Computational fluid dynamicsmodeling of microchannels cooling for electronic microdevices

A simulation of the cooling of electronic devices was carried out by means of microchannels, using water as a coolant to dissipate the heat generated from a computer processor, and thus stabilize its optimum operating temperature. For the development of this study, computational fluid mechanics mode...

Full description

Autores:
Fábregas, Jonathan
Santamaria, Henry
Buelvas, Edgardo
Perez, Saul
Díaz, Carlos
Carpintero Durango, Javier Andrés
Mendoza, Ricardo
Villa, Jennifer
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9286
Acceso en línea:
https://hdl.handle.net/11323/9286
https://doi.org/10.31436/iiumej.v23i1.2113
https://repositorio.cuc.edu.co/
Palabra clave:
Computational fluids dynamics
Microchannels
Processor
Cooling
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
id RCUC2_e78e839350d455287caf9d086c967c3f
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9286
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Computational fluid dynamicsmodeling of microchannels cooling for electronic microdevices
title Computational fluid dynamicsmodeling of microchannels cooling for electronic microdevices
spellingShingle Computational fluid dynamicsmodeling of microchannels cooling for electronic microdevices
Computational fluids dynamics
Microchannels
Processor
Cooling
title_short Computational fluid dynamicsmodeling of microchannels cooling for electronic microdevices
title_full Computational fluid dynamicsmodeling of microchannels cooling for electronic microdevices
title_fullStr Computational fluid dynamicsmodeling of microchannels cooling for electronic microdevices
title_full_unstemmed Computational fluid dynamicsmodeling of microchannels cooling for electronic microdevices
title_sort Computational fluid dynamicsmodeling of microchannels cooling for electronic microdevices
dc.creator.fl_str_mv Fábregas, Jonathan
Santamaria, Henry
Buelvas, Edgardo
Perez, Saul
Díaz, Carlos
Carpintero Durango, Javier Andrés
Mendoza, Ricardo
Villa, Jennifer
dc.contributor.author.spa.fl_str_mv Fábregas, Jonathan
Santamaria, Henry
Buelvas, Edgardo
Perez, Saul
Díaz, Carlos
Carpintero Durango, Javier Andrés
Mendoza, Ricardo
Villa, Jennifer
dc.subject.proposal.eng.fl_str_mv Computational fluids dynamics
Microchannels
Processor
Cooling
topic Computational fluids dynamics
Microchannels
Processor
Cooling
description A simulation of the cooling of electronic devices was carried out by means of microchannels, using water as a coolant to dissipate the heat generated from a computer processor, and thus stabilize its optimum operating temperature. For the development of this study, computational fluid mechanics modeling was established in order to determine the temperature profiles, pressure profiles, and velocity behavior of the working fluid in the microchannel. In the results of the study, the operating temperatures of the computer processor were obtained, in the ranges of 303 K to 307 K, with fluid velocities in the microchannels of 5 m/s, apressure drop of 633.7 kPa, and a factor of safety of the design of the microchannel of 15. From the results, the improvement of the heat transfer in a cooling system of electronic deviceswas evidenced when using a coolant as a working fluid compared to the cooling by forced air flow traditional
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-22T15:17:11Z
dc.date.available.none.fl_str_mv 2022-06-22T15:17:11Z
dc.date.issued.none.fl_str_mv 2022-01-04
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Fábregas, J., Santamaria, H., Buelvas, E., Perez, S., Díaz, C., Carpintero, J., Mendoza, R., & Villa, J. (2022). CFD MODELING OF MICROCHANNELS COOLING FOR ELECTRONIC MICRODEVICES. IIUM Engineering Journal, 23(1), 384–395. https://doi.org/10.31436/iiumej.v23i1.2113
dc.identifier.issn.spa.fl_str_mv 1511-788X
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9286
dc.identifier.url.spa.fl_str_mv https://doi.org/10.31436/iiumej.v23i1.2113
dc.identifier.doi.spa.fl_str_mv 10.31436/iiumej.v23i1.2113
dc.identifier.eissn.spa.fl_str_mv 2289-7860
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Fábregas, J., Santamaria, H., Buelvas, E., Perez, S., Díaz, C., Carpintero, J., Mendoza, R., & Villa, J. (2022). CFD MODELING OF MICROCHANNELS COOLING FOR ELECTRONIC MICRODEVICES. IIUM Engineering Journal, 23(1), 384–395. https://doi.org/10.31436/iiumej.v23i1.2113
1511-788X
10.31436/iiumej.v23i1.2113
2289-7860
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9286
https://doi.org/10.31436/iiumej.v23i1.2113
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv IIUM Engineering Journal
dc.relation.references.spa.fl_str_mv [1]Belhardj S, Mimouni S, Saidane A, Benzohra M. (2003) Using microchannels to coolmicroprocessors: A transmission-line-matrix study. Microelectronics Journal, 34(4):247–253.https://doi.org/10.1016/S0026-2692(03)00004-1
[2]Chen CH, Ding CY. (2011) Study on the thermalbehavior and cooling performance of ananofluid-cooled microchannel heat sink. International Journal of Thermal Sciences, 50(3):378–384. https://doi.org/10.1016/j.ijthermalsci.2010.04.020
[3]Chiu HC, Jang JH, Yeh HW, Wu MS. (2011) The heat transfer characteristics of liquid coolingheatsink containing microchannels. International Journal of Heat and Mass Transfer, 54(1–3):34–42. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.066
[4]Bosi F, Balestri G, Ceccanti M, Mammini P, Massa M, Petragnani G, Ragonesi A, Soldani A.(2011) Light prototype support using micro-channel technology as high efficiency system forsilicon pixel detector cooling. Nuclear Instruments and Methods in Physics Research, SectionA: Accelerators, Spectrometers, Detectors andAssociated Equipment, 650(1):213–217.https://doi.org/10.1016/j.nima.2010.12.187
[5]Brinda R, Joseph Daniel R, Sumangala K. (2012) Ladder shape micro channels employed highperformance micro cooling system for ULSI. International Journal of Heat and Mass Transfer,55(13–14):3400–3411. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.044
[6]Naqiuddin NH, Saw LH, Yew MC, Yusof F, Poon HM, Cai Z, Thiam HS. (2018) Numericalinvestigation for optimizing segmented micro-channel heat sink by Taguchi-Grey method.Applied Energy, 222:437–450. https://doi.org/10.1016/j.apenergy.2018.03.186
[7]Zhang Y, Wang S, Ding P. (2017) Effects of channel shape on the cooling performance ofhybrid micro-channel and slot-jet module. International Journal of Heat and Mass Transfer,113:295–309. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.092
[8]Naqiuddin NH, Saw LH, Yew MC, Yusof F, Ng TC, Yew MK. (2018) Overview of micro-channel design for high heat flux application. Renewable and Sustainable Energy Reviews, 82:901–914.https://doi.org/10.1016/j.rser.2017.09.110
[9]Kirsch KL, Thole KA. (2018) Isolating the effects of surface roughness versus wall shape innumerically optimized, additively manufactured micro cooling channels. ExperimentalThermal and Fluid Science, 98:227–238. https://doi.org/10.1016/j.expthermflusci.2018.05.030
[10]Yue C, Zhang Q, Zhai Z, Ling L. (2018) CFD simulation on the heat transfer and flowcharacteristics of a microchannel separate heat pipe under different filling ratios. AppliedThermal Engineering, 139:25–34. https://doi.org/10.1016/j.applthermaleng.2018.01.011
[11]Hnaien N, Marzouk KS, Ben HA, Jayb J. (2016) Numerical Study of Interaction of Two PlaneParallel Jets. International Journal of Engineering, 29(10):1421–1430.https://doi.org/10.5829/idosi.ije.2016.29.10a.13
[12]Mohammed HA, Bhaskaran G, Shuaib NH, Saidur R. (2011) Heat transfer and fluid flowcharacteristics in microchannels heat exchanger using nanofluids: A review. Renewable andSustainable Energy Reviews, 15(3):1502–1512. https://doi.org/10.1016/j.rser.2010.11.031
[13]Mohd Umair S, Parashram Gulhane N. (2016) On numerical investigation of non-dimensionalconstant representing the occurrence of secondary peaks in the Nusselt distribution curves.International Journal of Engineering, Transactions A: Basics, 29(10):1431–1440.https://doi.org/10.5829/idosi.ije.2016.29.10a.00
[14]Aqilah F, Islam M, Juretic F, Guerrero J, Wood D, Nasir Ani F. (2018) Study of mesh qualityimprovement for. IIUM Engineering Journal, 19(2):203–212.https://doi.org/https://doi.org/10.31436/iiumej.v19i2.905
[15]DrăganV. (2017) Centrifugal compressor efficiency calculation with heat transfer. IIUMEngineering Journal, 18(2):225–237.
[16]Thome JR. (2004) Boiling in microchannels: A review of experiment and theory. InternationalJournal of Heat and Fluid Flow, 25(2):128–139.https://doi.org/10.1016/j.ijheatfluidflow.2003.11.005
[17]Talimi V, Muzychka YS, Kocabiyik S. (2012) A review on numerical studies of slug flowhydrodynamics and heat transfer in microtubes and microchannels. International Journal ofMultiphase Flow, 39:88–104. https://doi.org/10.1016/j.ijmultiphaseflow.2011.10.005
[18]Bagheri-Esfe H, Manshadi MD. (2018) A low-cost numerical simulation of a supersonic wind-tunnel design. International Journal of Engineering, Transactions A: Basics, 31(1): 128–135.https://doi.org/10.5829/ije.2018.31.01a.18
[19]Azizi K, Keshavarz Moraveji M. (2017) Computational fluid dynamic-two fluid model studyof gas-solid heat transfer in a riser with various inclination angles. International Journal of Engineering, Transactions A: Basics, 30(4):464–472. https://doi.org/10.5829/idosi.ije.2017.30.04a.02
[20]Villegas JF, GuarínAM, Unfried-Silgado J. (2019) A Coupled Rigid-viscoplastic NumericalModeling for Evaluating Effects of Shoulder Geometry on Friction Stir-welded AluminumAlloys. International Journal of Engineering, Transactions B: Applications, 32(2):184–191.https://doi.org/10.5829/ije.2019.32.02b.17
[21]Culun P, Celik N, Pihtili K. (2018) Effects of design parameters on a multi jet impinging heattransfer. Alexandria Engineering Journal, 57(4):4255–4266.https://doi.org/10.1016/j.aej.2018.01.022
[22]ElsamniOA, Abbasy AA, El-Masry OA. (2019) Developing laminar flow in curved semi-circular ducts. Alexandria Engineering Journal, 58(1):1–8.https://doi.org/10.1016/j.aej.2018.03.013
[23]Moradikazerouni A, Afrand M, Alsarraf J, Mahian O, Wongwises S, Tran MD. (2019)Comparison of the effect of five different entrance channel shapes of a micro-channel heat sinkin forced convection with application to cooling a supercomputer circuit board. AppliedThermal Engineering, 150:1078–1089. https://doi.org/10.1016/j.applthermaleng.2019.01.051
[24]Abdollahi A, Mohammed HA, Vanaki SM, Osia A, Golbahar Haghighi MR. (2017) Fluid flowand heat transfer of nanofluids in microchannel heat sink with V-type inlet/outlet arrangement.Alexandria Engineering Journal, 56(1):161–170. https://doi.org/10.1016/j.aej.2016.09.019
[25]Sreehari D, Sharma AK. (2019) On thermal performance of serpentine silicon microchannels.International Journal of Thermal Sciences, 146:1-14.https://doi.org/10.1016/j.ijthermalsci.2019.106067396
dc.relation.citationendpage.spa.fl_str_mv 396
dc.relation.citationstartpage.spa.fl_str_mv 384
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 23
dc.rights.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
(c) 2021 IIUM Press
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
(c) 2021 IIUM Press
https://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 13 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Malaysia
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/2113
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/097c9f5e-3c2c-42c9-94c4-68e50944aa04/download
https://repositorio.cuc.edu.co/bitstreams/9eea9797-246e-45a8-b01b-9c63e5c66e47/download
https://repositorio.cuc.edu.co/bitstreams/6cbeb153-1541-4b87-9ede-4f38fc0169cc/download
https://repositorio.cuc.edu.co/bitstreams/e917d2d2-a6d1-42db-b05f-b4728c1fc1f0/download
bitstream.checksum.fl_str_mv 86aa8540335a8b92f31271efedc7b51c
e30e9215131d99561d40d6b0abbe9bad
e8aaff1b7830ba3198d3a3e4f626ac25
112076e49d8e9c1b724ff82256bd3817
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760850136989696
spelling Fábregas, JonathanSantamaria, HenryBuelvas, EdgardoPerez, SaulDíaz, CarlosCarpintero Durango, Javier AndrésMendoza, RicardoVilla, Jennifer2022-06-22T15:17:11Z2022-06-22T15:17:11Z2022-01-04Fábregas, J., Santamaria, H., Buelvas, E., Perez, S., Díaz, C., Carpintero, J., Mendoza, R., & Villa, J. (2022). CFD MODELING OF MICROCHANNELS COOLING FOR ELECTRONIC MICRODEVICES. IIUM Engineering Journal, 23(1), 384–395. https://doi.org/10.31436/iiumej.v23i1.21131511-788Xhttps://hdl.handle.net/11323/9286https://doi.org/10.31436/iiumej.v23i1.211310.31436/iiumej.v23i1.21132289-7860Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/A simulation of the cooling of electronic devices was carried out by means of microchannels, using water as a coolant to dissipate the heat generated from a computer processor, and thus stabilize its optimum operating temperature. For the development of this study, computational fluid mechanics modeling was established in order to determine the temperature profiles, pressure profiles, and velocity behavior of the working fluid in the microchannel. In the results of the study, the operating temperatures of the computer processor were obtained, in the ranges of 303 K to 307 K, with fluid velocities in the microchannels of 5 m/s, apressure drop of 633.7 kPa, and a factor of safety of the design of the microchannel of 15. From the results, the improvement of the heat transfer in a cooling system of electronic deviceswas evidenced when using a coolant as a working fluid compared to the cooling by forced air flow traditionalInternational Islamic University MalaysiaA simulation of the cooling of electronic devices was carried out by means of microchannels, using water as a coolant to dissipate the heat generated from a computer processor, and thus stabilize its optimum operating temperature. For the development of this study, computational fluid mechanics modeling was established in order to determine the temperature profiles, pressure profiles, and velocity behavior of the working fluid in the microchannel. In the results of the study, the operating temperatures of the computer processor were obtained, in the ranges of 303 K to 307 K, with fluid velocities in the microchannels of 5 m/s, apressure drop of 633.7 kPa, and a factor of safety of the design of the microchannel of 15. From the results, the improvement of the heat transfer in a cooling system of electronic deviceswas evidenced when using a coolant as a working fluid compared to the cooling by forced air flow traditional13 páginasapplication/pdfengAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)(c) 2021 IIUM Presshttps://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Computational fluid dynamicsmodeling of microchannels cooling for electronic microdevicesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/2113MalaysiaIIUM Engineering Journal[1]Belhardj S, Mimouni S, Saidane A, Benzohra M. (2003) Using microchannels to coolmicroprocessors: A transmission-line-matrix study. Microelectronics Journal, 34(4):247–253.https://doi.org/10.1016/S0026-2692(03)00004-1[2]Chen CH, Ding CY. (2011) Study on the thermalbehavior and cooling performance of ananofluid-cooled microchannel heat sink. International Journal of Thermal Sciences, 50(3):378–384. https://doi.org/10.1016/j.ijthermalsci.2010.04.020[3]Chiu HC, Jang JH, Yeh HW, Wu MS. (2011) The heat transfer characteristics of liquid coolingheatsink containing microchannels. International Journal of Heat and Mass Transfer, 54(1–3):34–42. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.066[4]Bosi F, Balestri G, Ceccanti M, Mammini P, Massa M, Petragnani G, Ragonesi A, Soldani A.(2011) Light prototype support using micro-channel technology as high efficiency system forsilicon pixel detector cooling. Nuclear Instruments and Methods in Physics Research, SectionA: Accelerators, Spectrometers, Detectors andAssociated Equipment, 650(1):213–217.https://doi.org/10.1016/j.nima.2010.12.187[5]Brinda R, Joseph Daniel R, Sumangala K. (2012) Ladder shape micro channels employed highperformance micro cooling system for ULSI. International Journal of Heat and Mass Transfer,55(13–14):3400–3411. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.044[6]Naqiuddin NH, Saw LH, Yew MC, Yusof F, Poon HM, Cai Z, Thiam HS. (2018) Numericalinvestigation for optimizing segmented micro-channel heat sink by Taguchi-Grey method.Applied Energy, 222:437–450. https://doi.org/10.1016/j.apenergy.2018.03.186[7]Zhang Y, Wang S, Ding P. (2017) Effects of channel shape on the cooling performance ofhybrid micro-channel and slot-jet module. International Journal of Heat and Mass Transfer,113:295–309. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.092[8]Naqiuddin NH, Saw LH, Yew MC, Yusof F, Ng TC, Yew MK. (2018) Overview of micro-channel design for high heat flux application. Renewable and Sustainable Energy Reviews, 82:901–914.https://doi.org/10.1016/j.rser.2017.09.110[9]Kirsch KL, Thole KA. (2018) Isolating the effects of surface roughness versus wall shape innumerically optimized, additively manufactured micro cooling channels. ExperimentalThermal and Fluid Science, 98:227–238. https://doi.org/10.1016/j.expthermflusci.2018.05.030[10]Yue C, Zhang Q, Zhai Z, Ling L. (2018) CFD simulation on the heat transfer and flowcharacteristics of a microchannel separate heat pipe under different filling ratios. AppliedThermal Engineering, 139:25–34. https://doi.org/10.1016/j.applthermaleng.2018.01.011[11]Hnaien N, Marzouk KS, Ben HA, Jayb J. (2016) Numerical Study of Interaction of Two PlaneParallel Jets. International Journal of Engineering, 29(10):1421–1430.https://doi.org/10.5829/idosi.ije.2016.29.10a.13[12]Mohammed HA, Bhaskaran G, Shuaib NH, Saidur R. (2011) Heat transfer and fluid flowcharacteristics in microchannels heat exchanger using nanofluids: A review. Renewable andSustainable Energy Reviews, 15(3):1502–1512. https://doi.org/10.1016/j.rser.2010.11.031[13]Mohd Umair S, Parashram Gulhane N. (2016) On numerical investigation of non-dimensionalconstant representing the occurrence of secondary peaks in the Nusselt distribution curves.International Journal of Engineering, Transactions A: Basics, 29(10):1431–1440.https://doi.org/10.5829/idosi.ije.2016.29.10a.00[14]Aqilah F, Islam M, Juretic F, Guerrero J, Wood D, Nasir Ani F. (2018) Study of mesh qualityimprovement for. IIUM Engineering Journal, 19(2):203–212.https://doi.org/https://doi.org/10.31436/iiumej.v19i2.905[15]DrăganV. (2017) Centrifugal compressor efficiency calculation with heat transfer. IIUMEngineering Journal, 18(2):225–237.[16]Thome JR. (2004) Boiling in microchannels: A review of experiment and theory. InternationalJournal of Heat and Fluid Flow, 25(2):128–139.https://doi.org/10.1016/j.ijheatfluidflow.2003.11.005[17]Talimi V, Muzychka YS, Kocabiyik S. (2012) A review on numerical studies of slug flowhydrodynamics and heat transfer in microtubes and microchannels. International Journal ofMultiphase Flow, 39:88–104. https://doi.org/10.1016/j.ijmultiphaseflow.2011.10.005[18]Bagheri-Esfe H, Manshadi MD. (2018) A low-cost numerical simulation of a supersonic wind-tunnel design. International Journal of Engineering, Transactions A: Basics, 31(1): 128–135.https://doi.org/10.5829/ije.2018.31.01a.18[19]Azizi K, Keshavarz Moraveji M. (2017) Computational fluid dynamic-two fluid model studyof gas-solid heat transfer in a riser with various inclination angles. International Journal of Engineering, Transactions A: Basics, 30(4):464–472. https://doi.org/10.5829/idosi.ije.2017.30.04a.02[20]Villegas JF, GuarínAM, Unfried-Silgado J. (2019) A Coupled Rigid-viscoplastic NumericalModeling for Evaluating Effects of Shoulder Geometry on Friction Stir-welded AluminumAlloys. International Journal of Engineering, Transactions B: Applications, 32(2):184–191.https://doi.org/10.5829/ije.2019.32.02b.17[21]Culun P, Celik N, Pihtili K. (2018) Effects of design parameters on a multi jet impinging heattransfer. Alexandria Engineering Journal, 57(4):4255–4266.https://doi.org/10.1016/j.aej.2018.01.022[22]ElsamniOA, Abbasy AA, El-Masry OA. (2019) Developing laminar flow in curved semi-circular ducts. Alexandria Engineering Journal, 58(1):1–8.https://doi.org/10.1016/j.aej.2018.03.013[23]Moradikazerouni A, Afrand M, Alsarraf J, Mahian O, Wongwises S, Tran MD. (2019)Comparison of the effect of five different entrance channel shapes of a micro-channel heat sinkin forced convection with application to cooling a supercomputer circuit board. AppliedThermal Engineering, 150:1078–1089. https://doi.org/10.1016/j.applthermaleng.2019.01.051[24]Abdollahi A, Mohammed HA, Vanaki SM, Osia A, Golbahar Haghighi MR. (2017) Fluid flowand heat transfer of nanofluids in microchannel heat sink with V-type inlet/outlet arrangement.Alexandria Engineering Journal, 56(1):161–170. https://doi.org/10.1016/j.aej.2016.09.019[25]Sreehari D, Sharma AK. (2019) On thermal performance of serpentine silicon microchannels.International Journal of Thermal Sciences, 146:1-14.https://doi.org/10.1016/j.ijthermalsci.2019.106067396396384123Computational fluids dynamicsMicrochannelsProcessorCoolingPublicationORIGINALCOMPUTATIONAL FLUID.pdfCOMPUTATIONAL FLUID.pdfapplication/pdf1693541https://repositorio.cuc.edu.co/bitstreams/097c9f5e-3c2c-42c9-94c4-68e50944aa04/download86aa8540335a8b92f31271efedc7b51cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/9eea9797-246e-45a8-b01b-9c63e5c66e47/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTCOMPUTATIONAL FLUID.pdf.txtCOMPUTATIONAL FLUID.pdf.txttext/plain33672https://repositorio.cuc.edu.co/bitstreams/6cbeb153-1541-4b87-9ede-4f38fc0169cc/downloade8aaff1b7830ba3198d3a3e4f626ac25MD53THUMBNAILCOMPUTATIONAL FLUID.pdf.jpgCOMPUTATIONAL FLUID.pdf.jpgimage/jpeg14029https://repositorio.cuc.edu.co/bitstreams/e917d2d2-a6d1-42db-b05f-b4728c1fc1f0/download112076e49d8e9c1b724ff82256bd3817MD5411323/9286oai:repositorio.cuc.edu.co:11323/92862024-09-17 14:10:51.824https://creativecommons.org/licenses/by-nc/4.0/Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==