Computational fluid dynamicsmodeling of microchannels cooling for electronic microdevices
A simulation of the cooling of electronic devices was carried out by means of microchannels, using water as a coolant to dissipate the heat generated from a computer processor, and thus stabilize its optimum operating temperature. For the development of this study, computational fluid mechanics mode...
- Autores:
-
Fábregas, Jonathan
Santamaria, Henry
Buelvas, Edgardo
Perez, Saul
Díaz, Carlos
Carpintero Durango, Javier Andrés
Mendoza, Ricardo
Villa, Jennifer
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9286
- Acceso en línea:
- https://hdl.handle.net/11323/9286
https://doi.org/10.31436/iiumej.v23i1.2113
https://repositorio.cuc.edu.co/
- Palabra clave:
- Computational fluids dynamics
Microchannels
Processor
Cooling
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
id |
RCUC2_e78e839350d455287caf9d086c967c3f |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9286 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Computational fluid dynamicsmodeling of microchannels cooling for electronic microdevices |
title |
Computational fluid dynamicsmodeling of microchannels cooling for electronic microdevices |
spellingShingle |
Computational fluid dynamicsmodeling of microchannels cooling for electronic microdevices Computational fluids dynamics Microchannels Processor Cooling |
title_short |
Computational fluid dynamicsmodeling of microchannels cooling for electronic microdevices |
title_full |
Computational fluid dynamicsmodeling of microchannels cooling for electronic microdevices |
title_fullStr |
Computational fluid dynamicsmodeling of microchannels cooling for electronic microdevices |
title_full_unstemmed |
Computational fluid dynamicsmodeling of microchannels cooling for electronic microdevices |
title_sort |
Computational fluid dynamicsmodeling of microchannels cooling for electronic microdevices |
dc.creator.fl_str_mv |
Fábregas, Jonathan Santamaria, Henry Buelvas, Edgardo Perez, Saul Díaz, Carlos Carpintero Durango, Javier Andrés Mendoza, Ricardo Villa, Jennifer |
dc.contributor.author.spa.fl_str_mv |
Fábregas, Jonathan Santamaria, Henry Buelvas, Edgardo Perez, Saul Díaz, Carlos Carpintero Durango, Javier Andrés Mendoza, Ricardo Villa, Jennifer |
dc.subject.proposal.eng.fl_str_mv |
Computational fluids dynamics Microchannels Processor Cooling |
topic |
Computational fluids dynamics Microchannels Processor Cooling |
description |
A simulation of the cooling of electronic devices was carried out by means of microchannels, using water as a coolant to dissipate the heat generated from a computer processor, and thus stabilize its optimum operating temperature. For the development of this study, computational fluid mechanics modeling was established in order to determine the temperature profiles, pressure profiles, and velocity behavior of the working fluid in the microchannel. In the results of the study, the operating temperatures of the computer processor were obtained, in the ranges of 303 K to 307 K, with fluid velocities in the microchannels of 5 m/s, apressure drop of 633.7 kPa, and a factor of safety of the design of the microchannel of 15. From the results, the improvement of the heat transfer in a cooling system of electronic deviceswas evidenced when using a coolant as a working fluid compared to the cooling by forced air flow traditional |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-22T15:17:11Z |
dc.date.available.none.fl_str_mv |
2022-06-22T15:17:11Z |
dc.date.issued.none.fl_str_mv |
