Structural Characterization of Linear Three-Dimensional Random Chains: Energetic Behaviour and Anisotropy
In this work, we will make an energetic and structural characterization of three-dimensional linear chains generated from a simple self-avoiding random walk process in a finite time, without boundary conditions, without the need to explore all possible configurations. From the analysis of the energy...
- Autores:
-
Avellaneda B, David R.
R. González, Ramón E.
Ariza-Colpas, Paola
Morales-Ortega, Roberto Cesar
Collazos-Morales, Carlos Andrés
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8818
- Acceso en línea:
- https://hdl.handle.net/11323/8818
https://doi.org/10.1007/978-3-030-86653-2_13
https://repositorio.cuc.edu.co/
- Palabra clave:
- Self-avoiding random walk
Linear chains
Interaction energy
Bending energy
Moment of inertia
Radius of gyration
Asphericity
Prolate structure
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_e4077d95176927d41de8197af2013e00 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8818 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Structural Characterization of Linear Three-Dimensional Random Chains: Energetic Behaviour and Anisotropy |
title |
Structural Characterization of Linear Three-Dimensional Random Chains: Energetic Behaviour and Anisotropy |
spellingShingle |
Structural Characterization of Linear Three-Dimensional Random Chains: Energetic Behaviour and Anisotropy Self-avoiding random walk Linear chains Interaction energy Bending energy Moment of inertia Radius of gyration Asphericity Prolate structure |
title_short |
Structural Characterization of Linear Three-Dimensional Random Chains: Energetic Behaviour and Anisotropy |
title_full |
Structural Characterization of Linear Three-Dimensional Random Chains: Energetic Behaviour and Anisotropy |
title_fullStr |
Structural Characterization of Linear Three-Dimensional Random Chains: Energetic Behaviour and Anisotropy |
title_full_unstemmed |
Structural Characterization of Linear Three-Dimensional Random Chains: Energetic Behaviour and Anisotropy |
title_sort |
Structural Characterization of Linear Three-Dimensional Random Chains: Energetic Behaviour and Anisotropy |
dc.creator.fl_str_mv |
Avellaneda B, David R. R. González, Ramón E. Ariza-Colpas, Paola Morales-Ortega, Roberto Cesar Collazos-Morales, Carlos Andrés |
dc.contributor.author.spa.fl_str_mv |
Avellaneda B, David R. R. González, Ramón E. Ariza-Colpas, Paola Morales-Ortega, Roberto Cesar Collazos-Morales, Carlos Andrés |
dc.subject.spa.fl_str_mv |
Self-avoiding random walk Linear chains Interaction energy Bending energy Moment of inertia Radius of gyration Asphericity Prolate structure |
topic |
Self-avoiding random walk Linear chains Interaction energy Bending energy Moment of inertia Radius of gyration Asphericity Prolate structure |
description |
In this work, we will make an energetic and structural characterization of three-dimensional linear chains generated from a simple self-avoiding random walk process in a finite time, without boundary conditions, without the need to explore all possible configurations. From the analysis of the energy balance between the terms of interaction and bending (or correlation), it is shown that the chains, during their growth process, initially tend to form clusters, leading to an increase in their interaction and bending energies. Larger chains tend to “escape” from the cluster when they reach a number of “steps” N>∼1040 , resulting in a decrease in their interaction energy, however, maintaining the same behavior as flexion energy or correlation. This behavior of the bending term in the energy allows distinguishing chains with the same interaction energy that present different structures. As a complement to the energy analysis, we carry out a study based on the moments of inertia of the chains and their radius of gyration. The results show that the formation of clusters separated by “tails” leads to a final “prolate” structure for this type of chain, the same structure evident in real polymeric linear chains in a good solvent. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-10-29T13:54:18Z |
dc.date.available.none.fl_str_mv |
2021-10-29T13:54:18Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8818 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1007/978-3-030-86653-2_13 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/8818 https://doi.org/10.1007/978-3-030-86653-2_13 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953) Flory, P.J.: The configuration of real polymer chains. J. Chem. Phys. 17(3), 303–310 (1949) Madras, N., Sokal, A.: The pivot algorithm: a highly efficient Monte Carlo method for self-avoiding walk. J. Stat. Phys. 50(1–2), 109–186 (1988) Slade, G.: Self-avoiding walks. Math. Intell. 16(1), 29–35 (1994). https://doi.org/10.1007/BF03026612 Figueirêdo, P.H., Moret, M.A., Coutinho, S., Nogueira, J.: The role of stochasticity on compactness of the native state of protein peptide backbone. J. Chem. Phys. 133, 08512 (2010) Boglia, R.A., Tiana, G., Provasi, D.: Simple models of the protein folding and of non-conventional drug design. J. Phys. Condens. Matter 16(6), 111 (2004) Tang, C.: Simple models of the protein folding problem. Phys. A Stat. Mech. Appl. 288(1), 31–48 (2000) Grosberg, A.Y., Khokhlov, A.R.: Statistical Physics of Macromolecules. AIP Press, New York (1994) Rubinstein, M., Colby, R.H.: Polymer Physics. Oxford University Press, New York (2003) Teraoka, I.: Polymer Solutions: An Introduction to Physical Properties. Wiley Inter-science, New York (2002) Hsu, H.P., Paul, W., Binder, K.: Standard definitions of persistence length do not describe the local “intrinsic” stiffness of real polymers. Macromolecules 43(6), 3094–3102 (2010) Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Elsevier Sciences, New York (1986) Schöbl, S., Sturm, S., Janke, W., Kroy, K.: Persistence-length renormalization of polymers in a crowded environment of hard disks. Phys. Rev. Lett. 113(23), 238302 (2014) Amit, D.J., Parisi, G., Paliti, L.: Asymptotic behavior of the “true” self-avoiding walk. Phys. Rev. B 27(3), 1635–1645 (1983) Solc, K.: Shape of random-flight chain. J. Chem. Phys. 55(1), 335–344 (1971) Rudnick, J., Gaspari, G.: The asphericity of random walks. J. Phys. A: Math. Gen. 30(11), 3867–3882 (1997) Hadizadeh, S., Linhananta, A., Plotkin, S.S.: Improved measures for the shape of a disordered polymer to test a mean-field theory of collapse. Macromolecules 44(15), 6182–6197 (2011) Aronovitz, J., Nelson, D.: Universal features of polymer shapes. J. Phys. 47(9), 1445–1456 (1986) Cannon, J.W., Aronovitz, J.A., Goldbart, P.: Equilibrium distribution of shapes for linear and star macromolecules. J. Phys. I Fr. 1(5), 629–645 (1991) Alim, K., Frey, E.: Shapes of semi-flexible polymer rings. Phys. Rev. Lett. 99(19), 198102 (2007) Dokholyan, N.V., Buldyrev, S.V., Stanley, H.E., Shakhnovich, E.I.: Discrete molecular dynamics studies of the folding of a protein-like model. Fold. Des. 3(6), 577–587 (1998) Theiler, J.: Estimating fractal dimension. J. Opt. Soc. Am. A, OSA 7(6), 1055–1073 (1990) Blavatska, V., Janke, W.: Shape anisotropy of polymers in disordered environment. J. Chem. Phys. 133(18), 184903 (2010) Rawdon, E.J., et al.: Effect of knotting on the shape of polymers. Macromolecules 41(21), 8281–8287 (2008) |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.source.spa.fl_str_mv |
International Conference on Computational Science and Its Applications |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-3-030-86653-2_13 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/35670cb2-cfed-46c6-938c-0df780a1e51f/download https://repositorio.cuc.edu.co/bitstreams/5553a774-712b-4870-aeee-d7a9da3598d6/download https://repositorio.cuc.edu.co/bitstreams/d753ae3e-f42a-4e36-9065-a2124273e841/download https://repositorio.cuc.edu.co/bitstreams/b2c46972-3281-4360-8f89-47161a79312c/download https://repositorio.cuc.edu.co/bitstreams/10ddaedc-dd8e-44bf-b0b5-8a79be7cdd86/download |
bitstream.checksum.fl_str_mv |
fd435c4ab8ca3bf869f665e21f50cd0f 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad 84cf038ca269725f748da933ad68795e 8f3e79956eabdd7863e72736c5e0668b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760855226777600 |
spelling |
Avellaneda B, David R.R. González, Ramón E.Ariza-Colpas, PaolaMorales-Ortega, Roberto CesarCollazos-Morales, Carlos Andrés2021-10-29T13:54:18Z2021-10-29T13:54:18Z2021https://hdl.handle.net/11323/8818https://doi.org/10.1007/978-3-030-86653-2_13Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this work, we will make an energetic and structural characterization of three-dimensional linear chains generated from a simple self-avoiding random walk process in a finite time, without boundary conditions, without the need to explore all possible configurations. From the analysis of the energy balance between the terms of interaction and bending (or correlation), it is shown that the chains, during their growth process, initially tend to form clusters, leading to an increase in their interaction and bending energies. Larger chains tend to “escape” from the cluster when they reach a number of “steps” N>∼1040 , resulting in a decrease in their interaction energy, however, maintaining the same behavior as flexion energy or correlation. This behavior of the bending term in the energy allows distinguishing chains with the same interaction energy that present different structures. As a complement to the energy analysis, we carry out a study based on the moments of inertia of the chains and their radius of gyration. The results show that the formation of clusters separated by “tails” leads to a final “prolate” structure for this type of chain, the same structure evident in real polymeric linear chains in a good solvent.Avellaneda B, David R.R. González, Ramón E.Ariza-Colpas, PaolaMorales-Ortega, Roberto CesarCollazos-Morales, Carlos Andrésapplication/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2International Conference on Computational Science and Its Applicationshttps://link.springer.com/chapter/10.1007/978-3-030-86653-2_13Self-avoiding random walkLinear chainsInteraction energyBending energyMoment of inertiaRadius of gyrationAsphericityProlate structureStructural Characterization of Linear Three-Dimensional Random Chains: Energetic Behaviour and AnisotropyArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionFlory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953)Flory, P.J.: The configuration of real polymer chains. J. Chem. Phys. 17(3), 303–310 (1949)Madras, N., Sokal, A.: The pivot algorithm: a highly efficient Monte Carlo method for self-avoiding walk. J. Stat. Phys. 50(1–2), 109–186 (1988)Slade, G.: Self-avoiding walks. Math. Intell. 16(1), 29–35 (1994). https://doi.org/10.1007/BF03026612Figueirêdo, P.H., Moret, M.A., Coutinho, S., Nogueira, J.: The role of stochasticity on compactness of the native state of protein peptide backbone. J. Chem. Phys. 133, 08512 (2010)Boglia, R.A., Tiana, G., Provasi, D.: Simple models of the protein folding and of non-conventional drug design. J. Phys. Condens. Matter 16(6), 111 (2004)Tang, C.: Simple models of the protein folding problem. Phys. A Stat. Mech. Appl. 288(1), 31–48 (2000)Grosberg, A.Y., Khokhlov, A.R.: Statistical Physics of Macromolecules. AIP Press, New York (1994)Rubinstein, M., Colby, R.H.: Polymer Physics. Oxford University Press, New York (2003)Teraoka, I.: Polymer Solutions: An Introduction to Physical Properties. Wiley Inter-science, New York (2002)Hsu, H.P., Paul, W., Binder, K.: Standard definitions of persistence length do not describe the local “intrinsic” stiffness of real polymers. Macromolecules 43(6), 3094–3102 (2010)Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Elsevier Sciences, New York (1986)Schöbl, S., Sturm, S., Janke, W., Kroy, K.: Persistence-length renormalization of polymers in a crowded environment of hard disks. Phys. Rev. Lett. 113(23), 238302 (2014)Amit, D.J., Parisi, G., Paliti, L.: Asymptotic behavior of the “true” self-avoiding walk. Phys. Rev. B 27(3), 1635–1645 (1983)Solc, K.: Shape of random-flight chain. J. Chem. Phys. 55(1), 335–344 (1971)Rudnick, J., Gaspari, G.: The asphericity of random walks. J. Phys. A: Math. Gen. 30(11), 3867–3882 (1997)Hadizadeh, S., Linhananta, A., Plotkin, S.S.: Improved measures for the shape of a disordered polymer to test a mean-field theory of collapse. Macromolecules 44(15), 6182–6197 (2011)Aronovitz, J., Nelson, D.: Universal features of polymer shapes. J. Phys. 47(9), 1445–1456 (1986)Cannon, J.W., Aronovitz, J.A., Goldbart, P.: Equilibrium distribution of shapes for linear and star macromolecules. J. Phys. I Fr. 1(5), 629–645 (1991)Alim, K., Frey, E.: Shapes of semi-flexible polymer rings. Phys. Rev. Lett. 99(19), 198102 (2007)Dokholyan, N.V., Buldyrev, S.V., Stanley, H.E., Shakhnovich, E.I.: Discrete molecular dynamics studies of the folding of a protein-like model. Fold. Des. 3(6), 577–587 (1998)Theiler, J.: Estimating fractal dimension. J. Opt. Soc. Am. A, OSA 7(6), 1055–1073 (1990)Blavatska, V., Janke, W.: Shape anisotropy of polymers in disordered environment. J. Chem. Phys. 133(18), 184903 (2010)Rawdon, E.J., et al.: Effect of knotting on the shape of polymers. Macromolecules 41(21), 8281–8287 (2008)PublicationORIGINALStructural Characterization of Linear Three.pdfStructural Characterization of Linear Three.pdfapplication/pdf135081https://repositorio.cuc.edu.co/bitstreams/35670cb2-cfed-46c6-938c-0df780a1e51f/downloadfd435c4ab8ca3bf869f665e21f50cd0fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/5553a774-712b-4870-aeee-d7a9da3598d6/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/d753ae3e-f42a-4e36-9065-a2124273e841/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILStructural Characterization of Linear Three.pdf.jpgStructural Characterization of Linear Three.pdf.jpgimage/jpeg45364https://repositorio.cuc.edu.co/bitstreams/b2c46972-3281-4360-8f89-47161a79312c/download84cf038ca269725f748da933ad68795eMD54TEXTStructural Characterization of Linear Three.pdf.txtStructural Characterization of Linear Three.pdf.txttext/plain1746https://repositorio.cuc.edu.co/bitstreams/10ddaedc-dd8e-44bf-b0b5-8a79be7cdd86/download8f3e79956eabdd7863e72736c5e0668bMD5511323/8818oai:repositorio.cuc.edu.co:11323/88182024-09-17 14:11:52.153http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |