. 5, pp. 457–460, Sept. 2012. https://doi.org/10.1586/erd.12.49
V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis”, Biomaterials, vol. 26, no. 27, pp. 5474–5491, Sept. 2005. https://doi.org/10.1016/j.biomaterials.2005.02.002
L. D. Albrecht, S. W. Sawyer, and P. Soman, “Developing 3D Scaffolds in the Field of Tissue Engineering to Treat Complex Bone Defects,” 3D Print. Addit. Manuf., vol. 3, no. 2, pp. 106–112, Jun. 2016. https://doi.org/10.1089/3dp.2016.0006
K. Alvarez and H. Nakajima, “Metallic Scaffolds for Bone Regeneration”, Materials, vol. 2, no. 3, pp. 790–832, Jul. 2009. https://doi.org/10.3390/ma2030790
M. Tarik, I. Gibson and X. Li, “State of the art and future direction of additive manufactured scaffolds-based bone tissue engineering”, Rapid Prototyp. J., vol. 20, no. 1, pp. 13–26, Jan. 2014. https://doi.org/10.1108/RPJ-03-2012-0023
J. R. Caeiro, P. González and D. Guede, “Biomecánica y hueso (y II): Ensayos en los distintos niveles jerárquicos del hueso y técnicas alternativas para la determinación de la resistencia ósea”, Rev. Osteoporosis Metab. Min., vol. 5, no. 2, pp. 99–108, Jun. 2013. http://dx.doi.org/10.4321/S1889-836X2013000200007
P. J. Prendergast and P. E. McHugh, “Topics in bio-mechanical engineering”, in 1st Symposium on Biomechanical Engineering, Dublin, Ireland, Nov. 27, 2004.
X-Y. Zhang, G. Fang, and J. Zhou, “Additively Manufactured Scaffolds for Bone Tissue Engineering and the Prediction of their Mechanical behavior: A review”, Materials, vol. 10, no. 1, pp. 1–28, Jan. 2017. https://doi.org/10.3390/ma10010050
G. Maliaris, “Mechanical and fracture behaviour of cellular materials with regular and random lattice structures under various compressive velocities”, in 4th International Conference of Engineering Against Failure (ICEAF IV), Skiathos, Greece, Jun. 24–26, 2015.
J. Banhart, “Manufacture, characterisation and application of cellular metals and metal foams”, Prog. Mater. Sci., vol. 46, no. 6, pp. 559–632, Dec. 2001. https://doi.org/10.1016/S0079-6425(00)00002-5
P. Pinto, N. Peixinho, D. Soares and F. Silva, “Process development for manufacturing of cellular structures with controlled geometry and properties,” Mater. Res., vol. 18, no. 2, pp. 274–282, Apr. 2015. https://doi.org/10.1590/1516-1439.286614
Č. Jaroslav and D. Vojtěch, “Characterization of porous magnesium prepared by powder metallurgy - influence of powder shape”, Manuf. Technol., vol. 14, no. 3, pp. 271–275, Jan. 2014.
M. Velasco y D. Garzón, “Implantes Scaffolds para regeneración ósea. Materiales, técnicas y modelado mediante sistemas de reacción-difusión”, Rev. Cubana de Invest. Biomed., Vol. 29, no.1, pp. 140–154, Mar. 2010. Recuperado de http://www.bvs.sld.cu/revistas/ibi/vol_29_1_10/ibi08110.htm
F. Djamaluddin, S. Abdullah, A. Ariffin, and Z. Nopiah, “Finite element analysis and crashworthiness optimization of foam-filled double circular under oblique loading”, Lat. Am. J. Solids Struct., vol. 13, no. 11, pp. 2176–2189, Nov. 2016. https://doi.org/10.1590/1679-78252844
A. Uzun, H. Karakoc, U. Gokmen, H. Cinici, and M. Turker, “Investigation of mechanical properties of tubular aluminum foams”, Int. J. Mater. Res., vol. 107, no. 11, pp. 996–1004, Nov. 2016. https://doi.org/10.3139/146.111430
N. Chantarapanich, P. Puttawibul, S. Sucharitpwatskul, P. Jeamwatthanachai, S. Inglam, and K. Sitthiseripratip, “Scaffold Library for Tissue Engineering: A Geometric Evaluation”, Comput. Mat. Methods Med., vol. 2012, no. 1, pp. 1–14. Sept. 2012. http://dx.doi.org/10.1155/2012/407805
F. Zwarts, "Size effects in cellular solids", Ph.D. dissertation, Dept. Mat. Nat. Sci. RUG, Groningen, 2007. Retrieved from: https://www.uni-due.de/~hm0014/Cosserat_files/tekoglu_thesis06.pdf
H. Kanahashi, T. Mukai, T. G. Nieh, T. Aizawa, and K. Higashi, “Effect of Cell Size on the Dynamic Compressive Properties of Open-Celled Aluminum Foams”, Mater. Trans., vol. 43, no. 10, pp. 2548–2553, Sept. 2002. https://doi.org/10.2320/matertrans.43.2548
R. Oftadeh, M. Perez-viloria, J. Villa-camacho, A. Vaziri, and A. Nazarian, “Biomechanics and Mechanobiology of Trabecular Bone: A Review”, J. Biomech. Eng., vol. 137, no. 1, pp. 1–15, Dec. 2015. https://doi.org/10.1115/1.4029176
C. Misch, Z. Qu and M. Bidez, “Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement”, J. Oral Maxillofac. Surg., vol. 57, no. 6, pp. 700–706, Jun. 1999. https://doi.org/10.1016/S0278-2391(99)90437-8
F. Warmuth, F. Osmanlic, L. Adler, M. A. Lodes, and C. Körner, “Fabrication and characterisation of a fully auxetic 3D lattice structure via selective electron beam melting”, Smart Mater. Struct., vol. 26, no. 2, p. 025013, Dec. 2017. https://doi.org/10.1088/1361-665X/26/2/025013
Y. Ding, J. Lin, C. Wen, D. Zhang, and Y. Li, “Mechanical properties, in vitro corrosion and biocompatibility of newly developed biodegradable Mg-Zr-Sr-Ho alloys for biomedical applications” Sci. Rep., vol. 6, no. 1, pp. 1–10, Aug. 2016. https://doi.org/10.1038/srep31990
S. Ribeiro-Ayeh, “Finite element modelling of the mechanics of solid foam materials”, PhD dissertation, KTH, Dept. Aer. Veh. Eng., Stockholm, 2005. Retrieved from: http://kth.diva-portal.org/smash/get/diva2:7450/FULLTEXT01.pdf
W. S. Thomson, “On the division of space with minimum partitional area”, Acta Math., vol. 11, no. 1, pp. 121–134, Mar. 1887. https://projecteuclid.org/euclid.acta/1485881153
P. J. Veale, “Investigation of the Behavior of Open Cell Aluminum Foam”, M. S. thesis, Dept. Civil. Env. Eng., Mass. Univ., Amherst, 2010. Retrieved from: https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1527&context=theses
D. M. Robertson, L. Pierre and R. Chahal, “Preliminary Observations of Bone Ingrowth into Porous Materials”, J Biomed Mater Res., vol. 10, no. 3, pp. 335–344, May. 1976. https://doi.org/10.1002/jbm.820100304
V. Guneta, J. K. Wang, S. Maleksaeedi, Z. M. He, M. T. C. Wong, and C. Choong, “Three-Dimensional Printing of Titanium for Bone Tissue Engineering Applications: A Preliminary Study”, J. Biomimetics, Biomater. Biomed. Eng., vol. 21, no. 1, pp. 101–115, Aug, 2014. https://doi.org/10.4028/www.scientific.net/JBBBE.21.101
F. Bobbert, K. Lietaert, A. Eftekhari, B. Pouran, S. Ahmadi, H. Weinans, and A. Zadpoor, “Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties”, Acta Biomaterialia, vol. 53, no. 1, pp. 572–584, Apr. 2017. https://doi.org/10.1016/j.actbio.2017.02.024.
S. J. Hollister, “Porous scaffold design for tissue engineering”, Nat. Mater., vol. 4, no. 7, pp. 518–24, Jul. 2005. https://doi.org/10.1038/nmat1421
G. Jia, Y. Hou, C. Chen, J. Niu, H. Zhang, and H. Huang, “Precise fabrication of open porous Mg scaffolds using NaCl templates: Relationship between space holder particles, pore characteristics and mechanical behavior”, Mater. Des., vol. 140, pp. 106–113, Feb. 2018. https://doi.org/10.1016/j.matdes.2017.11.064
J. Osorio-Hernández, M. Suarez, R. Goodall, G. Lara-Rodriguez, I. Alfonso, and I. Figueroa, “Manufacturing of open-cell Mg foams by replication process and mechanical properties”, Mater. Des., vol. 64, pp. 136–141, Dec. 2014. https://doi.org/10.1016/j.matdes.2014.07.015
Z. Li and F. Lu, “Bending resistance and energy-absorbing effectiveness of empty and foam-filled thin-walled tubes”, J. Reinf. Plast. Compos., vol. 34, no. 9, pp. 761–768, Apr. 2015. https://doi.org/10.1177/0731684415580329
Robert McNeel & Associates, “Rhinoceros 3D”, noviembre, 2012, [En línea . Disponible en: https://www.rhino3d.com/la/
dc.relation.citationendpage.none.fl_str_mv 24
dc.relation.citationstartpage.none.fl_str_mv 17
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 15
dc.relation.bitstream.none.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/download/1769/2022
https://revistascientificas.cuc.edu.co/ingecuc/article/download/1769/2076
https://revistascientificas.cuc.edu.co/ingecuc/article/download/1769/2279
dc.relation.citationedition.spa.fl_str_mv Núm. 1 , Año 2019 : (Enero - Junio)
dc.rights.spa.fl_str_mv INGE CUC - 2019
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv INGE CUC - 2019
http://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
text/html
application/xml
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.source.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/1769
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/0c004171-bb7e-446c-aa82-b70d84d8b9c8/download
bitstream.checksum.fl_str_mv 0517d29e6e5814875314ed11ac813162
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760832546078720
spelling Acevedo Rueda, Oscar DavidFernández Morales, Gloria PatriciaRamírez Patiño, Juan Fernando2019-03-07 00:00:002024-04-09T20:14:55Z2019-03-07 00:00:002024-04-09T20:14:55Z2019-03-070122-6517https://hdl.handle.net/11323/12192https://doi.org/10.17981/ingecuc.15.1.2019.0210.17981/ingecuc.15.1.2019.022382-4700Introducción: El diseño de estructuras porosas tipo andamio en ingeniería de tejidos, se direcciona hacia el desarrollo de elementos que promuevan la consolidación ósea, estabilizando los fragmentos tisulares en dispositivos de fijación biodegradable. Objetivo: Obtener un modelo tridimensional digital para un metal celular que asemeje la morfología ósea cortical y trabecular, con características como geometría, tamaño de poro, porosidad y recubrimiento tipo piel, además de brindar una base para la materialización de estructuras que mejoren la regeneración ósea y faciliten el control de las propiedades mecánicas del andamio para los defectos biológicos de su aplicación. Metodología: Se presenta un código paramétrico de modelado 3D, mediante la definición de una geometría regular uniforme con una porosidad y tamaño de poro adecuadas, atendiendo a la esencia de los metales celulares y complementada con un cuerpo de recubrimiento tipo piel que envuelve el modelo tridimensional, para elevar la rigidez y la resistencia mecánica del andamio; además de viabilizar el mecanizado de geometrías propias y permitir aislamiento y protección para los casos en los que se requiera. Resultados: Se generó el desarrollo de dos modelos digitales para metales celulares con condiciones morfológicas complejas, permitiendo una buena interrelación de parámetros geométricos para la proliferación celular y una respuesta favorable a la solicitación estructural en aplicaciones de ingeniería de tejidos. Conclusiones: El modelo diseñado evidencia la posibilidad de aplicarse al desarrollo de alternativas de fijación ósea, que disminuyan la respuesta inflamatoria, eviten intervenciones secundarias y reduzcan las tasas de rechazo a los elementos actualmente utilizados para tratar afecciones osteomusculares.Introduction: The design of porous structures used as scaffolds in tissue engineering, is directed towards the development of elements that promote bone consolidation processes, stabilizing tissue fragments in conventional biodegradable fixation devices. Objective: To obtain a digital three-dimensional model for a cellular metal that resembles the cortical and trabecular bone morphology, with characteristics such as geometry, pore size, porosity and skin type coating, as well as providing a basis for the materialization of structures that improve bone regeneration and facilitate the control of the mechanical properties of the scaffold for the biological defects of its application. Methodology: A parametric 3D modeling code is presented, by means of the definition of a uniform regular geometry with a suitable porosity and pore size, taking into account the essence of the cellular metals and complemented by a skin-like coating body that surrounds the three-dimensional model seeking to elevate the rigidity and mechanical strength of the scaffolding, in addition to making possible the machining of own geometries and allowing isolation and protection for the cases in which it is required. Results: The development of two digital models for cellular metals with complex morphological conditions was generated, allowing a good interrelation of geometric parameters for cell proliferation and a favorable response to structural stress in tissue engineering applications. Conclusions: The designed model demonstrates the possibility of being applied to development of bone fixation alternatives, which decrease the inflammatory response, avoid secondary interventions and reduce the rejection rates of the elements currently used to treatment of musculoskeletal conditions.application/pdftext/htmlapplication/xmlspaUniversidad de la CostaINGE CUC - 2019http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/1769digital modelgeometric definitionmetallic scaffoldstissue engineeringmodelo digitaldefinición geométricaandamios metálicosingeniería de tejidosDefinición geométrica de andamios metálicos para posibles aplicaciones en ingeniería de tejidosDigital geometric definition of metallic scaffolds for potential applications in tissue engineeringArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CucG. Falke, y A. Atala, “Reconstrucción de tejidos y órganos utilizando ingeniería tisular”, Arch Argent Pediatr, vol. 98, no. 2, pp. 103–115, Jan. 2000. Retrieved from: http://evunix.uevora.pt/~fcs/bioh16.pdfC. García, y D. Ortega, “Elementos de Osteosíntesis de uso Habitual en Fracturas del Esqueleto Apendicular: Evaluación Radiológica", Rev. Chil. Radiol., vol. 11, no. 2, pp. 58–70, Jan. 2005. http://dx.doi.org/10.4067/S0717-93082005000200005T. Albrektsson and C. Johansson, “Osteoinduction, osteoconduction and osseointegration”, Eur. Spine J., vol. 10, no. 2, pp. 96–101, Oct. 2001. http://dx.doi.org/10.1007/s005860100282N. Jasmawati, J. Djuansjah, M. Kadir and I. Sukmana, “Porous Magnesium Scaffolds for Bone Implant Applications: A Review”, Advanced Materials Research, vol. 1125, no. 1, pp. 437–440, Oct. 2015. https://doi.org/10.4028/www.scientific.net/AMR.1125.437M-Q. Cheng, T. Wahafu, G-F. Jiang, W. Liu, Y-Q. Qiao, X-C. Peng, T. Chen, X-L. Zhang, G. He & X-Y. Liu, “A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration”, Sci. Rep., vol. 6, no. 1, p. 24134, Apr. 2016. https://doi.org/10.1038/srep24134Z. Zhen, T-F. Xi, and Y-F. Zheng, “A review on in vitro corrosion performance test of biodegradable metallic materials”, Trans. Nonferrous Met. Soc. China, vol. 23, no. 8, pp. 2283–2293, Aug. 2013. https://doi.org/10.1016/S1003-6326(13)62730-2J. Mitra, G. Tripathi, A. Sharma and B. Basu, “Scaffolds for bone tissue engineering: role of surface patterning on osteoblast response”, RSC Adv., vol. 3, no. 28, pp. 11073–11094, 2013. https://doi.org/10.1039/C3RA23315DK-J. Kim, S. Choi, Y. Sang Cho, S-J. Yang, Y-S. Cho and K. K. Kim, “Magnesium ions enhance infiltration of osteoblasts in scaffolds via increasing cell motility”, J. Mater. Sci. Mater. Med., vol. 28, no. 6, pp. 1–7, Jun. 2017. https://doi.org/10.1007/s10856-017-5908-5A. R. Boccaccini, U. Kneser and A. Arkudas, “Scaffolds for vascularized bone regeneration: advances and challenges”, Expert Rev. Med. Devices, vol. 9, no. 5, pp. 457–460, Sept. 2012. https://doi.org/10.1586/erd.12.49V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis”, Biomaterials, vol. 26, no. 27, pp. 5474–5491, Sept. 2005. https://doi.org/10.1016/j.biomaterials.2005.02.002L. D. Albrecht, S. W. Sawyer, and P. Soman, “Developing 3D Scaffolds in the Field of Tissue Engineering to Treat Complex Bone Defects,” 3D Print. Addit. Manuf., vol. 3, no. 2, pp. 106–112, Jun. 2016. https://doi.org/10.1089/3dp.2016.0006K. Alvarez and H. Nakajima, “Metallic Scaffolds for Bone Regeneration”, Materials, vol. 2, no. 3, pp. 790–832, Jul. 2009. https://doi.org/10.3390/ma2030790M. Tarik, I. Gibson and X. Li, “State of the art and future direction of additive manufactured scaffolds-based bone tissue engineering”, Rapid Prototyp. J., vol. 20, no. 1, pp. 13–26, Jan. 2014. https://doi.org/10.1108/RPJ-03-2012-0023J. R. Caeiro, P. González and D. Guede, “Biomecánica y hueso (y II): Ensayos en los distintos niveles jerárquicos del hueso y técnicas alternativas para la determinación de la resistencia ósea”, Rev. Osteoporosis Metab. Min., vol. 5, no. 2, pp. 99–108, Jun. 2013. http://dx.doi.org/10.4321/S1889-836X2013000200007P. J. Prendergast and P. E. McHugh, “Topics in bio-mechanical engineering”, in 1st Symposium on Biomechanical Engineering, Dublin, Ireland, Nov. 27, 2004.X-Y. Zhang, G. Fang, and J. Zhou, “Additively Manufactured Scaffolds for Bone Tissue Engineering and the Prediction of their Mechanical behavior: A review”, Materials, vol. 10, no. 1, pp. 1–28, Jan. 2017. https://doi.org/10.3390/ma10010050G. Maliaris, “Mechanical and fracture behaviour of cellular materials with regular and random lattice structures under various compressive velocities”, in 4th International Conference of Engineering Against Failure (ICEAF IV), Skiathos, Greece, Jun. 24–26, 2015.J. Banhart, “Manufacture, characterisation and application of cellular metals and metal foams”, Prog. Mater. Sci., vol. 46, no. 6, pp. 559–632, Dec. 2001. https://doi.org/10.1016/S0079-6425(00)00002-5P. Pinto, N. Peixinho, D. Soares and F. Silva, “Process development for manufacturing of cellular structures with controlled geometry and properties,” Mater. Res., vol. 18, no. 2, pp. 274–282, Apr. 2015. https://doi.org/10.1590/1516-1439.286614Č. Jaroslav and D. Vojtěch, “Characterization of porous magnesium prepared by powder metallurgy - influence of powder shape”, Manuf. Technol., vol. 14, no. 3, pp. 271–275, Jan. 2014.M. Velasco y D. Garzón, “Implantes Scaffolds para regeneración ósea. Materiales, técnicas y modelado mediante sistemas de reacción-difusión”, Rev. Cubana de Invest. Biomed., Vol. 29, no.1, pp. 140–154, Mar. 2010. Recuperado de http://www.bvs.sld.cu/revistas/ibi/vol_29_1_10/ibi08110.htmF. Djamaluddin, S. Abdullah, A. Ariffin, and Z. Nopiah, “Finite element analysis and crashworthiness optimization of foam-filled double circular under oblique loading”, Lat. Am. J. Solids Struct., vol. 13, no. 11, pp. 2176–2189, Nov. 2016. https://doi.org/10.1590/1679-78252844A. Uzun, H. Karakoc, U. Gokmen, H. Cinici, and M. Turker, “Investigation of mechanical properties of tubular aluminum foams”, Int. J. Mater. Res., vol. 107, no. 11, pp. 996–1004, Nov. 2016. https://doi.org/10.3139/146.111430N. Chantarapanich, P. Puttawibul, S. Sucharitpwatskul, P. Jeamwatthanachai, S. Inglam, and K. Sitthiseripratip, “Scaffold Library for Tissue Engineering: A Geometric Evaluation”, Comput. Mat. Methods Med., vol. 2012, no. 1, pp. 1–14. Sept. 2012. http://dx.doi.org/10.1155/2012/407805F. Zwarts, "Size effects in cellular solids", Ph.D. dissertation, Dept. Mat. Nat. Sci. RUG, Groningen, 2007. Retrieved from: https://www.uni-due.de/~hm0014/Cosserat_files/tekoglu_thesis06.pdfH. Kanahashi, T. Mukai, T. G. Nieh, T. Aizawa, and K. Higashi, “Effect of Cell Size on the Dynamic Compressive Properties of Open-Celled Aluminum Foams”, Mater. Trans., vol. 43, no. 10, pp. 2548–2553, Sept. 2002. https://doi.org/10.2320/matertrans.43.2548R. Oftadeh, M. Perez-viloria, J. Villa-camacho, A. Vaziri, and A. Nazarian, “Biomechanics and Mechanobiology of Trabecular Bone: A Review”, J. Biomech. Eng., vol. 137, no. 1, pp. 1–15, Dec. 2015. https://doi.org/10.1115/1.4029176C. Misch, Z. Qu and M. Bidez, “Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement”, J. Oral Maxillofac. Surg., vol. 57, no. 6, pp. 700–706, Jun. 1999. https://doi.org/10.1016/S0278-2391(99)90437-8F. Warmuth, F. Osmanlic, L. Adler, M. A. Lodes, and C. Körner, “Fabrication and characterisation of a fully auxetic 3D lattice structure via selective electron beam melting”, Smart Mater. Struct., vol. 26, no. 2, p. 025013, Dec. 2017. https://doi.org/10.1088/1361-665X/26/2/025013Y. Ding, J. Lin, C. Wen, D. Zhang, and Y. Li, “Mechanical properties, in vitro corrosion and biocompatibility of newly developed biodegradable Mg-Zr-Sr-Ho alloys for biomedical applications” Sci. Rep., vol. 6, no. 1, pp. 1–10, Aug. 2016. https://doi.org/10.1038/srep31990S. Ribeiro-Ayeh, “Finite element modelling of the mechanics of solid foam materials”, PhD dissertation, KTH, Dept. Aer. Veh. Eng., Stockholm, 2005. Retrieved from: http://kth.diva-portal.org/smash/get/diva2:7450/FULLTEXT01.pdfW. S. Thomson, “On the division of space with minimum partitional area”, Acta Math., vol. 11, no. 1, pp. 121–134, Mar. 1887. https://projecteuclid.org/euclid.acta/1485881153P. J. Veale, “Investigation of the Behavior of Open Cell Aluminum Foam”, M. S. thesis, Dept. Civil. Env. Eng., Mass. Univ., Amherst, 2010. Retrieved from: https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1527&context=thesesD. M. Robertson, L. Pierre and R. Chahal, “Preliminary Observations of Bone Ingrowth into Porous Materials”, J Biomed Mater Res., vol. 10, no. 3, pp. 335–344, May. 1976. https://doi.org/10.1002/jbm.820100304V. Guneta, J. K. Wang, S. Maleksaeedi, Z. M. He, M. T. C. Wong, and C. Choong, “Three-Dimensional Printing of Titanium for Bone Tissue Engineering Applications: A Preliminary Study”, J. Biomimetics, Biomater. Biomed. Eng., vol. 21, no. 1, pp. 101–115, Aug, 2014. https://doi.org/10.4028/www.scientific.net/JBBBE.21.101F. Bobbert, K. Lietaert, A. Eftekhari, B. Pouran, S. Ahmadi, H. Weinans, and A. Zadpoor, “Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties”, Acta Biomaterialia, vol. 53, no. 1, pp. 572–584, Apr. 2017. https://doi.org/10.1016/j.actbio.2017.02.024.S. J. Hollister, “Porous scaffold design for tissue engineering”, Nat. Mater., vol. 4, no. 7, pp. 518–24, Jul. 2005. https://doi.org/10.1038/nmat1421G. Jia, Y. Hou, C. Chen, J. Niu, H. Zhang, and H. Huang, “Precise fabrication of open porous Mg scaffolds using NaCl templates: Relationship between space holder particles, pore characteristics and mechanical behavior”, Mater. Des., vol. 140, pp. 106–113, Feb. 2018. https://doi.org/10.1016/j.matdes.2017.11.064J. Osorio-Hernández, M. Suarez, R. Goodall, G. Lara-Rodriguez, I. Alfonso, and I. Figueroa, “Manufacturing of open-cell Mg foams by replication process and mechanical properties”, Mater. Des., vol. 64, pp. 136–141, Dec. 2014. https://doi.org/10.1016/j.matdes.2014.07.015Z. Li and F. Lu, “Bending resistance and energy-absorbing effectiveness of empty and foam-filled thin-walled tubes”, J. Reinf. Plast. Compos., vol. 34, no. 9, pp. 761–768, Apr. 2015. https://doi.org/10.1177/0731684415580329Robert McNeel & Associates, “Rhinoceros 3D”, noviembre, 2012, [En línea . Disponible en: https://www.rhino3d.com/la/2417115https://revistascientificas.cuc.edu.co/ingecuc/article/download/1769/2022https://revistascientificas.cuc.edu.co/ingecuc/article/download/1769/2076https://revistascientificas.cuc.edu.co/ingecuc/article/download/1769/2279Núm. 1 , Año 2019 : (Enero - Junio)PublicationOREORE.xmltext/xml2702https://repositorio.cuc.edu.co/bitstreams/0c004171-bb7e-446c-aa82-b70d84d8b9c8/download0517d29e6e5814875314ed11ac813162MD5111323/12192oai:repositorio.cuc.edu.co:11323/121922024-09-17 14:07:21.412http://creativecommons.org/licenses/by-nc-nd/4.0INGE CUC - 2019metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co