2022-01-04 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Fábregas, J., Santamaria, H., Buelvas, E., Perez, S., Díaz, C., Carpintero, J., Mendoza, R., & Villa, J. (2022). CFD MODELING OF MICROCHANNELS COOLING FOR ELECTRONIC MICRODEVICES. IIUM Engineering Journal, 23(1), 384–395. https://doi.org/10.31436/iiumej.v23i1.2113 |
dc.identifier.issn.spa.fl_str_mv |
1511-788X |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9286 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.31436/iiumej.v23i1.2113 |
dc.identifier.doi.spa.fl_str_mv |
10.31436/iiumej.v23i1.2113 |
dc.identifier.eissn.spa.fl_str_mv |
2289-7860 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Fábregas, J., Santamaria, H., Buelvas, E., Perez, S., Díaz, C., Carpintero, J., Mendoza, R., & Villa, J. (2022). CFD MODELING OF MICROCHANNELS COOLING FOR ELECTRONIC MICRODEVICES. IIUM Engineering Journal, 23(1), 384–395. https://doi.org/10.31436/iiumej.v23i1.2113 1511-788X 10.31436/iiumej.v23i1.2113 2289-7860 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9286 https://doi.org/10.31436/iiumej.v23i1.2113 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
IIUM Engineering Journal |
dc.relation.references.spa.fl_str_mv |
[1]Belhardj S, Mimouni S, Saidane A, Benzohra M. (2003) Using microchannels to coolmicroprocessors: A transmission-line-matrix study. Microelectronics Journal, 34(4):247–253.https://doi.org/10.1016/S0026-2692(03)00004-1 [2]Chen CH, Ding CY. (2011) Study on the thermalbehavior and cooling performance of ananofluid-cooled microchannel heat sink. International Journal of Thermal Sciences, 50(3):378–384. https://doi.org/10.1016/j.ijthermalsci.2010.04.020 [3]Chiu HC, Jang JH, Yeh HW, Wu MS. (2011) The heat transfer characteristics of liquid coolingheatsink containing microchannels. International Journal of Heat and Mass Transfer, 54(1–3):34–42. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.066 [4]Bosi F, Balestri G, Ceccanti M, Mammini P, Massa M, Petragnani G, Ragonesi A, Soldani A.(2011) Light prototype support using micro-channel technology as high efficiency system forsilicon pixel detector cooling. Nuclear Instruments and Methods in Physics Research, SectionA: Accelerators, Spectrometers, Detectors andAssociated Equipment, 650(1):213–217.https://doi.org/10.1016/j.nima.2010.12.187 [5]Brinda R, Joseph Daniel R, Sumangala K. (2012) Ladder shape micro channels employed highperformance micro cooling system for ULSI. International Journal of Heat and Mass Transfer,55(13–14):3400–3411. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.044 [6]Naqiuddin NH, Saw LH, Yew MC, Yusof F, Poon HM, Cai Z, Thiam HS. (2018) Numericalinvestigation for optimizing segmented micro-channel heat sink by Taguchi-Grey method.Applied Energy, 222:437–450. https://doi.org/10.1016/j.apenergy.2018.03.186 [7]Zhang Y, Wang S, Ding P. (2017) Effects of channel shape on the cooling performance ofhybrid micro-channel and slot-jet module. International Journal of Heat and Mass Transfer,113:295–309. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.092 [8]Naqiuddin NH, Saw LH, Yew MC, Yusof F, Ng TC, Yew MK. (2018) Overview of micro-channel design for high heat flux application. Renewable and Sustainable Energy Reviews, 82:901–914.https://doi.org/10.1016/j.rser.2017.09.110 [9]Kirsch KL, Thole KA. (2018) Isolating the effects of surface roughness versus wall shape innumerically optimized, additively manufactured micro cooling channels. ExperimentalThermal and Fluid Science, 98:227–238. https://doi.org/10.1016/j.expthermflusci.2018.05.030 [10]Yue C, Zhang Q, Zhai Z, Ling L. (2018) CFD simulation on the heat transfer and flowcharacteristics of a microchannel separate heat pipe under different filling ratios. AppliedThermal Engineering, 139:25–34. https://doi.org/10.1016/j.applthermaleng.2018.01.011 [11]Hnaien N, Marzouk KS, Ben HA, Jayb J. (2016) Numerical Study of Interaction of Two PlaneParallel Jets. International Journal of Engineering, 29(10):1421–1430.https://doi.org/10.5829/idosi.ije.2016.29.10a.13 [12]Mohammed HA, Bhaskaran G, Shuaib NH, Saidur R. (2011) Heat transfer and fluid flowcharacteristics in microchannels heat exchanger using nanofluids: A review. Renewable andSustainable Energy Reviews, 15(3):1502–1512. https://doi.org/10.1016/j.rser.2010.11.031 [13]Mohd Umair S, Parashram Gulhane N. (2016) On numerical investigation of non-dimensionalconstant representing the occurrence of secondary peaks in the Nusselt distribution curves.International Journal of Engineering, Transactions A: Basics, 29(10):1431–1440.https://doi.org/10.5829/idosi.ije.2016.29.10a.00 [14]Aqilah F, Islam M, Juretic F, Guerrero J, Wood D, Nasir Ani F. (2018) Study of mesh qualityimprovement for. IIUM Engineering Journal, 19(2):203–212.https://doi.org/https://doi.org/10.31436/iiumej.v19i2.905 [15]DrăganV. (2017) Centrifugal compressor efficiency calculation with heat transfer. IIUMEngineering Journal, 18(2):225–237. [16]Thome JR. (2004) Boiling in microchannels: A review of experiment and theory. InternationalJournal of Heat and Fluid Flow, 25(2):128–139.https://doi.org/10.1016/j.ijheatfluidflow.2003.11.005 [17]Talimi V, Muzychka YS, Kocabiyik S. (2012) A review on numerical studies of slug flowhydrodynamics and heat transfer in microtubes and microchannels. International Journal ofMultiphase Flow, 39:88–104. https://doi.org/10.1016/j.ijmultiphaseflow.2011.10.005 [18]Bagheri-Esfe H, Manshadi MD. (2018) A low-cost numerical simulation of a supersonic wind-tunnel design. International Journal of Engineering, Transactions A: Basics, 31(1): 128–135.https://doi.org/10.5829/ije.2018.31.01a.18 [19]Azizi K, Keshavarz Moraveji M. (2017) Computational fluid dynamic-two fluid model studyof gas-solid heat transfer in a riser with various inclination angles. International Journal of Engineering, Transactions A: Basics, 30(4):464–472. https://doi.org/10.5829/idosi.ije.2017.30.04a.02 [20]Villegas JF, GuarínAM, Unfried-Silgado J. (2019) A Coupled Rigid-viscoplastic NumericalModeling for Evaluating Effects of Shoulder Geometry on Friction Stir-welded AluminumAlloys. International Journal of Engineering, Transactions B: Applications, 32(2):184–191.https://doi.org/10.5829/ije.2019.32.02b.17 [21]Culun P, Celik N, Pihtili K. (2018) Effects of design parameters on a multi jet impinging heattransfer. Alexandria Engineering Journal, 57(4):4255–4266.https://doi.org/10.1016/j.aej.2018.01.022 [22]ElsamniOA, Abbasy AA, El-Masry OA. (2019) Developing laminar flow in curved semi-circular ducts. Alexandria Engineering Journal, 58(1):1–8.https://doi.org/10.1016/j.aej.2018.03.013 [23]Moradikazerouni A, Afrand M, Alsarraf J, Mahian O, Wongwises S, Tran MD. (2019)Comparison of the effect of five different entrance channel shapes of a micro-channel heat sinkin forced convection with application to cooling a supercomputer circuit board. AppliedThermal Engineering, 150:1078–1089. https://doi.org/10.1016/j.applthermaleng.2019.01.051 [24]Abdollahi A, Mohammed HA, Vanaki SM, Osia A, Golbahar Haghighi MR. (2017) Fluid flowand heat transfer of nanofluids in microchannel heat sink with V-type inlet/outlet arrangement.Alexandria Engineering Journal, 56(1):161–170. https://doi.org/10.1016/j.aej.2016.09.019 [25]Sreehari D, Sharma AK. (2019) On thermal performance of serpentine silicon microchannels.International Journal of Thermal Sciences, 146:1-14.https://doi.org/10.1016/j.ijthermalsci.2019.106067396 |
dc.relation.citationendpage.spa.fl_str_mv |
396 |
dc.relation.citationstartpage.spa.fl_str_mv |
384 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
23 |
dc.rights.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) (c) 2021 IIUM Press |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) (c) 2021 IIUM Press https://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
13 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Malaysia |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/2113 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/097c9f5e-3c2c-42c9-94c4-68e50944aa04/download https://repositorio.cuc.edu.co/bitstreams/9eea9797-246e-45a8-b01b-9c63e5c66e47/download https://repositorio.cuc.edu.co/bitstreams/6cbeb153-1541-4b87-9ede-4f38fc0169cc/download https://repositorio.cuc.edu.co/bitstreams/e917d2d2-a6d1-42db-b05f-b4728c1fc1f0/download |
bitstream.checksum.fl_str_mv |
86aa8540335a8b92f31271efedc7b51c e30e9215131d99561d40d6b0abbe9bad e8aaff1b7830ba3198d3a3e4f626ac25 112076e49d8e9c1b724ff82256bd3817 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760850136989696 |
spelling |
Fábregas, JonathanSantamaria, HenryBuelvas, EdgardoPerez, SaulDíaz, CarlosCarpintero Durango, Javier AndrésMendoza, RicardoVilla, Jennifer2022-06-22T15:17:11Z2022-06-22T15:17:11Z2022-01-04Fábregas, J., Santamaria, H., Buelvas, E., Perez, S., Díaz, C., Carpintero, J., Mendoza, R., & Villa, J. (2022). CFD MODELING OF MICROCHANNELS COOLING FOR ELECTRONIC MICRODEVICES. IIUM Engineering Journal, 23(1), 384–395. https://doi.org/10.31436/iiumej.v23i1.21131511-788Xhttps://hdl.handle.net/11323/9286https://doi.org/10.31436/iiumej.v23i1.211310.31436/iiumej.v23i1.21132289-7860Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/A simulation of the cooling of electronic devices was carried out by means of microchannels, using water as a coolant to dissipate the heat generated from a computer processor, and thus stabilize its optimum operating temperature. For the development of this study, computational fluid mechanics modeling was established in order to determine the temperature profiles, pressure profiles, and velocity behavior of the working fluid in the microchannel. In the results of the study, the operating temperatures of the computer processor were obtained, in the ranges of 303 K to 307 K, with fluid velocities in the microchannels of 5 m/s, apressure drop of 633.7 kPa, and a factor of safety of the design of the microchannel of 15. From the results, the improvement of the heat transfer in a cooling system of electronic deviceswas evidenced when using a coolant as a working fluid compared to the cooling by forced air flow traditionalInternational Islamic University MalaysiaA simulation of the cooling of electronic devices was carried out by means of microchannels, using water as a coolant to dissipate the heat generated from a computer processor, and thus stabilize its optimum operating temperature. For the development of this study, computational fluid mechanics modeling was established in order to determine the temperature profiles, pressure profiles, and velocity behavior of the working fluid in the microchannel. In the results of the study, the operating temperatures of the computer processor were obtained, in the ranges of 303 K to 307 K, with fluid velocities in the microchannels of 5 m/s, apressure drop of 633.7 kPa, and a factor of safety of the design of the microchannel of 15. From the results, the improvement of the heat transfer in a cooling system of electronic deviceswas evidenced when using a coolant as a working fluid compared to the cooling by forced air flow traditional13 páginasapplication/pdfengAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)(c) 2021 IIUM Presshttps://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Computational fluid dynamicsmodeling of microchannels cooling for electronic microdevicesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/2113MalaysiaIIUM Engineering Journal[1]Belhardj S, Mimouni S, Saidane A, Benzohra M. (2003) Using microchannels to coolmicroprocessors: A transmission-line-matrix study. Microelectronics Journal, 34(4):247–253.https://doi.org/10.1016/S0026-2692(03)00004-1[2]Chen CH, Ding CY. (2011) Study on the thermalbehavior and cooling performance of ananofluid-cooled microchannel heat sink. International Journal of Thermal Sciences, 50(3):378–384. https://doi.org/10.1016/j.ijthermalsci.2010.04.020[3]Chiu HC, Jang JH, Yeh HW, Wu MS. (2011) The heat transfer characteristics of liquid coolingheatsink containing microchannels. International Journal of Heat and Mass Transfer, 54(1–3):34–42. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.066[4]Bosi F, Balestri G, Ceccanti M, Mammini P, Massa M, Petragnani G, Ragonesi A, Soldani A.(2011) Light prototype support using micro-channel technology as high efficiency system forsilicon pixel detector cooling. Nuclear Instruments and Methods in Physics Research, SectionA: Accelerators, Spectrometers, Detectors andAssociated Equipment, 650(1):213–217.https://doi.org/10.1016/j.nima.2010.12.187[5]Brinda R, Joseph Daniel R, Sumangala K. (2012) Ladder shape micro channels employed highperformance micro cooling system for ULSI. International Journal of Heat and Mass Transfer,55(13–14):3400–3411. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.044[6]Naqiuddin NH, Saw LH, Yew MC, Yusof F, Poon HM, Cai Z, Thiam HS. (2018) Numericalinvestigation for optimizing segmented micro-channel heat sink by Taguchi-Grey method.Applied Energy, 222:437–450. https://doi.org/10.1016/j.apenergy.2018.03.186[7]Zhang Y, Wang S, Ding P. (2017) Effects of channel shape on the cooling performance ofhybrid micro-channel and slot-jet module. International Journal of Heat and Mass Transfer,113:295–309. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.092[8]Naqiuddin NH, Saw LH, Yew MC, Yusof F, Ng TC, Yew MK. (2018) Overview of micro-channel design for high heat flux application. Renewable and Sustainable Energy Reviews, 82:901–914.https://doi.org/10.1016/j.rser.2017.09.110[9]Kirsch KL, Thole KA. (2018) Isolating the effects of surface roughness versus wall shape innumerically optimized, additively manufactured micro cooling channels. ExperimentalThermal and Fluid Science, 98:227–238. https://doi.org/10.1016/j.expthermflusci.2018.05.030[10]Yue C, Zhang Q, Zhai Z, Ling L. (2018) CFD simulation on the heat transfer and flowcharacteristics of a microchannel separate heat pipe under different filling ratios. AppliedThermal Engineering, 139:25–34. https://doi.org/10.1016/j.applthermaleng.2018.01.011[11]Hnaien N, Marzouk KS, Ben HA, Jayb J. (2016) Numerical Study of Interaction of Two PlaneParallel Jets. International Journal of Engineering, 29(10):1421–1430.https://doi.org/10.5829/idosi.ije.2016.29.10a.13[12]Mohammed HA, Bhaskaran G, Shuaib NH, Saidur R. (2011) Heat transfer and fluid flowcharacteristics in microchannels heat exchanger using nanofluids: A review. Renewable andSustainable Energy Reviews, 15(3):1502–1512. https://doi.org/10.1016/j.rser.2010.11.031[13]Mohd Umair S, Parashram Gulhane N. (2016) On numerical investigation of non-dimensionalconstant representing the occurrence of secondary peaks in the Nusselt distribution curves.International Journal of Engineering, Transactions A: Basics, 29(10):1431–1440.https://doi.org/10.5829/idosi.ije.2016.29.10a.00[14]Aqilah F, Islam M, Juretic F, Guerrero J, Wood D, Nasir Ani F. (2018) Study of mesh qualityimprovement for. IIUM Engineering Journal, 19(2):203–212.https://doi.org/https://doi.org/10.31436/iiumej.v19i2.905[15]DrăganV. (2017) Centrifugal compressor efficiency calculation with heat transfer. IIUMEngineering Journal, 18(2):225–237.[16]Thome JR. (2004) Boiling in microchannels: A review of experiment and theory. InternationalJournal of Heat and Fluid Flow, 25(2):128–139.https://doi.org/10.1016/j.ijheatfluidflow.2003.11.005[17]Talimi V, Muzychka YS, Kocabiyik S. (2012) A review on numerical studies of slug flowhydrodynamics and heat transfer in microtubes and microchannels. International Journal ofMultiphase Flow, 39:88–104. https://doi.org/10.1016/j.ijmultiphaseflow.2011.10.005[18]Bagheri-Esfe H, Manshadi MD. (2018) A low-cost numerical simulation of a supersonic wind-tunnel design. International Journal of Engineering, Transactions A: Basics, 31(1): 128–135.https://doi.org/10.5829/ije.2018.31.01a.18[19]Azizi K, Keshavarz Moraveji M. (2017) Computational fluid dynamic-two fluid model studyof gas-solid heat transfer in a riser with various inclination angles. International Journal of Engineering, Transactions A: Basics, 30(4):464–472. https://doi.org/10.5829/idosi.ije.2017.30.04a.02[20]Villegas JF, GuarínAM, Unfried-Silgado J. (2019) A Coupled Rigid-viscoplastic NumericalModeling for Evaluating Effects of Shoulder Geometry on Friction Stir-welded AluminumAlloys. International Journal of Engineering, Transactions B: Applications, 32(2):184–191.https://doi.org/10.5829/ije.2019.32.02b.17[21]Culun P, Celik N, Pihtili K. (2018) Effects of design parameters on a multi jet impinging heattransfer. Alexandria Engineering Journal, 57(4):4255–4266.https://doi.org/10.1016/j.aej.2018.01.022[22]ElsamniOA, Abbasy AA, El-Masry OA. (2019) Developing laminar flow in curved semi-circular ducts. Alexandria Engineering Journal, 58(1):1–8.https://doi.org/10.1016/j.aej.2018.03.013[23]Moradikazerouni A, Afrand M, Alsarraf J, Mahian O, Wongwises S, Tran MD. (2019)Comparison of the effect of five different entrance channel shapes of a micro-channel heat sinkin forced convection with application to cooling a supercomputer circuit board. AppliedThermal Engineering, 150:1078–1089. https://doi.org/10.1016/j.applthermaleng.2019.01.051[24]Abdollahi A, Mohammed HA, Vanaki SM, Osia A, Golbahar Haghighi MR. (2017) Fluid flowand heat transfer of nanofluids in microchannel heat sink with V-type inlet/outlet arrangement.Alexandria Engineering Journal, 56(1):161–170. https://doi.org/10.1016/j.aej.2016.09.019[25]Sreehari D, Sharma AK. (2019) On thermal performance of serpentine silicon microchannels.International Journal of Thermal Sciences, 146:1-14.https://doi.org/10.1016/j.ijthermalsci.2019.106067396396384123Computational fluids dynamicsMicrochannelsProcessorCoolingPublicationORIGINALCOMPUTATIONAL FLUID.pdfCOMPUTATIONAL FLUID.pdfapplication/pdf1693541https://repositorio.cuc.edu.co/bitstreams/097c9f5e-3c2c-42c9-94c4-68e50944aa04/download86aa8540335a8b92f31271efedc7b51cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/9eea9797-246e-45a8-b01b-9c63e5c66e47/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTCOMPUTATIONAL FLUID.pdf.txtCOMPUTATIONAL FLUID.pdf.txttext/plain33672https://repositorio.cuc.edu.co/bitstreams/6cbeb153-1541-4b87-9ede-4f38fc0169cc/downloade8aaff1b7830ba3198d3a3e4f626ac25MD53THUMBNAILCOMPUTATIONAL FLUID.pdf.jpgCOMPUTATIONAL FLUID.pdf.jpgimage/jpeg14029https://repositorio.cuc.edu.co/bitstreams/e917d2d2-a6d1-42db-b05f-b4728c1fc1f0/download112076e49d8e9c1b724ff82256bd3817MD5411323/9286oai:repositorio.cuc.edu.co:11323/92862024-09-17 14:10:51.824https://creativecommons.org/licenses/by-nc/4.0/Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |