Facile synthesis of a novel, efficient, reusable inorganic adsorbent from volcanic rock powder wastes and its application for the removal of dyes and metals from water
A new, efficient, and reusable inorganic adsorbent (NP.F) was easily synthesized using volcanic rock powder wastes (NP) as a precursor, with the synthesis of NP.F carried out at 550 ºC and with a ratio of NaOH (alkalinizing) and sample NP equal to 1. The samples were used in batch adsorption to upta...
- Autores:
-
Rossatto, Diovani L.
Silva, Luis F.O.
El-Bahy, Zeinhom M.
Helal, Mohamed H.
de Lima, Rachel
Netto, Matias S.
da Boit Martinello, Kátia
Vieira, Yasmin
Dotto, Guilherme L.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13823
- Acceso en línea:
- https://hdl.handle.net/11323/13823
https://repositorio.cuc.edu.co/
- Palabra clave:
- Adsorbent
Adsorption process
Alkaline fusion method
Mechanism
Metal ions
Volcanic rock powder
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_dfd1b0ddb9486482bc5ea180e7e0c52e |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13823 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Facile synthesis of a novel, efficient, reusable inorganic adsorbent from volcanic rock powder wastes and its application for the removal of dyes and metals from water |
title |
Facile synthesis of a novel, efficient, reusable inorganic adsorbent from volcanic rock powder wastes and its application for the removal of dyes and metals from water |
spellingShingle |
Facile synthesis of a novel, efficient, reusable inorganic adsorbent from volcanic rock powder wastes and its application for the removal of dyes and metals from water Adsorbent Adsorption process Alkaline fusion method Mechanism Metal ions Volcanic rock powder |
title_short |
Facile synthesis of a novel, efficient, reusable inorganic adsorbent from volcanic rock powder wastes and its application for the removal of dyes and metals from water |
title_full |
Facile synthesis of a novel, efficient, reusable inorganic adsorbent from volcanic rock powder wastes and its application for the removal of dyes and metals from water |
title_fullStr |
Facile synthesis of a novel, efficient, reusable inorganic adsorbent from volcanic rock powder wastes and its application for the removal of dyes and metals from water |
title_full_unstemmed |
Facile synthesis of a novel, efficient, reusable inorganic adsorbent from volcanic rock powder wastes and its application for the removal of dyes and metals from water |
title_sort |
Facile synthesis of a novel, efficient, reusable inorganic adsorbent from volcanic rock powder wastes and its application for the removal of dyes and metals from water |
dc.creator.fl_str_mv |
Rossatto, Diovani L. Silva, Luis F.O. El-Bahy, Zeinhom M. Helal, Mohamed H. de Lima, Rachel Netto, Matias S. da Boit Martinello, Kátia Vieira, Yasmin Dotto, Guilherme L. |
dc.contributor.author.none.fl_str_mv |
Rossatto, Diovani L. Silva, Luis F.O. El-Bahy, Zeinhom M. Helal, Mohamed H. de Lima, Rachel Netto, Matias S. da Boit Martinello, Kátia Vieira, Yasmin Dotto, Guilherme L. |
dc.subject.proposal.eng.fl_str_mv |
Adsorbent Adsorption process Alkaline fusion method Mechanism Metal ions Volcanic rock powder |
topic |
Adsorbent Adsorption process Alkaline fusion method Mechanism Metal ions Volcanic rock powder |
description |
A new, efficient, and reusable inorganic adsorbent (NP.F) was easily synthesized using volcanic rock powder wastes (NP) as a precursor, with the synthesis of NP.F carried out at 550 ºC and with a ratio of NaOH (alkalinizing) and sample NP equal to 1. The samples were used in batch adsorption to uptake Ag+(aq.), Cu2+(aq.), acid green 16 (AG 16), and acid red 97 (AR 97) from aqueous solutions at pH 6.53, 5.98, and 2.3, respectively. NP and NP.F were characterized by different analytical techniques, such as XRD, FTIR, BET, TGA/DTG, etc. The adsorption kinetic carried out at 298 K for dye solutions with concentrations ranging from 50 to 200 mg L−1 and metals from 10 to 100 mg L−1 showed that data fit the pseudo-second-order mathematical model with rapid sorption and process equilibrium was reached after 30 min for dyes and 40 min for metal ions. The Sips model proved adequate to represent the adsorption isotherms of metallic ions and the dye AR 97, while the BET model represented the isotherms of the dye AG 16. The NP.F sample showed notable adsorption capacity for all the contaminants studied; for example, the adsorption capacity of the dye AR 97 was 295 mg g−1, while that of the Ag+ ion was 93 mg g−1. Besides, the adsorption of Cu2+(aq.) ion, dyes AG 16, and AR 97 were endothermic, while the adsorption of Ag+(aq.) was exothermic. Furthermore, even after numerous subsequent adsorption cycles, the NP.F sample maintained a high reusability, suggesting that the sample is qualified to be an adsorbent for removing contaminants from liquid effluents. In conclusion, NP.F could be easily converted into an efficient inorganic adsorbent for colorants and metals. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-11-25T17:57:58Z |
