Forecast of the demand for hourly electric energy by artificial neural networks

Obtaining an accurate forecast of the energy demand is fundamental to support the several decision processes of the electricity service agents in a country. For market operators, a greater precision in the short-term load forecasting implies a more efficient programming of the electricity generation...

Full description

Autores:
Viloria, Amelec
RONCALLO PICHON, ALBERTO DE JESUS
Hernandez-P, Hugo
REDONDO BILBAO, OSMAN ENRIQUE
Pineda, Omar
Vargas, Jesús
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7772
Acceso en línea:
https://hdl.handle.net/11323/7772
https://doi.org/10.1007/978-981-15-3125-5_46
https://repositorio.cuc.edu.co/
Palabra clave:
Forecasting
Electric load
Artificial neural networks
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_e69b7bad19fd554efe86964e0bf39c4b
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7772
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Forecast of the demand for hourly electric energy by artificial neural networks
title Forecast of the demand for hourly electric energy by artificial neural networks
spellingShingle Forecast of the demand for hourly electric energy by artificial neural networks
Forecasting
Electric load
Artificial neural networks
title_short Forecast of the demand for hourly electric energy by artificial neural networks
title_full Forecast of the demand for hourly electric energy by artificial neural networks
title_fullStr Forecast of the demand for hourly electric energy by artificial neural networks
title_full_unstemmed Forecast of the demand for hourly electric energy by artificial neural networks
title_sort Forecast of the demand for hourly electric energy by artificial neural networks
dc.creator.fl_str_mv Viloria, Amelec
RONCALLO PICHON, ALBERTO DE JESUS
Hernandez-P, Hugo
REDONDO BILBAO, OSMAN ENRIQUE
Pineda, Omar
Vargas, Jesús
dc.contributor.author.spa.fl_str_mv Viloria, Amelec
RONCALLO PICHON, ALBERTO DE JESUS
Hernandez-P, Hugo
REDONDO BILBAO, OSMAN ENRIQUE
Pineda, Omar
Vargas, Jesús
dc.subject.spa.fl_str_mv Forecasting
Electric load
Artificial neural networks
topic Forecasting
Electric load
Artificial neural networks
description Obtaining an accurate forecast of the energy demand is fundamental to support the several decision processes of the electricity service agents in a country. For market operators, a greater precision in the short-term load forecasting implies a more efficient programming of the electricity generation resources, which means a reduction in costs. In the long term, it constitutes a main indicator for the generation of investment signals for future installed capacity. This research proposes a prognostic model for the demand of electrical energy in Bogota, Colombia at hourly level in a full week, through Artificial Neural Network.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-01-27T15:03:09Z
dc.date.available.none.fl_str_mv 2021-01-27T15:03:09Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7772
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-981-15-3125-5_46
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7772
https://doi.org/10.1007/978-981-15-3125-5_46
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Perez R et al (2018) Fault diagnosis on electrical distribution systems based on fuzzy logic. In: Tan Y, Shi Y, Tang Q (eds) Advances in swarm intelligence. ICSI 2018. Lecture notes in computer science, vol 10942. Springer, Cham
2. Silva V, Jesús A (2013) Indicators systems for evaluating the efficiency of political awareness of rational use of electricity. In: Advanced materials research, vol 601. Trans Tech Publications, Switzerland, pp 618–625
3. Perez R, Inga E, Aguila A, Vásquez C, Lima L, Viloria A, Henry MA (2018) Fault diagnosis on electrical distribution systems based on fuzzy logic. In: International conference on sensing and imaging, June. Springer, Cham, pp 174–185
4. Perez R, Vásquez C, Viloria A (2019) An intelligent strategy for faults location in distribution networks with distributed generation. J Intell Fuzzy Syst 36:1627–1637 (Preprint)
5. Isasi P, Galván I (2004) Redes de Neuronas Artificiales. Un enfoque Práctico. Pearson, London. ISBN: 8420540250
6. Kulkarni S, Haidar I (2009) Forecasting model for crude oil price using artificial neural networks and commodity future prices. Int J Comput Sci Inf Secur 2(1):81–89
7. Mazón JN, Trujillo J, Serrano M, Piattini M (2005) Designing data warehouses: from business requirement analysis to multidimensional modeling. In: Proceedings of the 1st international workshop on requirements engineering for business need and IT alignment, Paris, France
8. Ben Salem S, Naouali S, Chtourou Z (2018) A fast and effective partitional clustering algorithm for large categorical datasets using a k-means based approach. Comput Electron Eng 68:463–483.
9. Chakraborty S, Das S (2018) Simultaneous variable weighting and determining the number of clusters—a weighted Gaussian algorithm means. Stat Probab Lett 137:148–156.
