Real road networks on digital maps with applications in the search for optimal routes

Google Maps web mapping service allows, through its extensive API development tool, to extract, process and store updated and real-time road information such as the aerial view of a road network, the travel time and distance between two points and the geographic coordinates of intersections (Di Nata...

Full description

Autores:
Viloria, Amelec
Varela Izquierdo, Noel
Ovallos, David
Pineda Lezama, Omar Bonerge
RONCALLO PICHON, ALBERTO DE JESUS
Martinez Ventura, Jairo
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7712
Acceso en línea:
https://hdl.handle.net/11323/7712
https://doi.org/10.1007/978-981-15-7234-0_85
https://repositorio.cuc.edu.co/
Palabra clave:
Digraph
Road network
Google maps API
Dijkstra’s algorithm
Alternative route
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_e689276cdcc76b3c012816678f6573af
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7712
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Real road networks on digital maps with applications in the search for optimal routes
title Real road networks on digital maps with applications in the search for optimal routes
spellingShingle Real road networks on digital maps with applications in the search for optimal routes
Digraph
Road network
Google maps API
Dijkstra’s algorithm
Alternative route
title_short Real road networks on digital maps with applications in the search for optimal routes
title_full Real road networks on digital maps with applications in the search for optimal routes
title_fullStr Real road networks on digital maps with applications in the search for optimal routes
title_full_unstemmed Real road networks on digital maps with applications in the search for optimal routes
title_sort Real road networks on digital maps with applications in the search for optimal routes
dc.creator.fl_str_mv Viloria, Amelec
Varela Izquierdo, Noel
Ovallos, David
Pineda Lezama, Omar Bonerge
RONCALLO PICHON, ALBERTO DE JESUS
Martinez Ventura, Jairo
dc.contributor.author.spa.fl_str_mv Viloria, Amelec
Varela Izquierdo, Noel
Ovallos, David
Pineda Lezama, Omar Bonerge
RONCALLO PICHON, ALBERTO DE JESUS
Martinez Ventura, Jairo
dc.subject.spa.fl_str_mv Digraph
Road network
Google maps API
Dijkstra’s algorithm
Alternative route
topic Digraph
Road network
Google maps API
Dijkstra’s algorithm
Alternative route
description Google Maps web mapping service allows, through its extensive API development tool, to extract, process and store updated and real-time road information such as the aerial view of a road network, the travel time and distance between two points and the geographic coordinates of intersections (Di Natale et al. in understanding and using the controller area network communication protocol. Springer, New York, NY, 2012 [1]). However, trivial data required in the construction of the digraph, such as the relationship of the streets associated to those intersections and the type of direction that corresponds to each street, do not exist as an attribute in the API since they are not freely accessible or an excessive cost must be paid for the database. Therefore, a practical way to obtain this specific information is through the development of an application that allows the visual selection of the characteristic elements of a network and the extraction of the necessary data in the construction of related digraphs as a tool in the solution of road problems (Rutty et al. in Transp Res Part Transp Environ 24:44–51, 2013 [2]). This research proposes a method to build digraphs with an application in the Google Maps API in the visual extraction of elements such as vertices (intersections), edges (streets) and direction arrows (road direction), allowing the application of Dijkstra’s algorithm in search of alternative routes.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-01-18T20:51:10Z
dc.date.available.none.fl_str_mv 2021-01-18T20:51:10Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7712
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-981-15-7234-0_85
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7712
https://doi.org/10.1007/978-981-15-7234-0_85
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Di Natale M, Zeng H, Giusto P, Ghosal (2012) Understanding and using the controller area network communication protocol. Springer, New York, NY
2. Rutty M, Matthews L, Andrey J, Matto TD (2013) Eco-driver training within the City of Calgary’s municipal fleet: monitoring the impact. Transp Res Part Transp Environ 24:44–51
3. Zarkadoula M, Zoidis G, Tritopoulou E (2007) Training urban bus drivers to promote smart driving: a note on a Greek eco-driving pilot program. Transp Res Part Transp Environ 12(6):449–451
4. Strömberg HK, Karlsson ICM (2013) Comparative effects of eco-driving initiatives aimed at urban bus drivers—results from a field trial. Transp Res Part Transp Environ 22:28–33
5. Vagg C, Brace CJ, Hari D, Akehurst S, Poxon J, Ash L (2013) Development and field trial of a driver assistance system to encourage eco-driving in light commercial vehicle fleets. IEEE Trans Intell Transp Syst 14(2):796–805
6. Ferreira JC, de Almeida J, da Silva AR (2015) The impact of driving styles on fuel consumption: a data-warehouse-and-data-mining-based discovery process. IEEE Trans Intell Transp Syst 16(5):2653–2662
7. Rionda A et al (2014) Blended learning system for efficient professional driving. Comput Educ 78:124–139
8. Restrepo J, Sánchez J (2004) Aplicación de la teoría de grafos y el algoritmo de Dijkstra para determinar las distancias y las rutas más cortas en una ciudad. Scientia et technica 10(26):121–126
9. Nathaniel O, Nsikan A (2017) Anapplication of Dijkstra’s Algorithm to shortest route problem. IOSR J Math 13(3):20–32
10. Saboohi Y, Farzaneh H (2009) Model for developing an eco-driving strategy of a passenger vehicle based on the least fuel consumption. Appl Energy 86(10):1925–1932
11. Hellström E, Åslund J, Nielsen L (2010) Design of an efficient algorithm for fuel-optimal look-ahead control. Control Eng Pract 18(11):1318–1327
12. Saerens B, Vandersteen J, Persoons T, Swevers J, Diehl M, Van den Bulck E (2009) Minimization of the fuel consumption of a gasoline engine using dynamic optimization. Appl Energy 86(9):1582–1588
13. Mensing F, Trigui R, Bideaux E (2011) Vehicle trajectory optimization for application in ECO-driving. In: 2011 IEEE vehicle power and propulsion conference, pp 1–6
14. Rionda Rodriguez A, Martinez Alvarez D, Paneda XG, Arbesu Carbajal D, Jimenez JE, Fernandez Linera F (2013) Tutoring system for the efficient driving of combustion vehicles. IEEE Rev Iberoam Tecnol Aprendiz RITA 8(2):82–89
15. Pañeda G et al (2016) An architecture for a learning analytics system applied to efficient driving. IEEE Rev Iberoam Tecnol Aprendiz RITA 11(3):137–145
16. Mokhtar K, Shah MZ (2006) A regression model for vessel turnaround time. Tokyo academic industry & culture integration tour, pp 10–19
17. Viloria A, Lezama OBP (2019) Improvements for determining the number of clusters in k-means for innovation databases in SMEs. ANT/EDI40 2019, pp 1201–1206
18. Amelec V (2015) Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy. Adv Sci Lett 21(5):1406–1408
19. Viloria A, Robayo PV (2016) Inventory reduction in the supply chain of finished products for multinational companies. Indian J Sci Technol 8(1)
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Advances in Intelligent Systems and Computing
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-981-15-7234-0_85
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/ef5c380e-c9aa-4d72-a2cb-dfc4a4433381/download
https://repositorio.cuc.edu.co/bitstreams/38bd15d3-cbf2-446f-9363-576b05b27fb4/download
https://repositorio.cuc.edu.co/bitstreams/02d3c2b3-b90a-4b14-ac98-ee91a637620a/download
https://repositorio.cuc.edu.co/bitstreams/b57357f4-57fa-40ab-a3a5-7078681ebf1a/download
https://repositorio.cuc.edu.co/bitstreams/a2cb37e6-5475-43dc-92b5-95137f3d7e76/download
bitstream.checksum.fl_str_mv f4753ba17efaa2e85550b85e3f66e6cf
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
3359cae3eb3d9bca3fbb5f0de90a920f
3c6ed6b67ed008018535ed7f70c6a96e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166887612088320
spelling Viloria, AmelecVarela Izquierdo, NoelOvallos, DavidPineda Lezama, Omar BonergeRONCALLO PICHON, ALBERTO DE JESUSMartinez Ventura, Jairo2021-01-18T20:51:10Z2021-01-18T20:51:10Z2021https://hdl.handle.net/11323/7712https://doi.org/10.1007/978-981-15-7234-0_85Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Google Maps web mapping service allows, through its extensive API development tool, to extract, process and store updated and real-time road information such as the aerial view of a road network, the travel time and distance between two points and the geographic coordinates of intersections (Di Natale et al. in understanding and using the controller area network communication protocol. Springer, New York, NY, 2012 [1]). However, trivial data required in the construction of the digraph, such as the relationship of the streets associated to those intersections and the type of direction that corresponds to each street, do not exist as an attribute in the API since they are not freely accessible or an excessive cost must be paid for the database. Therefore, a practical way to obtain this specific information is through the development of an application that allows the visual selection of the characteristic elements of a network and the extraction of the necessary data in the construction of related digraphs as a tool in the solution of road problems (Rutty et al. in Transp Res Part Transp Environ 24:44–51, 2013 [2]). This research proposes a method to build digraphs with an application in the Google Maps API in the visual extraction of elements such as vertices (intersections), edges (streets) and direction arrows (road direction), allowing the application of Dijkstra’s algorithm in search of alternative routes.Viloria, AmelecVarela Izquierdo, Noel-will be generated-orcid-0000-0001-7036-4414-600Ovallos, David-will be generated-orcid-0000-0003-0836-2287-600Pineda Lezama, Omar BonergeRONCALLO PICHON, ALBERTO DE JESUS-will be generated-orcid-0000-0002-1290-0132-600Martinez Ventura, Jairoapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Advances in Intelligent Systems and Computinghttps://link.springer.com/chapter/10.1007/978-981-15-7234-0_85DigraphRoad networkGoogle maps APIDijkstra’s algorithmAlternative routeReal road networks on digital maps with applications in the search for optimal routesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Di Natale M, Zeng H, Giusto P, Ghosal (2012) Understanding and using the controller area network communication protocol. Springer, New York, NY2. Rutty M, Matthews L, Andrey J, Matto TD (2013) Eco-driver training within the City of Calgary’s municipal fleet: monitoring the impact. Transp Res Part Transp Environ 24:44–513. Zarkadoula M, Zoidis G, Tritopoulou E (2007) Training urban bus drivers to promote smart driving: a note on a Greek eco-driving pilot program. Transp Res Part Transp Environ 12(6):449–4514. Strömberg HK, Karlsson ICM (2013) Comparative effects of eco-driving initiatives aimed at urban bus drivers—results from a field trial. Transp Res Part Transp Environ 22:28–335. Vagg C, Brace CJ, Hari D, Akehurst S, Poxon J, Ash L (2013) Development and field trial of a driver assistance system to encourage eco-driving in light commercial vehicle fleets. IEEE Trans Intell Transp Syst 14(2):796–8056. Ferreira JC, de Almeida J, da Silva AR (2015) The impact of driving styles on fuel consumption: a data-warehouse-and-data-mining-based discovery process. IEEE Trans Intell Transp Syst 16(5):2653–26627. Rionda A et al (2014) Blended learning system for efficient professional driving. Comput Educ 78:124–1398. Restrepo J, Sánchez J (2004) Aplicación de la teoría de grafos y el algoritmo de Dijkstra para determinar las distancias y las rutas más cortas en una ciudad. Scientia et technica 10(26):121–1269. Nathaniel O, Nsikan A (2017) Anapplication of Dijkstra’s Algorithm to shortest route problem. IOSR J Math 13(3):20–3210. Saboohi Y, Farzaneh H (2009) Model for developing an eco-driving strategy of a passenger vehicle based on the least fuel consumption. Appl Energy 86(10):1925–193211. Hellström E, Åslund J, Nielsen L (2010) Design of an efficient algorithm for fuel-optimal look-ahead control. Control Eng Pract 18(11):1318–132712. Saerens B, Vandersteen J, Persoons T, Swevers J, Diehl M, Van den Bulck E (2009) Minimization of the fuel consumption of a gasoline engine using dynamic optimization. Appl Energy 86(9):1582–158813. Mensing F, Trigui R, Bideaux E (2011) Vehicle trajectory optimization for application in ECO-driving. In: 2011 IEEE vehicle power and propulsion conference, pp 1–614. Rionda Rodriguez A, Martinez Alvarez D, Paneda XG, Arbesu Carbajal D, Jimenez JE, Fernandez Linera F (2013) Tutoring system for the efficient driving of combustion vehicles. IEEE Rev Iberoam Tecnol Aprendiz RITA 8(2):82–8915. Pañeda G et al (2016) An architecture for a learning analytics system applied to efficient driving. IEEE Rev Iberoam Tecnol Aprendiz RITA 11(3):137–14516. Mokhtar K, Shah MZ (2006) A regression model for vessel turnaround time. Tokyo academic industry & culture integration tour, pp 10–1917. Viloria A, Lezama OBP (2019) Improvements for determining the number of clusters in k-means for innovation databases in SMEs. ANT/EDI40 2019, pp 1201–120618. Amelec V (2015) Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy. Adv Sci Lett 21(5):1406–140819. Viloria A, Robayo PV (2016) Inventory reduction in the supply chain of finished products for multinational companies. Indian J Sci Technol 8(1)PublicationORIGINALReal road networks on digital maps with applications in the search for optimal routes.pdfReal road networks on digital maps with applications in the search for optimal routes.pdfapplication/pdf101677https://repositorio.cuc.edu.co/bitstreams/ef5c380e-c9aa-4d72-a2cb-dfc4a4433381/downloadf4753ba17efaa2e85550b85e3f66e6cfMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/38bd15d3-cbf2-446f-9363-576b05b27fb4/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/02d3c2b3-b90a-4b14-ac98-ee91a637620a/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILReal road networks on digital maps with applications in the search for optimal routes.pdf.jpgReal road networks on digital maps with applications in the search for optimal routes.pdf.jpgimage/jpeg38536https://repositorio.cuc.edu.co/bitstreams/b57357f4-57fa-40ab-a3a5-7078681ebf1a/download3359cae3eb3d9bca3fbb5f0de90a920fMD54TEXTReal road networks on digital maps with applications in the search for optimal routes.pdf.txtReal road networks on digital maps with applications in the search for optimal routes.pdf.txttext/plain1796https://repositorio.cuc.edu.co/bitstreams/a2cb37e6-5475-43dc-92b5-95137f3d7e76/download3c6ed6b67ed008018535ed7f70c6a96eMD5511323/7712oai:repositorio.cuc.edu.co:11323/77122024-09-17 14:22:21.55http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==