Evaluación de las propiedades físico-mecánicas de paneles reforzados con fibras de caña brava

Introducción: Actualmente, el uso de compuestos elaborados con materiales de origen vegetal ha ganado importancia en diversas áreas de la ingeniería, fundamentalmente en la construcción civil. Objetivo: El objetivo de esta investigación es analizar el comportamiento físico y mecánico de paneles elab...

Full description

Autores:
Monsalve Alarcón, Jonathan
Sánchez Cruz, Martha Lissette
Baquero Bastos, David Esteban
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/2427
Acceso en línea:
http://hdl.handle.net/11323/2427
https://doi.org/10.17981/ingecuc.14.1.2018.06
https://repositorio.cuc.edu.co/
Palabra clave:
Materiales compuestos
Fibras vegetales
Caña brava
Propiedades físicas
Humedad
Absorción
Densidad
Propiedades mecánicas
Flexión estática
Fractura
Caña brava
Physical properties
Humidity
Absorption
Composite materials
Vegetal fibers
Density
Mechanical properties
Static bending
Fracture
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id RCUC2_e50a93d8e09849335c6abe25c64e4942
oai_identifier_str oai:repositorio.cuc.edu.co:11323/2427
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Evaluación de las propiedades físico-mecánicas de paneles reforzados con fibras de caña brava
dc.title.translated.eng.fl_str_mv Evaluation of the physical and mechanical properties of caña brava (Arundo donax) reinforced panels
title Evaluación de las propiedades físico-mecánicas de paneles reforzados con fibras de caña brava
spellingShingle Evaluación de las propiedades físico-mecánicas de paneles reforzados con fibras de caña brava
Materiales compuestos
Fibras vegetales
Caña brava
Propiedades físicas
Humedad
Absorción
Densidad
Propiedades mecánicas
Flexión estática
Fractura
Caña brava
Physical properties
Humidity
Absorption
Composite materials
Vegetal fibers
Density
Mechanical properties
Static bending
Fracture
title_short Evaluación de las propiedades físico-mecánicas de paneles reforzados con fibras de caña brava
title_full Evaluación de las propiedades físico-mecánicas de paneles reforzados con fibras de caña brava
title_fullStr Evaluación de las propiedades físico-mecánicas de paneles reforzados con fibras de caña brava
title_full_unstemmed Evaluación de las propiedades físico-mecánicas de paneles reforzados con fibras de caña brava
title_sort Evaluación de las propiedades físico-mecánicas de paneles reforzados con fibras de caña brava
dc.creator.fl_str_mv Monsalve Alarcón, Jonathan
Sánchez Cruz, Martha Lissette
Baquero Bastos, David Esteban
dc.contributor.author.spa.fl_str_mv Monsalve Alarcón, Jonathan
Sánchez Cruz, Martha Lissette
Baquero Bastos, David Esteban
dc.subject.proposal.spa.fl_str_mv Materiales compuestos
Fibras vegetales
Caña brava
Propiedades físicas
Humedad
Absorción
Densidad
Propiedades mecánicas
Flexión estática
Fractura
Caña brava
Physical properties
Humidity
Absorption
topic Materiales compuestos
Fibras vegetales
Caña brava
Propiedades físicas
Humedad
Absorción
Densidad
Propiedades mecánicas
Flexión estática
Fractura
Caña brava
Physical properties
Humidity
Absorption
Composite materials
Vegetal fibers
Density
Mechanical properties
Static bending
Fracture
dc.subject.proposal.eng.fl_str_mv Composite materials
Vegetal fibers
Density
Mechanical properties
Static bending
Fracture