dc.date.available.none.fl_str_mv |
2024-11-25T17:57:58Z 2025-08 |
dc.date.issued.none.fl_str_mv |
2024-08 |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Diovani L. Rossatto, Luis F.O. Silva, Zeinhom M. El-Bahy, Mohamed H. Helal, Rachel de Lima, Matias S. Netto, Kátia da Boit Martinello, Yasmin Vieira, Guilherme L. Dotto, Facile synthesis of a novel, efficient, reusable inorganic adsorbent from volcanic rock powder wastes and its application for the removal of dyes and metals from water, Journal of Environmental Chemical Engineering, Volume 12, Issue 4, 2024, 113285, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2024.113285. |
dc.identifier.issn.none.fl_str_mv |
2213-3437 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13823 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.jece.2024.113285 |
dc.identifier.instname.none.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.none.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Diovani L. Rossatto, Luis F.O. Silva, Zeinhom M. El-Bahy, Mohamed H. Helal, Rachel de Lima, Matias S. Netto, Kátia da Boit Martinello, Yasmin Vieira, Guilherme L. Dotto, Facile synthesis of a novel, efficient, reusable inorganic adsorbent from volcanic rock powder wastes and its application for the removal of dyes and metals from water, Journal of Environmental Chemical Engineering, Volume 12, Issue 4, 2024, 113285, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2024.113285. 2213-3437 10.1016/j.jece.2024.113285 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/13823 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.none.fl_str_mv |
Journal of environmental chemical engineering |
dc.relation.references.none.fl_str_mv |
[1] Rayany Magali da Rocha Santana, et al., Degradation of textile dyes employing advanced oxidative processes: kinetic, equilibrium modeling, and toxicity study of seeds and bacteria, Water Air Soil Pollut. 230 (6) (2019) 1–13. [2] T.S. Anirudhan, M. Ramachandran, Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): kinetic and competitive adsorption isotherm, Process Saf. Environ. Prot. 95 (2015) 215–225, https://doi.org/10.1016/j.psep.2015.03.003. [3] Jianzhong Guo, et al., Adsorption of dye from wastewater using chitosan-CTAB modified bentonites, J. Colloid Interface Sci. 382 (1) (2012) 61–66, https://doi. org/10.1016/j.jcis.2012.05.044. [4] Thawatchai Maneerung, et al., Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: kinetics, isotherms and thermodynamic studies, Bioresour. Technol. 200 (2016) 350–359. [5] Aline de O. Martins, Vicente M. Canalli, Carla M.N. Azevedo, Marçal Pires, Degradation of pararosaniline (C.I. Basic Red 9 Monohydrochloride) dye by ozonation and sonolysis, Dyes Pigments (2006). [6] Sagar Pal, et al., Efficient and rapid adsorption characteristics of templating modified guar gum and silica nanocomposite toward removal of toxic reactive blue and congo red dyes, Bioresour. Technol. 191 (2015) 291–299, https://doi.org/ 10.1016/j.biortech.2015.04.099. [7] Jingming Gong, et al., Efficient removal of heavy metal ions from aqueous systems with the assembly of anisotropic layered double hydroxide nanocrystals@carbon nanosphere, Environ. Sci. Technol. 45 (14) (2011) 6181–6187. [8] Li Yan, Ji-de Wang, Xiao-jun Wang, Juan-fang Wang, Adsorption − desorption of Cd ( II) and Pb ( II) on Ca-montmorillonite - Li et Al. - 2012 - unknown.Pdf. Ind. Eng. Chem. Res. (Ii) (2012) [9] Pan Wang, et al., Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions: PH effect, kinetics, isotherms and mechanism, J. Hazard. Mater. 286 (2015) 533–544, https://doi.org/10.1016/j. jhazmat.2014.12.034. [10] Shi Wen Lv, et al., Recent advances on porous organic frameworks for the adsorptive removal of hazardous materials, J. Environ. Sci. (China) 80 (2019) 169–185, https://doi.org/10.1016/j.jes.2018.12.010. [11] Dhiraj Sud, M.P. Kaur Garima Mahajan, Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review, Bioresour. Technol. 99 (14) (2008) 6017–6027. [12] Lizhu Chen, Laili Wang, Xiongying Wu, Xuemei Ding, A process-level water conservation and pollution control performance evaluation tool of cleaner production technology in textile industry, J. Clean. Prod. 143 (2017) 1137–1143, https://doi.org/10.1016/j.jclepro.2016.12.006 [13] Jingna Dui, Gongyu Zhu, Shaomin Zhou, Facile and economical synthesis of large hollow ferrites and their applications in adsorption for as(V) and Cr(VI), ACS Appl. Mater. Interfaces 5 (20) (2013) 10081–10089. [14] Fenglian Fu, Qi Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manag. 92 (3) (2011) 407–418, https://doi.org/10.1016/j. jenvman.2010.11.011. [15] Frances N. Smith, Christopher D. Taylor, Wooyong Um, Albert A. Kruger, Technetium incorporation into goethite (α-FeOOH): an atomic-scale investigation, Environ. Sci. Technol. 49 (22) (2015) 13699–13707. [16] G.L. Dotto, L.A.A. Pinto, Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan: stirring rate effect in kinetics and mechanism, J. Hazard. Mater. 187 (1–3) (2011) 164–170, https://doi.org/10.1016/j.jhazmat.2011.01.016. [17] Vesna Krsti´c, Tamara Uroˇsevi´c, Branka Peˇsovski, A review on adsorbents for treatment of water and wastewaters containing copper ions, Chem. Eng. Sci. 192 (2018) 273–287. [18] Tatarchuk, Tetiana, et al., Green synthesis, structure, cations distribution and bonding characteristics of superparamagnetic cobalt-zinc ferrites nanoparticles for Pb(II) adsorption and magnetic hyperthermia applications, J. Mol. Liq. 328 (2021). [19] Zhen Zhu, et al., Removal of heavy metals from aqueous solution by lipopeptides and lipopeptides modified Na-montmorillonite, Bioresour. Technol. 147 (2013) 378–386, https://doi.org/10.1016/j.biortech.2013.08.049. [20] Yasmin Vieira, et al., An overview of geological originated materials as a trend for adsorption in wastewater treatment, Geosci. Front. (2021) 101150, https://doi. org/10.1016/j.gsf.2021.101150. [21] Diovani L. Rossatto, et al., Volcanic rock powder residues as precursors for the synthesis of adsorbents and potential application in the removal of dyes and metals from water, Environ. Sci. Pollut. Res. 29 (17) (2022) 25685–25693, https://doi. org/10.1007/s11356-021-17749-z. [22] Jorge Feliciano Ontiveros-Cuadras, et al., Mineralogical signatures and sources of recent sediment in a large tropical lake, Int. J. Sediment Res. 33 (2) (2018) 183–190, https://doi.org/10.1016/j.ijsrc.2017.12.002 [23] Chunfang Chao, et al., Volcanic rock-based ceramsite adsorbent for highly selective fluoride removal: function optimization and mechanism, J. Chem. Technol. Biotechnol. 94 (7) (2019) 2263–2273. [24] Jae Woo Choi, et al., Adsorption of ammonium nitrogen and phosphate onto basanite and evaluation of toxicity, Water Air Soil Pollut. 225 (8) (2014). [25] Allan Tejeda, Arturo Barrera, Florentina Zurita, Adsorption capacity of a volcanic rock-used in constructed wetlands-for carbamazepine removal, and its modification with biofilm growth, Water (Switz.) 9 (9) (2017) [26] Funda Demir, Emek Moroydor Derun, Response surface methodology application to fly ash based geopolymer synthesized by alkali fusion method, J. Non-Cryst. Solids 524 (127) (2019) 119649, https://doi.org/10.1016/j. jnoncrysol.2019.119649. [27] Ning Wei, Lin Xiao, Wei Wang, Xiong Guan, Yi. Ge Guo, Characterization of a novel zeolite synthesized from coal fly ash, Adv. Mater. Res. 886 (2014) 84–87. [28] C. Chao, Y. Zhao, Q. Song, J. Min, Z. Wang, H. Ma, X. Li, Volcanic rock-based ceramsite adsorbent for highly selective fluoride removal: function optimization and mechanism, J. Chem. Technol. Biotechnol. 94 (2019) 2263–2273, https://doi. org/10.1002/jctb.6014. [29] M.D. Bugarˇci´c, M. Milivojevi´c, A. Marinkovi´c, B. Markovi´c, M. Soki´c, N. Petronijevi´c, J. Stojanovi´c, Application of raw volcanic rock found in Etna valley as an adsorbent of chromates, arsenates and selenates, Met. Mater. Eng. 24 (2018) 133–144, https://doi.org/10.30544/366. [30] L.N. Tchadji´e, et al., Potential of using granite waste as raw material for geopolymer synthesis, Ceram. Int. 42 (2) (2016) 3046–3055, https://doi.org/ 10.1016/j.ceramint.2015.10.091. [31] H.K. Tchakoute, A. Elimbi, E. Yanne, C.N. Djangang, Utilization of volcanic ashes for the production of geopolymers cured at ambient temperature, Cem. Concr. Compos. 38 (2013) 75–81, https://doi.org/10.1016/j.cemconcomp.2013.03.010. [32] Zhuang, Xiao Yu, et al., Fly ash-based geopolymer: clean production, properties and applications, J. Clean. Prod. 125 (2016) 253–267, https://doi.org/10.1016/j. jclepro.2016.03.019. [33] P. Duxson, A. Fernandez-Jim ´ ´enez, J.L. Provis, G.C. Lukey, A. Palomo, J.S.J. Van Deventer, Geopolymer technology: the current state of the art, J. Mater. Sci. 42 (2007) 2917–2933, https://doi.org/10.1007/s10853-006-0637-z. [34] H. Rahier, J. Wastiels, M. Biesemans, R. Willlem, G. Van Assche, B. Van Mele, Reaction mechanism, kinetics and high temperature transformations of geopolymers, J. Mater. Sci. 42 (2007) 2982–2996, https://doi.org/10.1007/s10853-, 006-0568- 8 [35] B.I. Djon Li Ndjock, Antoine Elimbi, Martin Cyr, Rational utilization of volcanic ashes based on factors affecting their alkaline activation, J. Non-Cryst. Solids 463 (2017) 31–39, https://doi.org/10.1016/j.jnoncrysol.2017.02.024. [36] Matthias Thommes, Physical adsorption characterization of nanoporous materials, Chem. Ing. Tech. (7) (2010). [37] Joanna Kyziol-Komosinska, et al., Sorption of acid green 16 from aqueous solution onto low-moor peat and smectite clay co-occurring in lignite of belchatow mine field, Annu. Set. Environ. Prot. 17 (January) (2015) 165–187. [38] M. Salman Naeem, et al., Adsorption kinetics of acid red on activated carbon web prepared from acrylic fibrous waste, Fibers Polym. 19 (1) (2018) 71–81. [39] Sellaoui, et al., A study of single and quaternary adsorption of Cu2+, Co2+, Ni2+ and Ag+ on sludge modified by alkaline fusion, Chem. Eng. J. 433 (October 2021) (2022). [40] Xianghua Song, et al., Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions, J. Hazard. Mater. 194 (2011) 162–168, https:// doi.org/10.1016/j.jhazmat.2011.07.076. [41] E.D. Freitas, A.C.R. Carmo, A.F. Almeida Neto, M.G.A. Vieira, Binary adsorption of silver and copper on verde-lodo bentonite: kinetic and equilibrium study, Appl. Clay Sci. 137 (2017) 69–76, https://doi.org/10.1016/j.clay.2016.12.016. [42] Choong Jeon, Adsorption of silver ions from industrial wastewater using waste coffee grounds, Korean J. Chem. Eng. 34 (2) (2017) 384–391. [43] Enrique C. Peres, et al., Synthesis of geopolymers from fly and bottom ashes of a thermoelectrical power plant for metallic ions adsorption, Environ. Sci. Pollut. Res. 29 (2) (2022) 2699–2706. [44] Peng Liu, et al., Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents, J. Hazard. Mater. 294 (2015) 177–185. [45] Md. Murshed Bhuyan, Hirotaka Okabe, Yoshiki Hidaka, Kazuhiro Hara, Pectin-[(3- acrylamidopropyl) trimethylammonium chloride-co-acrylic acid] hydrogel prepared by gamma radiation and selectively silver (Ag) metal adsorption, J. Appl. Polym. Sci. 135 (8) (2018) 1–14 [46] C.E. Duru, , 2019, Adsorption of Copper Ions from Aqueous Solution onto Natural and Pretreated Maize Husk: Adsorption Efficiency and Kinetic Studies 44 (5798–803). [47] Katarzyna Szewczuk-Karpisz, et al., Simultaneous adsorption of Cu(II) ions and poly(acrylic acid) on the hybrid carbon-mineral nanocomposites with metallic elements, J. Hazard. Mater. 412 (January) (2021). [48] Gabriel Andr´e Tochetto, et al., Kinetic modeling of the adsorption and desorption of metallic ions present in effluents using the biosorbent obtained from syagrus romanzoffiana, Environ. Monit. Assess. 195 (7) (2023), https://doi.org/10.1007/ s10661-023-11459-4. [49] Haluk Aydin, G.ülay Baysal, Adsorption of acid dyes in aqueous solutions by shells of bittim (pistacia khinjuk stocks), Desalination 196 (1–3) (2006) 248–259. [50] Ayman A. Ali, Sayed A. Shama, Alaa S. Amin, Sahar R. EL-Sayed, Synthesis and characterization of ZrO2/CeO2 nanocomposites for efficient removal of acid green 1 dye from aqueous solution, Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. 269 (November 2020) (2021) 115167, https://doi.org/10.1016/j. mseb.2021.115167. [51] Navid Masoudian, Maryam Rajabi, Mehrorang Ghaedi, Alireza Asghari, Highly efficient adsorption of naphthol green B and phenol red dye by combination of ultrasound wave and copper-doped zinc sulfide nanoparticles loaded on pistachionut shell, Appl. Organomet. Chem. 32 (8) (2018) 1–13. [52] M. Mohamad, Bishnu Prasad, Chemical design of smart chitosan / polypyrrole / magnetite nanocomposite toward efficient water treatment, Phys. Chem. Chem. Phys. (2014) [53] Suyog N. Jain, Parag R. Gogate, Efficient removal of acid green 25 dye from wastewater using activated prunus dulcis as biosorbent: batch and column studies, J. Environ. Manag. 210 (2018) 226–238, https://doi.org/10.1016/j. jenvman.2018.01.008. [54] Shoomaila Latif, Rabia Rehman, Muhammad Imran, Shahid Iqbal, Biosorptive decontamination of acid red-87 dye from wastewater by citrus limonum peels: ecofriendly approach, Pak. J. Anal. Environ. Chem. 19 (1) (2018) 44–52 [55] V. Gomez, ´ M.S. Larrechi, M.P. Callao, Kinetic and adsorption study of acid dye removal using activated carbon, Chemosphere 69 (7) (2007) 1151–1158. [56] Qian Wang, et al., Adsorption of azo dye acid red 73 onto rice wine lees: adsorption kinetics and isotherms, Adv. Mater. Sci. Eng. 2020 (2020). [57] Z. Xing, et al., Adsorption mechanism of acid red 73 onto magnetic nanoparticles Fe3O4 from aqueous phase, Acta Sci. Circumst. 4 (2014) 2246–2255. [58] W. Jia, C. Xiao-Ting, W. Hu, et al., Adsorption kinetics research on chitosan powder obrilliant crocein, Contemp. Chem. Res. 4 (2019) 184–185. |
dc.relation.citationendpage.none.fl_str_mv |
11 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationissue.none.fl_str_mv |
4 |
dc.relation.citationvolume.none.fl_str_mv |
12 |
dc.rights.eng.fl_str_mv |
© 2024 Elsevier Ltd. |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2024 Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.none.fl_str_mv |
11 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
dc.publisher.place.none.fl_str_mv |
United Kingdom |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2213343724014155?via%3Dihub |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/8ef3e80e-1e1c-4840-8d4d-e879f03c9c40/download https://repositorio.cuc.edu.co/bitstreams/f2d19ca9-4e20-4061-ad7e-4b56608ea335/download https://repositorio.cuc.edu.co/bitstreams/51ac0606-fd0b-4d8b-b12c-3d7a23e347e1/download https://repositorio.cuc.edu.co/bitstreams/2fc6a5ed-8189-4021-b99d-50a0a2f2ef96/download |
bitstream.checksum.fl_str_mv |
4d852fb1ca02da66aef30efca5975f89 73a5432e0b76442b22b026844140d683 afd5cfe9401038ff3dcd43bcbb71dd83 7475eee41467a28b4a4db5b62e9d36e2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166553759121408 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2024 Elsevier Ltd.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfRossatto, Diovani L.Silva, Luis F.O.El-Bahy, Zeinhom M.Helal, Mohamed H.de Lima, RachelNetto, Matias S.da Boit Martinello, KátiaVieira, YasminDotto, Guilherme L.2024-11-25T17:57:58Z2025-082024-11-25T17:57:58Z2024-08Diovani L. Rossatto, Luis F.O. Silva, Zeinhom M. El-Bahy, Mohamed H. Helal, Rachel de Lima, Matias S. Netto, Kátia da Boit Martinello, Yasmin Vieira, Guilherme L. Dotto, Facile synthesis of a novel, efficient, reusable inorganic adsorbent from volcanic rock powder wastes and its application for the removal of dyes and metals from water, Journal of Environmental Chemical Engineering, Volume 12, Issue 4, 2024, 113285, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2024.113285.2213-3437https://hdl.handle.net/11323/1382310.1016/j.jece.2024.113285Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/A new, efficient, and reusable inorganic adsorbent (NP.F) was easily synthesized using volcanic rock powder wastes (NP) as a precursor, with the synthesis of NP.F carried out at 550 ºC and with a ratio of NaOH (alkalinizing) and sample NP equal to 1. The samples were used in batch adsorption to uptake Ag+(aq.), Cu2+(aq.), acid green 16 (AG 16), and acid red 97 (AR 97) from aqueous solutions at pH 6.53, 5.98, and 2.3, respectively. NP and NP.F were characterized by different analytical techniques, such as XRD, FTIR, BET, TGA/DTG, etc. The adsorption kinetic carried out at 298 K for dye solutions with concentrations ranging from 50 to 200 mg L−1 and metals from 10 to 100 mg L−1 showed that data fit the pseudo-second-order mathematical model with rapid sorption and process equilibrium was reached after 30 min for dyes and 40 min for metal ions. The Sips model proved adequate to represent the adsorption isotherms of metallic ions and the dye AR 97, while the BET model represented the isotherms of the dye AG 16. The NP.F sample showed notable adsorption capacity for all the contaminants studied; for example, the adsorption capacity of the dye AR 97 was 295 mg g−1, while that of the Ag+ ion was 93 mg g−1. Besides, the adsorption of Cu2+(aq.) ion, dyes AG 16, and AR 97 were endothermic, while the adsorption of Ag+(aq.) was exothermic. Furthermore, even after numerous subsequent adsorption cycles, the NP.F sample maintained a high reusability, suggesting that the sample is qualified to be an adsorbent for removing contaminants from liquid effluents. In conclusion, NP.F could be easily converted into an efficient inorganic adsorbent for colorants and metals.11 páginasapplication/pdfengElsevier B.V.United Kingdomhttps://www.sciencedirect.com/science/article/pii/S2213343724014155?via%3DihubFacile synthesis of a novel, efficient, reusable inorganic adsorbent from volcanic rock powder wastes and its application for the removal of dyes and metals from waterArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Journal of environmental chemical engineering[1] Rayany Magali da Rocha Santana, et al., Degradation of textile dyes employing advanced oxidative processes: kinetic, equilibrium modeling, and toxicity study of seeds and bacteria, Water Air Soil Pollut. 230 (6) (2019) 1–13.[2] T.S. Anirudhan, M. Ramachandran, Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): kinetic and competitive adsorption isotherm, Process Saf. Environ. Prot. 95 (2015) 215–225, https://doi.org/10.1016/j.psep.2015.03.003.[3] Jianzhong Guo, et al., Adsorption of dye from wastewater using chitosan-CTAB modified bentonites, J. Colloid Interface Sci. 382 (1) (2012) 61–66, https://doi. org/10.1016/j.jcis.2012.05.044.[4] Thawatchai Maneerung, et al., Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: kinetics, isotherms and thermodynamic studies, Bioresour. Technol. 200 (2016) 350–359.[5] Aline de O. Martins, Vicente M. Canalli, Carla M.N. Azevedo, Marçal Pires, Degradation of pararosaniline (C.I. Basic Red 9 Monohydrochloride) dye by ozonation and sonolysis, Dyes Pigments (2006).[6] Sagar Pal, et al., Efficient and rapid adsorption characteristics of templating modified guar gum and silica nanocomposite toward removal of toxic reactive blue and congo red dyes, Bioresour. Technol. 191 (2015) 291–299, https://doi.org/ 10.1016/j.biortech.2015.04.099.[7] Jingming Gong, et al., Efficient removal of heavy metal ions from aqueous systems with the assembly of anisotropic layered double hydroxide nanocrystals@carbon nanosphere, Environ. Sci. Technol. 45 (14) (2011) 6181–6187.[8] Li Yan, Ji-de Wang, Xiao-jun Wang, Juan-fang Wang, Adsorption − desorption of Cd ( II) and Pb ( II) on Ca-montmorillonite - Li et Al. - 2012 - unknown.Pdf. Ind. Eng. Chem. Res. (Ii) (2012)[9] Pan Wang, et al., Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions: PH effect, kinetics, isotherms and mechanism, J. Hazard. Mater. 286 (2015) 533–544, https://doi.org/10.1016/j. jhazmat.2014.12.034.[10] Shi Wen Lv, et al., Recent advances on porous organic frameworks for the adsorptive removal of hazardous materials, J. Environ. Sci. (China) 80 (2019) 169–185, https://doi.org/10.1016/j.jes.2018.12.010.[11] Dhiraj Sud, M.P. Kaur Garima Mahajan, Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review, Bioresour. Technol. 99 (14) (2008) 6017–6027.[12] Lizhu Chen, Laili Wang, Xiongying Wu, Xuemei Ding, A process-level water conservation and pollution control performance evaluation tool of cleaner production technology in textile industry, J. Clean. Prod. 143 (2017) 1137–1143, https://doi.org/10.1016/j.jclepro.2016.12.006[13] Jingna Dui, Gongyu Zhu, Shaomin Zhou, Facile and economical synthesis of large hollow ferrites and their applications in adsorption for as(V) and Cr(VI), ACS Appl. Mater. Interfaces 5 (20) (2013) 10081–10089.[14] Fenglian Fu, Qi Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manag. 92 (3) (2011) 407–418, https://doi.org/10.1016/j. jenvman.2010.11.011.[15] Frances N. Smith, Christopher D. Taylor, Wooyong Um, Albert A. Kruger, Technetium incorporation into goethite (α-FeOOH): an atomic-scale investigation, Environ. Sci. Technol. 49 (22) (2015) 13699–13707.[16] G.L. Dotto, L.A.A. Pinto, Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan: stirring rate effect in kinetics and mechanism, J. Hazard. Mater. 187 (1–3) (2011) 164–170, https://doi.org/10.1016/j.jhazmat.2011.01.016.[17] Vesna Krsti´c, Tamara Uroˇsevi´c, Branka Peˇsovski, A review on adsorbents for treatment of water and wastewaters containing copper ions, Chem. Eng. Sci. 192 (2018) 273–287.[18] Tatarchuk, Tetiana, et al., Green synthesis, structure, cations distribution and bonding characteristics of superparamagnetic cobalt-zinc ferrites nanoparticles for Pb(II) adsorption and magnetic hyperthermia applications, J. Mol. Liq. 328 (2021).[19] Zhen Zhu, et al., Removal of heavy metals from aqueous solution by lipopeptides and lipopeptides modified Na-montmorillonite, Bioresour. Technol. 147 (2013) 378–386, https://doi.org/10.1016/j.biortech.2013.08.049.[20] Yasmin Vieira, et al., An overview of geological originated materials as a trend for adsorption in wastewater treatment, Geosci. Front. (2021) 101150, https://doi. org/10.1016/j.gsf.2021.101150.[21] Diovani L. Rossatto, et al., Volcanic rock powder residues as precursors for the synthesis of adsorbents and potential application in the removal of dyes and metals from water, Environ. Sci. Pollut. Res. 29 (17) (2022) 25685–25693, https://doi. org/10.1007/s11356-021-17749-z.[22] Jorge Feliciano Ontiveros-Cuadras, et al., Mineralogical signatures and sources of recent sediment in a large tropical lake, Int. J. Sediment Res. 33 (2) (2018) 183–190, https://doi.org/10.1016/j.ijsrc.2017.12.002[23] Chunfang Chao, et al., Volcanic rock-based ceramsite adsorbent for highly selective fluoride removal: function optimization and mechanism, J. Chem. Technol. Biotechnol. 94 (7) (2019) 2263–2273.[24] Jae Woo Choi, et al., Adsorption of ammonium nitrogen and phosphate onto basanite and evaluation of toxicity, Water Air Soil Pollut. 225 (8) (2014).[25] Allan Tejeda, Arturo Barrera, Florentina Zurita, Adsorption capacity of a volcanic rock-used in constructed wetlands-for carbamazepine removal, and its modification with biofilm growth, Water (Switz.) 9 (9) (2017)[26] Funda Demir, Emek Moroydor Derun, Response surface methodology application to fly ash based geopolymer synthesized by alkali fusion method, J. Non-Cryst. Solids 524 (127) (2019) 119649, https://doi.org/10.1016/j. jnoncrysol.2019.119649.[27] Ning Wei, Lin Xiao, Wei Wang, Xiong Guan, Yi. Ge Guo, Characterization of a novel zeolite synthesized from coal fly ash, Adv. Mater. Res. 886 (2014) 84–87.[28] C. Chao, Y. Zhao, Q. Song, J. Min, Z. Wang, H. Ma, X. Li, Volcanic rock-based ceramsite adsorbent for highly selective fluoride removal: function optimization and mechanism, J. Chem. Technol. Biotechnol. 94 (2019) 2263–2273, https://doi. org/10.1002/jctb.6014.[29] M.D. Bugarˇci´c, M. Milivojevi´c, A. Marinkovi´c, B. Markovi´c, M. Soki´c, N. Petronijevi´c, J. Stojanovi´c, Application of raw volcanic rock found in Etna valley as an adsorbent of chromates, arsenates and selenates, Met. Mater. Eng. 24 (2018) 133–144, https://doi.org/10.30544/366.[30] L.N. Tchadji´e, et al., Potential of using granite waste as raw material for geopolymer synthesis, Ceram. Int. 42 (2) (2016) 3046–3055, https://doi.org/ 10.1016/j.ceramint.2015.10.091.[31] H.K. Tchakoute, A. Elimbi, E. Yanne, C.N. Djangang, Utilization of volcanic ashes for the production of geopolymers cured at ambient temperature, Cem. Concr. Compos. 38 (2013) 75–81, https://doi.org/10.1016/j.cemconcomp.2013.03.010.[32] Zhuang, Xiao Yu, et al., Fly ash-based geopolymer: clean production, properties and applications, J. Clean. Prod. 125 (2016) 253–267, https://doi.org/10.1016/j. jclepro.2016.03.019.[33] P. Duxson, A. Fernandez-Jim ´ ´enez, J.L. Provis, G.C. Lukey, A. Palomo, J.S.J. Van Deventer, Geopolymer technology: the current state of the art, J. Mater. Sci. 42 (2007) 2917–2933, https://doi.org/10.1007/s10853-006-0637-z.[34] H. Rahier, J. Wastiels, M. Biesemans, R. Willlem, G. Van Assche, B. Van Mele, Reaction mechanism, kinetics and high temperature transformations of geopolymers, J. Mater. Sci. 42 (2007) 2982–2996, https://doi.org/10.1007/s10853-, 006-0568- 8[35] B.I. Djon Li Ndjock, Antoine Elimbi, Martin Cyr, Rational utilization of volcanic ashes based on factors affecting their alkaline activation, J. Non-Cryst. Solids 463 (2017) 31–39, https://doi.org/10.1016/j.jnoncrysol.2017.02.024.[36] Matthias Thommes, Physical adsorption characterization of nanoporous materials, Chem. Ing. Tech. (7) (2010).[37] Joanna Kyziol-Komosinska, et al., Sorption of acid green 16 from aqueous solution onto low-moor peat and smectite clay co-occurring in lignite of belchatow mine field, Annu. Set. Environ. Prot. 17 (January) (2015) 165–187.[38] M. Salman Naeem, et al., Adsorption kinetics of acid red on activated carbon web prepared from acrylic fibrous waste, Fibers Polym. 19 (1) (2018) 71–81.[39] Sellaoui, et al., A study of single and quaternary adsorption of Cu2+, Co2+, Ni2+ and Ag+ on sludge modified by alkaline fusion, Chem. Eng. J. 433 (October 2021) (2022).[40] Xianghua Song, et al., Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions, J. Hazard. Mater. 194 (2011) 162–168, https:// doi.org/10.1016/j.jhazmat.2011.07.076.[41] E.D. Freitas, A.C.R. Carmo, A.F. Almeida Neto, M.G.A. Vieira, Binary adsorption of silver and copper on verde-lodo bentonite: kinetic and equilibrium study, Appl. Clay Sci. 137 (2017) 69–76, https://doi.org/10.1016/j.clay.2016.12.016.[42] Choong Jeon, Adsorption of silver ions from industrial wastewater using waste coffee grounds, Korean J. Chem. Eng. 34 (2) (2017) 384–391.[43] Enrique C. Peres, et al., Synthesis of geopolymers from fly and bottom ashes of a thermoelectrical power plant for metallic ions adsorption, Environ. Sci. Pollut. Res. 29 (2) (2022) 2699–2706.[44] Peng Liu, et al., Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents, J. Hazard. Mater. 294 (2015) 177–185.[45] Md. Murshed Bhuyan, Hirotaka Okabe, Yoshiki Hidaka, Kazuhiro Hara, Pectin-[(3- acrylamidopropyl) trimethylammonium chloride-co-acrylic acid] hydrogel prepared by gamma radiation and selectively silver (Ag) metal adsorption, J. Appl. Polym. Sci. 135 (8) (2018) 1–14[46] C.E. Duru, , 2019, Adsorption of Copper Ions from Aqueous Solution onto Natural and Pretreated Maize Husk: Adsorption Efficiency and Kinetic Studies 44 (5798–803).[47] Katarzyna Szewczuk-Karpisz, et al., Simultaneous adsorption of Cu(II) ions and poly(acrylic acid) on the hybrid carbon-mineral nanocomposites with metallic elements, J. Hazard. Mater. 412 (January) (2021).[48] Gabriel Andr´e Tochetto, et al., Kinetic modeling of the adsorption and desorption of metallic ions present in effluents using the biosorbent obtained from syagrus romanzoffiana, Environ. Monit. Assess. 195 (7) (2023), https://doi.org/10.1007/ s10661-023-11459-4.[49] Haluk Aydin, G.ülay Baysal, Adsorption of acid dyes in aqueous solutions by shells of bittim (pistacia khinjuk stocks), Desalination 196 (1–3) (2006) 248–259.[50] Ayman A. Ali, Sayed A. Shama, Alaa S. Amin, Sahar R. EL-Sayed, Synthesis and characterization of ZrO2/CeO2 nanocomposites for efficient removal of acid green 1 dye from aqueous solution, Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. 269 (November 2020) (2021) 115167, https://doi.org/10.1016/j. mseb.2021.115167.[51] Navid Masoudian, Maryam Rajabi, Mehrorang Ghaedi, Alireza Asghari, Highly efficient adsorption of naphthol green B and phenol red dye by combination of ultrasound wave and copper-doped zinc sulfide nanoparticles loaded on pistachionut shell, Appl. Organomet. Chem. 32 (8) (2018) 1–13.[52] M. Mohamad, Bishnu Prasad, Chemical design of smart chitosan / polypyrrole / magnetite nanocomposite toward efficient water treatment, Phys. Chem. Chem. Phys. (2014)[53] Suyog N. Jain, Parag R. Gogate, Efficient removal of acid green 25 dye from wastewater using activated prunus dulcis as biosorbent: batch and column studies, J. Environ. Manag. 210 (2018) 226–238, https://doi.org/10.1016/j. jenvman.2018.01.008.[54] Shoomaila Latif, Rabia Rehman, Muhammad Imran, Shahid Iqbal, Biosorptive decontamination of acid red-87 dye from wastewater by citrus limonum peels: ecofriendly approach, Pak. J. Anal. Environ. Chem. 19 (1) (2018) 44–52[55] V. Gomez, ´ M.S. Larrechi, M.P. Callao, Kinetic and adsorption study of acid dye removal using activated carbon, Chemosphere 69 (7) (2007) 1151–1158.[56] Qian Wang, et al., Adsorption of azo dye acid red 73 onto rice wine lees: adsorption kinetics and isotherms, Adv. Mater. Sci. Eng. 2020 (2020).[57] Z. Xing, et al., Adsorption mechanism of acid red 73 onto magnetic nanoparticles Fe3O4 from aqueous phase, Acta Sci. Circumst. 4 (2014) 2246–2255.[58] W. Jia, C. Xiao-Ting, W. Hu, et al., Adsorption kinetics research on chitosan powder obrilliant crocein, Contemp. Chem. Res. 4 (2019) 184–185.111412AdsorbentAdsorption processAlkaline fusion methodMechanismMetal ionsVolcanic rock powderPublicationORIGINALFacile synthesis of a novel, efficient, reusable inorganic adsorbent from volcanic rock powder wastes and its application for the removal of dyes and metals from water.pdfFacile synthesis of a novel, efficient, reusable inorganic adsorbent from volcanic rock powder wastes and its application for the removal of dyes and metals from water.pdfapplication/pdf5742218https://repositorio.cuc.edu.co/bitstreams/8ef3e80e-1e1c-4840-8d4d-e879f03c9c40/download4d852fb1ca02da66aef30efca5975f89MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/f2d19ca9-4e20-4061-ad7e-4b56608ea335/download73a5432e0b76442b22b026844140d683MD52TEXTFacile synthesis of a novel, efficient, reusable inorganic adsorbent from volcanic rock powder wastes and its application for the removal of dyes and metals from water.pdf.txtFacile synthesis of a novel, efficient, reusable inorganic adsorbent from volcanic rock powder wastes and its application for the removal of dyes and metals from water.pdf.txtExtracted texttext/plain56494https://repositorio.cuc.edu.co/bitstreams/51ac0606-fd0b-4d8b-b12c-3d7a23e347e1/downloadafd5cfe9401038ff3dcd43bcbb71dd83MD53THUMBNAILFacile synthesis of a novel, efficient, reusable inorganic adsorbent from volcanic rock powder wastes and its application for the removal of dyes and metals from water.pdf.jpgFacile synthesis of a novel, efficient, reusable inorganic adsorbent from volcanic rock powder wastes and its application for the removal of dyes and metals from water.pdf.jpgGenerated Thumbnailimage/jpeg14773https://repositorio.cuc.edu.co/bitstreams/2fc6a5ed-8189-4021-b99d-50a0a2f2ef96/download7475eee41467a28b4a4db5b62e9d36e2MD5411323/13823oai:repositorio.cuc.edu.co:11323/138232024-11-26 04:00:37.282https://creativecommons.org/licenses/by-nc-nd/4.0/© 2024 Elsevier Ltd.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |