Free thaw resistance of stabilized and fiber-reinforced soil vulnerable to landslides

The research is undertaken to study the combined reinforcing and stabilizing effect of Eco sand, Metakaolin added with Polypropylene fibers in silty soil obtained from Nilgris district. In this work, an effort is made to obtain the impact of adding polypropylene fibers in fixed ratios (eco sand10%_m...

Full description

Autores:
Rajesh Kumar, K.
Gobinath, R.
Shyamala, G.
Viloria, Emelec
Varela, Noel
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7289
Acceso en línea:
https://hdl.handle.net/11323/7289
https://doi.org/10.1016/j.matpr.2020.02.041
https://repositorio.cuc.edu.co/
Palabra clave:
Freeze-thaw test
Polypropylene fiber
Soil stabilization
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_e4072e9b811987f08531a63147cef65c
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7289
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Free thaw resistance of stabilized and fiber-reinforced soil vulnerable to landslides
title Free thaw resistance of stabilized and fiber-reinforced soil vulnerable to landslides
spellingShingle Free thaw resistance of stabilized and fiber-reinforced soil vulnerable to landslides
Freeze-thaw test
Polypropylene fiber
Soil stabilization
title_short Free thaw resistance of stabilized and fiber-reinforced soil vulnerable to landslides
title_full Free thaw resistance of stabilized and fiber-reinforced soil vulnerable to landslides
title_fullStr Free thaw resistance of stabilized and fiber-reinforced soil vulnerable to landslides
title_full_unstemmed Free thaw resistance of stabilized and fiber-reinforced soil vulnerable to landslides
title_sort Free thaw resistance of stabilized and fiber-reinforced soil vulnerable to landslides
dc.creator.fl_str_mv Rajesh Kumar, K.
Gobinath, R.
Shyamala, G.
Viloria, Emelec
Varela, Noel
dc.contributor.author.spa.fl_str_mv Rajesh Kumar, K.
Gobinath, R.
Shyamala, G.
Viloria, Emelec
Varela, Noel
dc.subject.spa.fl_str_mv Freeze-thaw test
Polypropylene fiber
Soil stabilization
topic Freeze-thaw test
Polypropylene fiber
Soil stabilization
description The research is undertaken to study the combined reinforcing and stabilizing effect of Eco sand, Metakaolin added with Polypropylene fibers in silty soil obtained from Nilgris district. In this work, an effort is made to obtain the impact of adding polypropylene fibers in fixed ratios (eco sand10%_metakaolin 5%) tandem with two novel stabilizing agents in various proportions (polypropylene fiber 0.1% & 0.2%) is the effects of non-traditional additives on the geotechnical properties of soils have been the focus of much investigation in recent years. It has been well established that the plasticity index and also the size, shape, and arrangement of soil particles will affect the treatment process of natural soils with additives. Stabilization of soils that are subjected to a regular variation in the temperature requires the most probable selection of suitable stabilizers and admixtures to improve the strength of the soil. This study investigates the resistance of the Nilgiris soil over the freeze–thaw reaction. The soil is stabilized with Eco Sand, Metakaolin, and polypropylene fiber (synthetic fiber). The index and engineering properties of the soil were determined in the laboratory. The soil is stabilized with two variants of an equal proportion of EcoSand-10%, Metakaolin-5%, and varying the polypropylene fiber in a proportion of 0.1% and 0.2% with the weight of the soil. UCS test was conducted for the virgin sample as well as the sample after four freeze–thaw cycles. The soil sample is kept at 0° for 24 h and later at 28° for 24 h to complete a cycle. It is determined that the admixtures added has increased the resistance of the soil over the freeze–thaw reaction after the cycles. The polypropylene fiber has increased the bonding of soil, and hence it stabilizes the soil during a large periodical variation in the temperature of the soil.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-11-12T17:54:05Z
dc.date.available.none.fl_str_mv 2020-11-12T17:54:05Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7289
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.matpr.2020.02.041
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7289
https://doi.org/10.1016/j.matpr.2020.02.041
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Abdulrahman Aldaooda, Bouaskera Marwen, Muzahim Al-Mukhtara, Impact of freeze-thaw cycles on the mechanical behavior of lime stabilized Gypseous soils, Cold Reg. Sci. Technol. 99 (2014) 38–45.
I.I. Akinwumi, O.I. Aidomojie, Effect of corncob ash on the geotechnical properties of lateritic soil stabilized with Portland cement, Int. J. Geomatics Geosci. 5 (3) (2015) 375–392.
S.T. Banu, G. Chitra, P.O. Awoyera, R. Gobinath, Structural retrofitting of corroded fly ash based concrete beams with fibres to improve bending characteristics, Aust. J. Struct. Eng. 20 (3) (2019) 198–203.
S. Altun, A. Sezer, A. Erol, The effects of additives and curing conditions on the mechanical behavior of silty soil, J. Cold Reg. Sci. Technol. 56 (2) (2009) 135–140.
M.R. Asgari, A.B. Dezfuli, M. Bayat, Experimental study on stabilization of a low plasticity clayey soil with cement/lime, Arabian J. Geosci. 8 (2015) 1439–1452.
F.G. Bell, Cement stabilization and clay soils, with examples, Environ. Eng. Geosci. 1 (2) (1995) 139e151.
A.K. Bera, A. Ghosh, A. Ghosh, Behaviour of model footing on pond ash, Geotech Geol. Eng. 25 (2007) 315–325.
P.O. Awoyera, A. Adesina, R. Gobinath, 2019, Role of recycling fine materials as filler for improving performance of concrete - a review, Aust. J. Civ. Eng. 17 (2) (2019) 85–95.
S.T. Banu, G. Chitra, R. Gobinath, P.O. Awoyera, E. Ashokkumar, 2018, Sustainable structural retrofitting of corroded concrete using basalt fibre composte, Ecol., Environ. Conserv. 24 (3) (2018) 353–357.
K. Rajesh Kumar, S. Karthik, R. Ramamohan, P.O. Awoyera, R. Gobinath, A. Shivakrishna, P. Murthi, Shear resistance of portal frame reinforced with Bamboo and steel rebar: Experimental and numerical evaluation, Int. J. Recent Technol. Eng. 8 (1) (2019) 445–452.
BIS, Methods of Test for Soils: Determination of Consolidation (second revision), IS 2720: Part 15, Bureau of Indian Standards, New Delhi, 1986.
S.K. Chand, C. Subbarao, Strength and slake durability of lime stabilized pondash, J. Mater. Civ. Eng. 19 (2007) 601–608.
N.C. Consoli, P.D.M. Prietto, L.A. Ulbrich, Influence of fiber and cement addition on the behavior of sandy soil, J. Geotech. Geoenviron. Eng. 124 (1211–1214) (1998) 14.
N.C. Consoli, R.R. de Moraes, L. Festugato, Split tensile strength of monofilament polypropylene fiber-reinforced cemented sandy soils, Geosynth. Int. 18 (2) (2011) 57–62.
F.L.L.E. Carneiro, A. Barcellos, Concrete tensile strength, RILEM Bull. 13 (1953) 97–107.
Deepak Gupta, Arvind Kumar, Strength characterization of cement stabilized and fiber reinforced clay–pond ash mixes, Int. J. Geosynth. Ground Eng. 2 (2016) 32, https://doi.org/10.1007/s40891-016-0069-z.
Eren Komurlu, Ayhan Kesimal, Serhat Demir, Experimental and numerical study on determination of indirect (splitting) tensile strength of rocks under various load apparatus, Can. Geotech. J. 53 (2) (2016) 360–372, https://doi.org/10.1139/cgj-2014-0356.
G.P. Ganapathy, R. Gobinath, I.I. Akinwumi, S. Kovendiran, M. Thangaraj, N. Lokesh, Muhamed Anas, R. Arul Murugan, S. Yogeswaran, Hema, Bioenzymatic stabilization of a soil having poor engineering properties, Int. J. Civil Eng. 15 (3) (2017) 401–409, https://doi.org/10.1007/s40999-016-0056-8.
G.P. Ganapathy, R. Gobinath, I.I. Akinwumi, S. Kovendiran, M. Thangaraj, N. Lokesh, S. Muhamed Anas, R. Arul Murugan, P. Yogeswaran, S. Hema, Bioenzymatic stabilization of a soil having poor engineering properties, Int. J. Civil Eng. 15 (3) (2017) 401–409.
M. Ghazavi, R. Mahya, The influence of freeze-thaw cycles on the unconfined compressive strength of fiber-reinforced clay, J. Cold Reg. Sci. Technol. 61 (2–3) (2010) 125–131
R. Gobinath, G.P. Ganapathy, I.I. Akinwumi, Evaluating the use of lemon grassroots for the reinforcement of a landslide-affected soil from Nilgiris district, Tamil Nadu, India, J. Mater. Environ. Sci. 6 (10) (2015) 2681–2687.
R. Gobinath, G.P. Ganapathy, I.I. Akinwumi, P.O. Awoyera, K. Shridevi, T. Dhivapriya, B. Lalithambigai, R. Mithuna, Soil stabilisation using asbestos free fiber powder and silica grit, J. Teknol., (2017), In press.
A. Gümüs, er C, S, enol, Effect of fly ash and different lengths ofpolypropylene fibers content on the soft soils. Int. J. Civil Eng., 12(2) (2014) 134–145
H. Gullu, K. Hazirbaba, Unconfined compressive strength and post-freeze–thaw behavior of fine-grained soils treated with geofiber and synthetic fluid, J. Cold Reg. Sci. Technol. 62 (2) (2010) 142–150.
M. Hohmann-Porebska, Microfabric effects in frozen clays concerning geotechnical parameters, Appl. Clay Sci. 21 (2002) 77–87.
A. Kumar, B.S. Walia, J. Mohan, Compressive strength of fiber-reinforced highly compressible clay, Constr. Build. Mater. 10 (20) (2005) 1063–1068.
M.H. Maher, D.H. Gray, Static response of sands reinforced with randomly distributed fibers, J. Geotech Eng. 116 (11) (1990) 1661–1677.
Muhannad Ismeika, M. Ahmed, Ashteyat band Khaled Z. Ramadan, Stabilisation of fine-grained soils with saline water, Eur. J. Environ. Civil Eng. 17 (1) (2013) 32–45.
Murat Olgun, The effects and optimization of additives for expansive clays under freeze-thaw conditions, Cold Reg. Sci. Technol. 93 (2013) (2013) 36–46.
Marshall R. Thompson, Split Tensile Strength of Lime-Stabilized Soils Committee on Lime and Lime-Fly Ash Stabilization and Presented at the 44th Annual Meeting. 69-81
R. Gobinath, G.P. Ganapathy, I.I. Akinwumi, S. Kovendiran, S. Hema, M. Thangaraj, Plasticity, strength, permeability and compressibility characteristics of black cotton soil stabilized with precipitated silica, J. Cent. South Univ. 23 (2016) 2688, https://doi.org/10.1007/s11771-016-3330-7.
B. Ramanathan, V. Raman, Split tensile strength of cohesive soils, Soils Found. 14 (1) (1974) 71–76.
G. Ranjan, R.M. Vasan, H.D. Charan, Probabilistic analysis of randomly distributed fiber-reinforced soil, J. Geotech. Eng. 122 (6) (1996) 419–426.
Roustaei, Mahya, Eslami, Abolfazl, Ghazavi, Mahmoud, Effects of freezethaw cycles on fiber-reinforced fine-grained soil concerning geotechnical parameters, Cold Reg. Sci. Technol. (2015), https://doi.org/10.1016/j.coldregions.2015.09.011.
R. Sarkar, S.M. Abbas, J.T. Shahu, A comparative study of geotechnical behavior of lime stabilized pond ashes from Delhi region, Int. J. Geomate 1 (3) (2012) 273–279
Seyed Esmaeil Mousavi, Aliakbar Karamvand, Assessment of strength development in stabilized soil with CBR PLUS and silica sand, J. Traffic Transp. Eng. (English edition) 4 (4) (2017) 412–421.
N.K. Sharma, S.K. Swain, U.C. Sahoo, Stabilization of a clayey soil with fly-ash and lime: a micro-level investigation, Geotech. Geol. Eng. 30 (5) (2012), 1197e1205.
S. Shoop, M. Kestler, J. Stark, C. Ryerson, R. Affleck, Rapid stabilization of thawing soils: field experience and application, J. Terramech. 39 (4) (2003) 181–194.
D.K. Soni, A. Jain, Effect of freeze-thaw, and wetting–drying on tensile strength of lime-fly ash stabilized black cotton soil, in: The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, 2008, pp. 2285–2291.
Yang Zhanga, Alex E. Johnson, David J. White, Laboratory freeze-thaw assessment of cement, fly ash, and fiber stabilized pavement foundation materials, Cold Reg. Sci. Technol. 122 (2016) 50–57.
A.S. Zaimoglu, Freezing-thawing behavior of fine-grained soils reinforced with polypropylene fibers, J. Cold Reg. Sci. Technol. 60 (1) (2010) 63–65
T. Ravi kumar, A. Siva Krishna, Design and Testing of Fly-Ash Based Geo Polymer Concrete, Int. J. Civ Eng. Technol. 8 (1) (2017) 480–491.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Materials Today: Proceedings
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2214785320307720
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/7289/1/Free%20thaw%20resistance%20of%20stabilized%20and%20fiber.pdf
https://repositorio.cuc.edu.co/bitstream/11323/7289/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/7289/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/7289/4/Free%20thaw%20resistance%20of%20stabilized%20and%20fiber.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/7289/5/Free%20thaw%20resistance%20of%20stabilized%20and%20fiber.pdf.txt
bitstream.checksum.fl_str_mv e53182374cfa61cfcd2d158c79cc8cb4
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
63095f647ef5a7ab7305b7f157948540
bba5b5991b386b5e2393e81d91bc324b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400156638314496
spelling Rajesh Kumar, K.0d62d82b62adda0de9bdc0ff9b8f488bGobinath, R.e2ba24255eddcab7829d7664de549b28Shyamala, G.cfc29761188a10a96027194f430f2f52Viloria, Emelec21fe02d8d1a6b215559a8dfaa8d1c072Varela, Noel544417e3ea23421c46114ee4f01f436a2020-11-12T17:54:05Z2020-11-12T17:54:05Z2019https://hdl.handle.net/11323/7289https://doi.org/10.1016/j.matpr.2020.02.041Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The research is undertaken to study the combined reinforcing and stabilizing effect of Eco sand, Metakaolin added with Polypropylene fibers in silty soil obtained from Nilgris district. In this work, an effort is made to obtain the impact of adding polypropylene fibers in fixed ratios (eco sand10%_metakaolin 5%) tandem with two novel stabilizing agents in various proportions (polypropylene fiber 0.1% & 0.2%) is the effects of non-traditional additives on the geotechnical properties of soils have been the focus of much investigation in recent years. It has been well established that the plasticity index and also the size, shape, and arrangement of soil particles will affect the treatment process of natural soils with additives. Stabilization of soils that are subjected to a regular variation in the temperature requires the most probable selection of suitable stabilizers and admixtures to improve the strength of the soil. This study investigates the resistance of the Nilgiris soil over the freeze–thaw reaction. The soil is stabilized with Eco Sand, Metakaolin, and polypropylene fiber (synthetic fiber). The index and engineering properties of the soil were determined in the laboratory. The soil is stabilized with two variants of an equal proportion of EcoSand-10%, Metakaolin-5%, and varying the polypropylene fiber in a proportion of 0.1% and 0.2% with the weight of the soil. UCS test was conducted for the virgin sample as well as the sample after four freeze–thaw cycles. The soil sample is kept at 0° for 24 h and later at 28° for 24 h to complete a cycle. It is determined that the admixtures added has increased the resistance of the soil over the freeze–thaw reaction after the cycles. The polypropylene fiber has increased the bonding of soil, and hence it stabilizes the soil during a large periodical variation in the temperature of the soil.application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Materials Today: Proceedingshttps://www.sciencedirect.com/science/article/pii/S2214785320307720Freeze-thaw testPolypropylene fiberSoil stabilizationFree thaw resistance of stabilized and fiber-reinforced soil vulnerable to landslidesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAbdulrahman Aldaooda, Bouaskera Marwen, Muzahim Al-Mukhtara, Impact of freeze-thaw cycles on the mechanical behavior of lime stabilized Gypseous soils, Cold Reg. Sci. Technol. 99 (2014) 38–45.I.I. Akinwumi, O.I. Aidomojie, Effect of corncob ash on the geotechnical properties of lateritic soil stabilized with Portland cement, Int. J. Geomatics Geosci. 5 (3) (2015) 375–392.S.T. Banu, G. Chitra, P.O. Awoyera, R. Gobinath, Structural retrofitting of corroded fly ash based concrete beams with fibres to improve bending characteristics, Aust. J. Struct. Eng. 20 (3) (2019) 198–203.S. Altun, A. Sezer, A. Erol, The effects of additives and curing conditions on the mechanical behavior of silty soil, J. Cold Reg. Sci. Technol. 56 (2) (2009) 135–140.M.R. Asgari, A.B. Dezfuli, M. Bayat, Experimental study on stabilization of a low plasticity clayey soil with cement/lime, Arabian J. Geosci. 8 (2015) 1439–1452.F.G. Bell, Cement stabilization and clay soils, with examples, Environ. Eng. Geosci. 1 (2) (1995) 139e151.A.K. Bera, A. Ghosh, A. Ghosh, Behaviour of model footing on pond ash, Geotech Geol. Eng. 25 (2007) 315–325.P.O. Awoyera, A. Adesina, R. Gobinath, 2019, Role of recycling fine materials as filler for improving performance of concrete - a review, Aust. J. Civ. Eng. 17 (2) (2019) 85–95.S.T. Banu, G. Chitra, R. Gobinath, P.O. Awoyera, E. Ashokkumar, 2018, Sustainable structural retrofitting of corroded concrete using basalt fibre composte, Ecol., Environ. Conserv. 24 (3) (2018) 353–357.K. Rajesh Kumar, S. Karthik, R. Ramamohan, P.O. Awoyera, R. Gobinath, A. Shivakrishna, P. Murthi, Shear resistance of portal frame reinforced with Bamboo and steel rebar: Experimental and numerical evaluation, Int. J. Recent Technol. Eng. 8 (1) (2019) 445–452.BIS, Methods of Test for Soils: Determination of Consolidation (second revision), IS 2720: Part 15, Bureau of Indian Standards, New Delhi, 1986.S.K. Chand, C. Subbarao, Strength and slake durability of lime stabilized pondash, J. Mater. Civ. Eng. 19 (2007) 601–608.N.C. Consoli, P.D.M. Prietto, L.A. Ulbrich, Influence of fiber and cement addition on the behavior of sandy soil, J. Geotech. Geoenviron. Eng. 124 (1211–1214) (1998) 14.N.C. Consoli, R.R. de Moraes, L. Festugato, Split tensile strength of monofilament polypropylene fiber-reinforced cemented sandy soils, Geosynth. Int. 18 (2) (2011) 57–62.F.L.L.E. Carneiro, A. Barcellos, Concrete tensile strength, RILEM Bull. 13 (1953) 97–107.Deepak Gupta, Arvind Kumar, Strength characterization of cement stabilized and fiber reinforced clay–pond ash mixes, Int. J. Geosynth. Ground Eng. 2 (2016) 32, https://doi.org/10.1007/s40891-016-0069-z.Eren Komurlu, Ayhan Kesimal, Serhat Demir, Experimental and numerical study on determination of indirect (splitting) tensile strength of rocks under various load apparatus, Can. Geotech. J. 53 (2) (2016) 360–372, https://doi.org/10.1139/cgj-2014-0356.G.P. Ganapathy, R. Gobinath, I.I. Akinwumi, S. Kovendiran, M. Thangaraj, N. Lokesh, Muhamed Anas, R. Arul Murugan, S. Yogeswaran, Hema, Bioenzymatic stabilization of a soil having poor engineering properties, Int. J. Civil Eng. 15 (3) (2017) 401–409, https://doi.org/10.1007/s40999-016-0056-8.G.P. Ganapathy, R. Gobinath, I.I. Akinwumi, S. Kovendiran, M. Thangaraj, N. Lokesh, S. Muhamed Anas, R. Arul Murugan, P. Yogeswaran, S. Hema, Bioenzymatic stabilization of a soil having poor engineering properties, Int. J. Civil Eng. 15 (3) (2017) 401–409.M. Ghazavi, R. Mahya, The influence of freeze-thaw cycles on the unconfined compressive strength of fiber-reinforced clay, J. Cold Reg. Sci. Technol. 61 (2–3) (2010) 125–131R. Gobinath, G.P. Ganapathy, I.I. Akinwumi, Evaluating the use of lemon grassroots for the reinforcement of a landslide-affected soil from Nilgiris district, Tamil Nadu, India, J. Mater. Environ. Sci. 6 (10) (2015) 2681–2687.R. Gobinath, G.P. Ganapathy, I.I. Akinwumi, P.O. Awoyera, K. Shridevi, T. Dhivapriya, B. Lalithambigai, R. Mithuna, Soil stabilisation using asbestos free fiber powder and silica grit, J. Teknol., (2017), In press.A. Gümüs, er C, S, enol, Effect of fly ash and different lengths ofpolypropylene fibers content on the soft soils. Int. J. Civil Eng., 12(2) (2014) 134–145H. Gullu, K. Hazirbaba, Unconfined compressive strength and post-freeze–thaw behavior of fine-grained soils treated with geofiber and synthetic fluid, J. Cold Reg. Sci. Technol. 62 (2) (2010) 142–150.M. Hohmann-Porebska, Microfabric effects in frozen clays concerning geotechnical parameters, Appl. Clay Sci. 21 (2002) 77–87.A. Kumar, B.S. Walia, J. Mohan, Compressive strength of fiber-reinforced highly compressible clay, Constr. Build. Mater. 10 (20) (2005) 1063–1068.M.H. Maher, D.H. Gray, Static response of sands reinforced with randomly distributed fibers, J. Geotech Eng. 116 (11) (1990) 1661–1677.Muhannad Ismeika, M. Ahmed, Ashteyat band Khaled Z. Ramadan, Stabilisation of fine-grained soils with saline water, Eur. J. Environ. Civil Eng. 17 (1) (2013) 32–45.Murat Olgun, The effects and optimization of additives for expansive clays under freeze-thaw conditions, Cold Reg. Sci. Technol. 93 (2013) (2013) 36–46.Marshall R. Thompson, Split Tensile Strength of Lime-Stabilized Soils Committee on Lime and Lime-Fly Ash Stabilization and Presented at the 44th Annual Meeting. 69-81R. Gobinath, G.P. Ganapathy, I.I. Akinwumi, S. Kovendiran, S. Hema, M. Thangaraj, Plasticity, strength, permeability and compressibility characteristics of black cotton soil stabilized with precipitated silica, J. Cent. South Univ. 23 (2016) 2688, https://doi.org/10.1007/s11771-016-3330-7.B. Ramanathan, V. Raman, Split tensile strength of cohesive soils, Soils Found. 14 (1) (1974) 71–76.G. Ranjan, R.M. Vasan, H.D. Charan, Probabilistic analysis of randomly distributed fiber-reinforced soil, J. Geotech. Eng. 122 (6) (1996) 419–426.Roustaei, Mahya, Eslami, Abolfazl, Ghazavi, Mahmoud, Effects of freezethaw cycles on fiber-reinforced fine-grained soil concerning geotechnical parameters, Cold Reg. Sci. Technol. (2015), https://doi.org/10.1016/j.coldregions.2015.09.011.R. Sarkar, S.M. Abbas, J.T. Shahu, A comparative study of geotechnical behavior of lime stabilized pond ashes from Delhi region, Int. J. Geomate 1 (3) (2012) 273–279Seyed Esmaeil Mousavi, Aliakbar Karamvand, Assessment of strength development in stabilized soil with CBR PLUS and silica sand, J. Traffic Transp. Eng. (English edition) 4 (4) (2017) 412–421.N.K. Sharma, S.K. Swain, U.C. Sahoo, Stabilization of a clayey soil with fly-ash and lime: a micro-level investigation, Geotech. Geol. Eng. 30 (5) (2012), 1197e1205.S. Shoop, M. Kestler, J. Stark, C. Ryerson, R. Affleck, Rapid stabilization of thawing soils: field experience and application, J. Terramech. 39 (4) (2003) 181–194.D.K. Soni, A. Jain, Effect of freeze-thaw, and wetting–drying on tensile strength of lime-fly ash stabilized black cotton soil, in: The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, 2008, pp. 2285–2291.Yang Zhanga, Alex E. Johnson, David J. White, Laboratory freeze-thaw assessment of cement, fly ash, and fiber stabilized pavement foundation materials, Cold Reg. Sci. Technol. 122 (2016) 50–57.A.S. Zaimoglu, Freezing-thawing behavior of fine-grained soils reinforced with polypropylene fibers, J. Cold Reg. Sci. Technol. 60 (1) (2010) 63–65T. Ravi kumar, A. Siva Krishna, Design and Testing of Fly-Ash Based Geo Polymer Concrete, Int. J. Civ Eng. Technol. 8 (1) (2017) 480–491.ORIGINALFree thaw resistance of stabilized and fiber.pdfFree thaw resistance of stabilized and fiber.pdfapplication/pdf96010https://repositorio.cuc.edu.co/bitstream/11323/7289/1/Free%20thaw%20resistance%20of%20stabilized%20and%20fiber.pdfe53182374cfa61cfcd2d158c79cc8cb4MD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstream/11323/7289/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/7289/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessTHUMBNAILFree thaw resistance of stabilized and fiber.pdf.jpgFree thaw resistance of stabilized and fiber.pdf.jpgimage/jpeg53283https://repositorio.cuc.edu.co/bitstream/11323/7289/4/Free%20thaw%20resistance%20of%20stabilized%20and%20fiber.pdf.jpg63095f647ef5a7ab7305b7f157948540MD54open accessTEXTFree thaw resistance of stabilized and fiber.pdf.txtFree thaw resistance of stabilized and fiber.pdf.txttext/plain2209https://repositorio.cuc.edu.co/bitstream/11323/7289/5/Free%20thaw%20resistance%20of%20stabilized%20and%20fiber.pdf.txtbba5b5991b386b5e2393e81d91bc324bMD55open access11323/7289oai:repositorio.cuc.edu.co:11323/72892023-12-14 15:42:15.713Attribution-NonCommercial-NoDerivatives 4.0 International|||http://creativecommons.org/licenses/by-nc-nd/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==