description Introducción: Actualmente, el uso de compuestos elaborados con materiales de origen vegetal ha ganado importancia en diversas áreas de la ingeniería, fundamentalmente en la construcción civil. Objetivo: El objetivo de esta investigación es analizar el comportamiento físico y mecánico de paneles elaborados con fibras de caña brava y resina vegetal. Metodología: Para la elaboración de los paneles, las fibras fueron extraídas usando un triturador mecánico. Las fibras fueron tratadas con solución de hidróxido de sodio. La eficacia del tratamiento químico se evaluó mediante microscopía electrónica de barrido. La rugosidad de las fibras se determinó usando la técnica de microscopía de fuerza atómica. Para la elaboración del compuesto, se utilizó el método de compresión. La caracterización física de los paneles se centró en la evaluación de la absorción efectiva, la densidad y el porcentaje de hinchamiento. Para evaluar el comportamiento mecánico, se llevaron a cabo pruebas de flexión estática y fractura mecánica. El análisis de la degradación del material se llevó a cabo utilizando pruebas de termogravimetría. Resultados: A partir de los resultados obtenidos, es posible verificar que los paneles elaborados con fibras de caña brava y resina vegetal pueden presentar un incremento en su estabilidad dimensional cuando se comparan con paneles elaborados con fibras de guadua Angustifolia Kunth, y, asimismo, muestran mayores valores de resistencia y rigidez que los paneles elaborados con fibras de coco y bambú. Conclusiones: Considerando que la caña brava es una planta invasiva, su aplicación como refuerzo de paneles compuestos resulta una opción viable para impulsar el desarrollo y aplicación de nuevos materiales en la construcción civil.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-01-01
dc.date.accessioned.none.fl_str_mv 2019-02-12T22:12:39Z
dc.date.available.none.fl_str_mv 2019-02-12T22:12:39Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv J. Monsalve, M. L. Sánchez y D. Baquero, “Evaluación de las propiedades físico-mecánicas de paneles reforzados con fibras de caña brava”, INGE CUC, vol. 14, no. 1, pp. 66-74, 2018. DOI: http://doi.org/10.17981/ingecuc.14.1.2018.06
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/11323/2427
dc.identifier.url.spa.fl_str_mv https://doi.org/10.17981/ingecuc.14.1.2018.06
dc.identifier.doi.spa.fl_str_mv 10.17981/ingecuc.14.1.2018.06
dc.identifier.eissn.spa.fl_str_mv 2382-4700
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.pissn.spa.fl_str_mv 0122-6517
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv J. Monsalve, M. L. Sánchez y D. Baquero, “Evaluación de las propiedades físico-mecánicas de paneles reforzados con fibras de caña brava”, INGE CUC, vol. 14, no. 1, pp. 66-74, 2018. DOI: http://doi.org/10.17981/ingecuc.14.1.2018.06
10.17981/ingecuc.14.1.2018.06
2382-4700
Corporación Universidad de la Costa
0122-6517
REDICUC - Repositorio CUC
url http://hdl.handle.net/11323/2427
https://doi.org/10.17981/ingecuc.14.1.2018.06
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartofseries.spa.fl_str_mv INGE CUC; Vol. 14, Núm. 1 (2018)
dc.relation.ispartofjournal.spa.fl_str_mv INGE CUC
INGE CUC
dc.relation.references.spa.fl_str_mv [1] Pickering K, Properties and performance of natural-fibre composites. Cambridge: Woodhead Publishing, 2008, pp. 576.
[2] J. Summerscales, N. Dissanayake, A. Virk y W. Hall, “A review of bast fibres and their composites. Part 1- Fibres as reinforcements. Composites Part A,” vol. 41, no. 10, pp. 1329-1335, 2010. Disponible en http://dx.doi.org/10.1016/j.compositesa.2010.06.001
[3] J. Summerscales, N. Dissanayake, A. Virk y W. Hall, “A review of bast fibres and their composites. Part 2- Composites. Composites Part A,” vol. 41, no. 10, pp. 1336-1344, 2010. Disponible en https://doi.org/10.1016/j.compositesa.2010.05.020
[4] S. Thomas, S. A. Paul, L. A. Pothan y B. Deepa, “Natural Fibres: Structure, Properties and Applications, Cellulose Fibers: Bio- and Nano-Polymer Composites,” en S. Kalia et al. (eds.), 2011, pp. 720.
[5] T. Lu, M. Jiang, Z. Jiang, D. Hui, Z. Wang y Z. Zhou, “Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites,” Compos Part B:Eng., vol. 51, pp. 28–34, 2013. Disponible en https://doi.org/10.1016/j.compositesb.2013.02.031
[6] L. Dányádi, J. Móczó y B. Pukánszky, “Effect of various surface modifications of wood flour on the properties of PP/wood composites,” Composite Part A: Appl. Sci. Manufact.,vol. 41, no. 2, pp. 199–206, 2010. Disponible en https://doi.org/10.1016/j.compositesa.2009.10.008
[7] G. Cantero, A. Arbeliaz, R. Liano-Ponte y I. Mondragon, “Effects of fibre treatment on wettability and mechanical behavior of flax/polypropylene composites,” Composite Science and Technology, vol. 63, no. 9, pp. 1247-1254, 2003. Disponible en https://doi.org/10.1016/S0266-3538(03)00094-0
[8] H. Alamri e I. M. Low, “Mechanical properties and water absorption behaviour of recycled cellulose fibre reinforced epoxy composites,” Polymer Testing, vol. 31, no. 5, pp. 620- 628, 2012. Disponible en https://doi.org/10.1016/j.polymertesting.2012.04.002
[9] X. Yanjun, A. S. H. Callum, X. Zefang, M. Holger, M. Carsten, “Silane coupling agents used for natural fiber/polymer composites: A review,” Composites Part A, vol. 41, no. 7, pp. 806-819, 2010. Disponible en https://doi.org/10.1016/j.compositesa.2010.03.005
[10] J. Rout, S. S. Tripathy, S. K. Nayak, M. Misra y A. K. Mohanty, “Scanning electron microscopy study of chemically modified coir fibers,” J, Appl, Polym, Sci., vol. 79, pp. 1169–1177, 2001. Disponible en https://doi.org/10.1002/1097-4628(20010214)79:7<1169::AID-APP30>3.0.CO;2-Q
[11] A. I. S. Brígida, V. M. A. Calado, L. R. B. Gonçalves y M. A. Z. Coelho, “Effect of chemical treatments on properties of green coconut fiber,” Carbohydr Polym, vol. 79, no. 4, pp. 832–838, 2010. Disponible en https://doi.org/10.1016/j.carbpol.2009.10.005
[12] M. Rokbi, H. Osmania, A. Imad y N. Benseddiq, “Effect of Chemical Treatment on Flexure Properties of Natural Fiber-reinforced Polyester Composite,” Procedia Eng, vol. 10, pp. 2092–2097, 2011. Disponible en https://doi.org/10.1016/j.proeng.2011.04.346
[13] M. N. Akhtara, A. B. Sulong, M. K. Fadzly Radzi, N. F. Ismail, M. R. Raza, N. Muhamad y M. A. Khan, “Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications,” Prog. Nat. Sci., vol. 26, no. 6, pp. 657–664, 2016. Disponible en https://doi.org/10.1016/j.pnsc.2016.12.004
[14] A. Orue, A. Jauregi, U. Unsuain, J. Labidi, A. Eceiza y A. Arbelaiz, “The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly(lactic acid)/sisal fiber composites,” Compos. Part A: Appl. Sci. Manufact., vol. 84, pp.186–195, 2016. Disponible en https://doi.org/10.1016/j.compositesa.2016.01.021
[15] V. Fiore, G. Di Bella y A. Valenza, “The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites,” Compos Part B: Eng., vol. 68, pp. 14–21, 2015. Disponible en https://doi.org/10.1016/j.compositesb.2014.08.025
[16] M. J. John y R. D. Anandjiwala, “Recent developments in chemical modification and characterization of natural fiber-reinforced composites,” Polymer Composites, vol. 29, pp. 187-207, 2008. Disponible en https://doi.org/10.1002/pc.20461
[17] A. K. Mohanty, M. Misra y L. T. Drzal, “Surface modifications of natural fibers and performance of the resulting biocomposites: an overview,” Composite Interfaces, vol. 8, no. 5, pp. 313-343, 2001. Disponible en https://doi.org/10.1163/156855401753255422
[18] F. P. La Mantia y M. Morreale, “Green composites: A brief review,” Composites Part A, vol. 42, no. 6, pp. 579-588, 2001. Disponible en https://doi.org/10.1016/j.compositesa.2011.01.017
[19] Norma Técnica Colombiana - NTC 5301, Preservación y Secado del culmo de Guadua Angustifolia Kunth. Bogotá: Editorial Icontec, 2007
[20] A. H. Grigoriou y G. A. Ntalos, “The potential use of Ricinus communis L. (Castor) stalks as a lignocellulosic resource for particle boards,” Industrial Crops and Products, vol. 13, no. 3, pp. 209-218, 2001.
[21] M. L. Sanchez, L. Y. Morales y J. D. Caicedo, “Physical and mechanical properties of agglomerated panels made from bamboo fiber and vegetable resin,” Construction and Building Materials, vol. 156, no. 15, pp. 330-339, 2017.
[22] American Society for Testing and Materials, ASTM, D3800-16. Standard test method for density of highmodulus fibers. Philadelphia: ASTM, 2016.
[23] American Society for Testing and Materials, ASTM, D5229-14. Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials. Philadelphia: ASTM, 2014.
[24] American Society for Testing and Materials, ASTM, D2395-14. Standard Test Methods for Density and Specific Gravity (Relative Density) of Wood and Wood-Based Materials. Annual Book of ASTM Standards, 2014.
[25] American Society for Testing and Materials, ASTM, D 4442-16. Standard test method for direct moisture content measurement of wood and wood-based materials. Philadelphia: ASTM, 2016.
[26] H. Yoshihara, “Mode II fracture mechanics properties of solid wood measured by the three-point eccentric end-notched flexure test,” Engineering Fracture Mechanics, vol. 141, pp. 140–151, 2015. Disponible en: https://doi.org/10.1016/j.engfracmech.2015.05.028
[27] American Society for Testing and Materials, ASTM, D1037-12 Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials. Philadelphia: ASTM, 2012.
[28] J. Fiorelli, F. A. R. Lahar, M. F. do Nascimento, H. Savastano y J. A. Rossignolo, “Painéis de partículas à base de bagaço de cana e resina de mamona – produção e propriedades,” Acta Scientiarum Technology, vol. 33, no. 4, pp. 401-406, 2011. Disponible en: DOI: 10.4025/actascitechnol.v33i4.96
[29] J. Fiorelli, D. Donizzetti, N. Barrero, H. Savastano, E. M. Agnolon y R. Johnson, “Particulate composite based on coconut fiber and castor oil polyurethane adhesive: An eco-efficient product,” Industrial Crops and Products, vol. 40, pp. 69–75, 2012. Disponible en: https://doi.org/10.1016/j.indcrop.2012.02.033
[30] H. S. Kim, H. S. Yang y H. J. Kim, “Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites,” Journal of Thermal Analysis and Calorimetry, vol. 76, no. 2, pp. 395-404, 2004.
dc.relation.citationendpage.spa.fl_str_mv 74
dc.relation.citationstartpage.spa.fl_str_mv 66
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 14
dc.relation.ispartofjournalabbrev.spa.fl_str_mv INGE CUC
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv INGE CUC
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/1682
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/2427/1/Evaluaci%c3%b3n%20de%20las%20propiedades%20f%c3%adsico-mec%c3%a1nicas%20de%20paneles%20reforzados%20con%20fibras%20de%20ca%c3%b1a%20brava.pdf
https://repositorio.cuc.edu.co/bitstream/11323/2427/2/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/2427/4/Evaluaci%c3%b3n%20de%20las%20propiedades%20f%c3%adsico-mec%c3%a1nicas%20de%20paneles%20reforzados%20con%20fibras%20de%20ca%c3%b1a%20brava.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/2427/5/Evaluaci%c3%b3n%20de%20las%20propiedades%20f%c3%adsico-mec%c3%a1nicas%20de%20paneles%20reforzados%20con%20fibras%20de%20ca%c3%b1a%20brava.pdf.txt
bitstream.checksum.fl_str_mv 433350441295ba5e13168f7da3c7d125
8a4605be74aa9ea9d79846c1fba20a33
aee9e2d85c0419d7edc2588ca05a4382
90af92df6e419f3ee46d4886f536c5e8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400223695798272
spelling Monsalve Alarcón, Jonathan2e61f073d6baff4263f183f83f42494dSánchez Cruz, Martha Lissette2cd7ad55f52a1ea703e29d053ca710fbBaquero Bastos, David Esteban48be8ef202141f1efd972c32906014a32019-02-12T22:12:39Z2019-02-12T22:12:39Z2018-01-01J. Monsalve, M. L. Sánchez y D. Baquero, “Evaluación de las propiedades físico-mecánicas de paneles reforzados con fibras de caña brava”, INGE CUC, vol. 14, no. 1, pp. 66-74, 2018. DOI: http://doi.org/10.17981/ingecuc.14.1.2018.06http://hdl.handle.net/11323/2427https://doi.org/10.17981/ingecuc.14.1.2018.0610.17981/ingecuc.14.1.2018.062382-4700Corporación Universidad de la Costa0122-6517REDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Introducción: Actualmente, el uso de compuestos elaborados con materiales de origen vegetal ha ganado importancia en diversas áreas de la ingeniería, fundamentalmente en la construcción civil. Objetivo: El objetivo de esta investigación es analizar el comportamiento físico y mecánico de paneles elaborados con fibras de caña brava y resina vegetal. Metodología: Para la elaboración de los paneles, las fibras fueron extraídas usando un triturador mecánico. Las fibras fueron tratadas con solución de hidróxido de sodio. La eficacia del tratamiento químico se evaluó mediante microscopía electrónica de barrido. La rugosidad de las fibras se determinó usando la técnica de microscopía de fuerza atómica. Para la elaboración del compuesto, se utilizó el método de compresión. La caracterización física de los paneles se centró en la evaluación de la absorción efectiva, la densidad y el porcentaje de hinchamiento. Para evaluar el comportamiento mecánico, se llevaron a cabo pruebas de flexión estática y fractura mecánica. El análisis de la degradación del material se llevó a cabo utilizando pruebas de termogravimetría. Resultados: A partir de los resultados obtenidos, es posible verificar que los paneles elaborados con fibras de caña brava y resina vegetal pueden presentar un incremento en su estabilidad dimensional cuando se comparan con paneles elaborados con fibras de guadua Angustifolia Kunth, y, asimismo, muestran mayores valores de resistencia y rigidez que los paneles elaborados con fibras de coco y bambú. Conclusiones: Considerando que la caña brava es una planta invasiva, su aplicación como refuerzo de paneles compuestos resulta una opción viable para impulsar el desarrollo y aplicación de nuevos materiales en la construcción civil.Introduction− The use of composites made of vegetable origin materials has gained importance in some areas of engineering, mainly in civil construction.Objective−The objective of this paper is to analyze the physical and mechanical behavior of panels made with caña brava fibers and vegetal resin. Methodology−For the elaboration of the panels, the fibers were extracted using a mechanical crusher. The fibers were treated with a sodium hydroxide solution. The effect of the chemical treatment was evaluated by scanning electron microscopy. The roughness of the fi-bers was determined using the atomic force microscopy technique. For the manufacture of the composite, a com-pression method was used. The physical characteriza-tion of the panels was focused on the evaluation of the effective absorption, density, and percentage of swelling. To evaluate the mechanical behavior, static bending and mechanical fracture tests were performed. To evaluate the degradation of the material with the temperature, a thermogravimetric test was executed.Results− From the results, it is possible to verify that panels made with caña brava fibers and vegetal resin can present an increase in their dimensional stability when compared to panels made with Guadua Angustifolia Kunth fibers and show higher values of strength and stiffness than panels elaborated with coconut and bamboo fibers. Conclusions−Considering that caña brava is an invasive plant, its application as reinforcement of composite panels is a viable option to promote the development and applica-tion of new materials in civil construction.9 páginasapplication/pdfspaCorporación Universidad de la CostaINGE CUC; Vol. 14, Núm. 1 (2018)INGE CUCINGE CUC[1] Pickering K, Properties and performance of natural-fibre composites. Cambridge: Woodhead Publishing, 2008, pp. 576.[2] J. Summerscales, N. Dissanayake, A. Virk y W. Hall, “A review of bast fibres and their composites. Part 1- Fibres as reinforcements. Composites Part A,” vol. 41, no. 10, pp. 1329-1335, 2010. Disponible en http://dx.doi.org/10.1016/j.compositesa.2010.06.001[3] J. Summerscales, N. Dissanayake, A. Virk y W. Hall, “A review of bast fibres and their composites. Part 2- Composites. Composites Part A,” vol. 41, no. 10, pp. 1336-1344, 2010. Disponible en https://doi.org/10.1016/j.compositesa.2010.05.020[4] S. Thomas, S. A. Paul, L. A. Pothan y B. Deepa, “Natural Fibres: Structure, Properties and Applications, Cellulose Fibers: Bio- and Nano-Polymer Composites,” en S. Kalia et al. (eds.), 2011, pp. 720.[5] T. Lu, M. Jiang, Z. Jiang, D. Hui, Z. Wang y Z. Zhou, “Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites,” Compos Part B:Eng., vol. 51, pp. 28–34, 2013. Disponible en https://doi.org/10.1016/j.compositesb.2013.02.031[6] L. Dányádi, J. Móczó y B. Pukánszky, “Effect of various surface modifications of wood flour on the properties of PP/wood composites,” Composite Part A: Appl. Sci. Manufact.,vol. 41, no. 2, pp. 199–206, 2010. Disponible en https://doi.org/10.1016/j.compositesa.2009.10.008[7] G. Cantero, A. Arbeliaz, R. Liano-Ponte y I. Mondragon, “Effects of fibre treatment on wettability and mechanical behavior of flax/polypropylene composites,” Composite Science and Technology, vol. 63, no. 9, pp. 1247-1254, 2003. Disponible en https://doi.org/10.1016/S0266-3538(03)00094-0[8] H. Alamri e I. M. Low, “Mechanical properties and water absorption behaviour of recycled cellulose fibre reinforced epoxy composites,” Polymer Testing, vol. 31, no. 5, pp. 620- 628, 2012. Disponible en https://doi.org/10.1016/j.polymertesting.2012.04.002[9] X. Yanjun, A. S. H. Callum, X. Zefang, M. Holger, M. Carsten, “Silane coupling agents used for natural fiber/polymer composites: A review,” Composites Part A, vol. 41, no. 7, pp. 806-819, 2010. Disponible en https://doi.org/10.1016/j.compositesa.2010.03.005[10] J. Rout, S. S. Tripathy, S. K. Nayak, M. Misra y A. K. Mohanty, “Scanning electron microscopy study of chemically modified coir fibers,” J, Appl, Polym, Sci., vol. 79, pp. 1169–1177, 2001. Disponible en https://doi.org/10.1002/1097-4628(20010214)79:7<1169::AID-APP30>3.0.CO;2-Q[11] A. I. S. Brígida, V. M. A. Calado, L. R. B. Gonçalves y M. A. Z. Coelho, “Effect of chemical treatments on properties of green coconut fiber,” Carbohydr Polym, vol. 79, no. 4, pp. 832–838, 2010. Disponible en https://doi.org/10.1016/j.carbpol.2009.10.005[12] M. Rokbi, H. Osmania, A. Imad y N. Benseddiq, “Effect of Chemical Treatment on Flexure Properties of Natural Fiber-reinforced Polyester Composite,” Procedia Eng, vol. 10, pp. 2092–2097, 2011. Disponible en https://doi.org/10.1016/j.proeng.2011.04.346[13] M. N. Akhtara, A. B. Sulong, M. K. Fadzly Radzi, N. F. Ismail, M. R. Raza, N. Muhamad y M. A. Khan, “Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications,” Prog. Nat. Sci., vol. 26, no. 6, pp. 657–664, 2016. Disponible en https://doi.org/10.1016/j.pnsc.2016.12.004[14] A. Orue, A. Jauregi, U. Unsuain, J. Labidi, A. Eceiza y A. Arbelaiz, “The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly(lactic acid)/sisal fiber composites,” Compos. Part A: Appl. Sci. Manufact., vol. 84, pp.186–195, 2016. Disponible en https://doi.org/10.1016/j.compositesa.2016.01.021[15] V. Fiore, G. Di Bella y A. Valenza, “The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites,” Compos Part B: Eng., vol. 68, pp. 14–21, 2015. Disponible en https://doi.org/10.1016/j.compositesb.2014.08.025[16] M. J. John y R. D. Anandjiwala, “Recent developments in chemical modification and characterization of natural fiber-reinforced composites,” Polymer Composites, vol. 29, pp. 187-207, 2008. Disponible en https://doi.org/10.1002/pc.20461[17] A. K. Mohanty, M. Misra y L. T. Drzal, “Surface modifications of natural fibers and performance of the resulting biocomposites: an overview,” Composite Interfaces, vol. 8, no. 5, pp. 313-343, 2001. Disponible en https://doi.org/10.1163/156855401753255422[18] F. P. La Mantia y M. Morreale, “Green composites: A brief review,” Composites Part A, vol. 42, no. 6, pp. 579-588, 2001. Disponible en https://doi.org/10.1016/j.compositesa.2011.01.017[19] Norma Técnica Colombiana - NTC 5301, Preservación y Secado del culmo de Guadua Angustifolia Kunth. Bogotá: Editorial Icontec, 2007[20] A. H. Grigoriou y G. A. Ntalos, “The potential use of Ricinus communis L. (Castor) stalks as a lignocellulosic resource for particle boards,” Industrial Crops and Products, vol. 13, no. 3, pp. 209-218, 2001.[21] M. L. Sanchez, L. Y. Morales y J. D. Caicedo, “Physical and mechanical properties of agglomerated panels made from bamboo fiber and vegetable resin,” Construction and Building Materials, vol. 156, no. 15, pp. 330-339, 2017.[22] American Society for Testing and Materials, ASTM, D3800-16. Standard test method for density of highmodulus fibers. Philadelphia: ASTM, 2016.[23] American Society for Testing and Materials, ASTM, D5229-14. Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials. Philadelphia: ASTM, 2014.[24] American Society for Testing and Materials, ASTM, D2395-14. Standard Test Methods for Density and Specific Gravity (Relative Density) of Wood and Wood-Based Materials. Annual Book of ASTM Standards, 2014.[25] American Society for Testing and Materials, ASTM, D 4442-16. Standard test method for direct moisture content measurement of wood and wood-based materials. Philadelphia: ASTM, 2016.[26] H. Yoshihara, “Mode II fracture mechanics properties of solid wood measured by the three-point eccentric end-notched flexure test,” Engineering Fracture Mechanics, vol. 141, pp. 140–151, 2015. Disponible en: https://doi.org/10.1016/j.engfracmech.2015.05.028[27] American Society for Testing and Materials, ASTM, D1037-12 Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials. Philadelphia: ASTM, 2012.[28] J. Fiorelli, F. A. R. Lahar, M. F. do Nascimento, H. Savastano y J. A. Rossignolo, “Painéis de partículas à base de bagaço de cana e resina de mamona – produção e propriedades,” Acta Scientiarum Technology, vol. 33, no. 4, pp. 401-406, 2011. Disponible en: DOI: 10.4025/actascitechnol.v33i4.96[29] J. Fiorelli, D. Donizzetti, N. Barrero, H. Savastano, E. M. Agnolon y R. Johnson, “Particulate composite based on coconut fiber and castor oil polyurethane adhesive: An eco-efficient product,” Industrial Crops and Products, vol. 40, pp. 69–75, 2012. Disponible en: https://doi.org/10.1016/j.indcrop.2012.02.033[30] H. S. Kim, H. S. Yang y H. J. Kim, “Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites,” Journal of Thermal Analysis and Calorimetry, vol. 76, no. 2, pp. 395-404, 2004.7466114INGE CUCINGE CUChttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1682Evaluación de las propiedades físico-mecánicas de paneles reforzados con fibras de caña bravaEvaluation of the physical and mechanical properties of caña brava (Arundo donax) reinforced panelsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Materiales compuestosFibras vegetalesCaña bravaPropiedades físicasHumedadAbsorciónDensidadPropiedades mecánicasFlexión estáticaFracturaCaña bravaPhysical propertiesHumidityAbsorptionComposite materialsVegetal fibersDensityMechanical propertiesStatic bendingFractureORIGINALEvaluación de las propiedades físico-mecánicas de paneles reforzados con fibras de caña brava.pdfEvaluación de las propiedades físico-mecánicas de paneles reforzados con fibras de caña brava.pdfapplication/pdf995630https://repositorio.cuc.edu.co/bitstream/11323/2427/1/Evaluaci%c3%b3n%20de%20las%20propiedades%20f%c3%adsico-mec%c3%a1nicas%20de%20paneles%20reforzados%20con%20fibras%20de%20ca%c3%b1a%20brava.pdf433350441295ba5e13168f7da3c7d125MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstream/11323/2427/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52open accessTHUMBNAILEvaluación de las propiedades físico-mecánicas de paneles reforzados con fibras de caña brava.pdf.jpgEvaluación de las propiedades físico-mecánicas de paneles reforzados con fibras de caña brava.pdf.jpgimage/jpeg61948https://repositorio.cuc.edu.co/bitstream/11323/2427/4/Evaluaci%c3%b3n%20de%20las%20propiedades%20f%c3%adsico-mec%c3%a1nicas%20de%20paneles%20reforzados%20con%20fibras%20de%20ca%c3%b1a%20brava.pdf.jpgaee9e2d85c0419d7edc2588ca05a4382MD54open accessTEXTEvaluación de las propiedades físico-mecánicas de paneles reforzados con fibras de caña brava.pdf.txtEvaluación de las propiedades físico-mecánicas de paneles reforzados con fibras de caña brava.pdf.txttext/plain35707https://repositorio.cuc.edu.co/bitstream/11323/2427/5/Evaluaci%c3%b3n%20de%20las%20propiedades%20f%c3%adsico-mec%c3%a1nicas%20de%20paneles%20reforzados%20con%20fibras%20de%20ca%c3%b1a%20brava.pdf.txt90af92df6e419f3ee46d4886f536c5e8MD55open access11323/2427oai:repositorio.cuc.edu.co:11323/24272023-12-14 17:07:28.427open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=