10. Abhay KA, Badal NA (2015) Novel approach for intelligent distribution of data warehouses. Egypt Inform J 17(1):147–159
11. Abdul Masud M, Zhexue Huang J, Wei C, Wang J, Khan I, Zhong M (2018) I-nice: a new approach for identifying the number of clusters and initial cluster centres. Inf Sci.
12. Rahman MA, Islam MZ, Bossomaier T (2015) ModEx and Seed-Detective: two novel techniques for high quality clustering by using good initial seeds in K-means. J King Saud Univ Comput Inf Sci 27:113–128.
13. Maren AJ, Harston CT, Pap RM (2014) Handbook of neural computing applications. Academic Press, San Diego
14. Baughman DR, Liu YA (2014) Neural networks in bioprocessing and chemical engineering. Academic Press, San Diego
15. Fast M, Assadi M, De S (2009) Development and multi-utility of an ANN model for an industrial gas turbine. Appl Energy 86(1):9–17
16. Chatterjee S, Sarkar S, Hore S, Dey N, Ashour AS, Balas VE (2016) Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings. Neural Comput Appl 28:2005–2016
17. Tüfekci P (2014) Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods. Int J Electr Power Energy Syst 60:126–140
18. Samanta S, Acharjee S, Mukherjee A, Das D, Dey N (2013) Ant weight lifting algorithm for image segmentation. In: 2013 IEEE international conference on computational intelligence and computing research (ICCIC), pp 1–5
19. Jagatheesan K, Anand B, Dey N, Ashour AS (2015) Artificial intelligence in performance analysis of load frequency control in thermal-wind-hydro power systems. Artif Intell 6(7)
20. Kalogirou SA (2001) Artificial neural networks in renewable energy systems applications: a review. Renew Sustain Energy Rev 5:373–401
21. Laha P, Chakraborty B (2017) Energy model—a tool for preventing energy dysfunction. Renew Sustain Energy Rev 73:95–114
22. Moldes O, Mejuto J, Rial-Otero R, Simal-Gandara J (2017) A critical review on the applications of artificial neural networks in winemaking technology. Crit Rev Food Sci Nutr 57:2896–2908
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Lecture Notes in Electrical Engineering
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-981-15-3125-5_46
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/505035b5-90f0-44e3-943e-0da4c1e88fc4/download
https://repositorio.cuc.edu.co/bitstreams/e07dad1c-7694-486f-8a40-8acfbd5da2dc/download
https://repositorio.cuc.edu.co/bitstreams/520cb708-abb6-41ee-bb3c-ddc230c58edc/download
https://repositorio.cuc.edu.co/bitstreams/039c9467-ed9b-493a-94fd-4f6d26fd11a6/download
https://repositorio.cuc.edu.co/bitstreams/76f0dd08-8fc7-44e8-ac70-c87dd0311652/download
bitstream.checksum.fl_str_mv ee8399a9719fbbcc91c40a5bb36c051b
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
7cce209b04aa05e351b71104a19fb72d
e1d2191dc49b4898c59ffa23a7f6ab8e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760657027039232
spelling Viloria, AmelecRONCALLO PICHON, ALBERTO DE JESUSHernandez-P, HugoREDONDO BILBAO, OSMAN ENRIQUEPineda, OmarVargas, Jesús2021-01-27T15:03:09Z2021-01-27T15:03:09Z2020https://hdl.handle.net/11323/7772https://doi.org/10.1007/978-981-15-3125-5_46Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Obtaining an accurate forecast of the energy demand is fundamental to support the several decision processes of the electricity service agents in a country. For market operators, a greater precision in the short-term load forecasting implies a more efficient programming of the electricity generation resources, which means a reduction in costs. In the long term, it constitutes a main indicator for the generation of investment signals for future installed capacity. This research proposes a prognostic model for the demand of electrical energy in Bogota, Colombia at hourly level in a full week, through Artificial Neural Network.Viloria, AmelecRONCALLO PICHON, ALBERTO DE JESUS-will be generated-orcid-0000-0002-1290-0132-600Hernandez-P, HugoREDONDO BILBAO, OSMAN ENRIQUE-will be generated-orcid-0000-0002-5477-0655-600Pineda, Omar-will be generated-orcid-0000-0002-8239-3906-600Vargas, Jesúsapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lecture Notes in Electrical Engineeringhttps://link.springer.com/chapter/10.1007/978-981-15-3125-5_46ForecastingElectric loadArtificial neural networksForecast of the demand for hourly electric energy by artificial neural networksArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Perez R et al (2018) Fault diagnosis on electrical distribution systems based on fuzzy logic. In: Tan Y, Shi Y, Tang Q (eds) Advances in swarm intelligence. ICSI 2018. Lecture notes in computer science, vol 10942. Springer, Cham2. Silva V, Jesús A (2013) Indicators systems for evaluating the efficiency of political awareness of rational use of electricity. In: Advanced materials research, vol 601. Trans Tech Publications, Switzerland, pp 618–6253. Perez R, Inga E, Aguila A, Vásquez C, Lima L, Viloria A, Henry MA (2018) Fault diagnosis on electrical distribution systems based on fuzzy logic. In: International conference on sensing and imaging, June. Springer, Cham, pp 174–1854. Perez R, Vásquez C, Viloria A (2019) An intelligent strategy for faults location in distribution networks with distributed generation. J Intell Fuzzy Syst 36:1627–1637 (Preprint)5. Isasi P, Galván I (2004) Redes de Neuronas Artificiales. Un enfoque Práctico. Pearson, London. ISBN: 84205402506. Kulkarni S, Haidar I (2009) Forecasting model for crude oil price using artificial neural networks and commodity future prices. Int J Comput Sci Inf Secur 2(1):81–897. Mazón JN, Trujillo J, Serrano M, Piattini M (2005) Designing data warehouses: from business requirement analysis to multidimensional modeling. In: Proceedings of the 1st international workshop on requirements engineering for business need and IT alignment, Paris, France8. Ben Salem S, Naouali S, Chtourou Z (2018) A fast and effective partitional clustering algorithm for large categorical datasets using a k-means based approach. Comput Electron Eng 68:463–483.9. Chakraborty S, Das S (2018) Simultaneous variable weighting and determining the number of clusters—a weighted Gaussian algorithm means. Stat Probab Lett 137:148–156.10. Abhay KA, Badal NA (2015) Novel approach for intelligent distribution of data warehouses. Egypt Inform J 17(1):147–15911. Abdul Masud M, Zhexue Huang J, Wei C, Wang J, Khan I, Zhong M (2018) I-nice: a new approach for identifying the number of clusters and initial cluster centres. Inf Sci.12. Rahman MA, Islam MZ, Bossomaier T (2015) ModEx and Seed-Detective: two novel techniques for high quality clustering by using good initial seeds in K-means. J King Saud Univ Comput Inf Sci 27:113–128.13. Maren AJ, Harston CT, Pap RM (2014) Handbook of neural computing applications. Academic Press, San Diego14. Baughman DR, Liu YA (2014) Neural networks in bioprocessing and chemical engineering. Academic Press, San Diego15. Fast M, Assadi M, De S (2009) Development and multi-utility of an ANN model for an industrial gas turbine. Appl Energy 86(1):9–1716. Chatterjee S, Sarkar S, Hore S, Dey N, Ashour AS, Balas VE (2016) Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings. Neural Comput Appl 28:2005–201617. Tüfekci P (2014) Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods. Int J Electr Power Energy Syst 60:126–14018. Samanta S, Acharjee S, Mukherjee A, Das D, Dey N (2013) Ant weight lifting algorithm for image segmentation. In: 2013 IEEE international conference on computational intelligence and computing research (ICCIC), pp 1–519. Jagatheesan K, Anand B, Dey N, Ashour AS (2015) Artificial intelligence in performance analysis of load frequency control in thermal-wind-hydro power systems. Artif Intell 6(7)20. Kalogirou SA (2001) Artificial neural networks in renewable energy systems applications: a review. Renew Sustain Energy Rev 5:373–40121. Laha P, Chakraborty B (2017) Energy model—a tool for preventing energy dysfunction. Renew Sustain Energy Rev 73:95–11422. Moldes O, Mejuto J, Rial-Otero R, Simal-Gandara J (2017) A critical review on the applications of artificial neural networks in winemaking technology. Crit Rev Food Sci Nutr 57:2896–2908PublicationORIGINALForecast of the demand for hourly electric energy by artificial neural networks.pdfForecast of the demand for hourly electric energy by artificial neural networks.pdfapplication/pdf170215https://repositorio.cuc.edu.co/bitstreams/505035b5-90f0-44e3-943e-0da4c1e88fc4/downloadee8399a9719fbbcc91c40a5bb36c051bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/e07dad1c-7694-486f-8a40-8acfbd5da2dc/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/520cb708-abb6-41ee-bb3c-ddc230c58edc/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILForecast of the demand for hourly electric energy by artificial neural networks.pdf.jpgForecast of the demand for hourly electric energy by artificial neural networks.pdf.jpgimage/jpeg27947https://repositorio.cuc.edu.co/bitstreams/039c9467-ed9b-493a-94fd-4f6d26fd11a6/download7cce209b04aa05e351b71104a19fb72dMD54TEXTForecast of the demand for hourly electric energy by artificial neural networks.pdf.txtForecast of the demand for hourly electric energy by artificial neural networks.pdf.txttext/plain948https://repositorio.cuc.edu.co/bitstreams/76f0dd08-8fc7-44e8-ac70-c87dd0311652/downloade1d2191dc49b4898c59ffa23a7f6ab8eMD5511323/7772oai:repositorio.cuc.edu.co:11323/77722024-09-16 16:35:04.646http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==