Assembly of classifiers to determine the academic profile of students

The assembly methods, or combination of models, arise with the purpose of improving the accuracy of predictions. An assembly contains a number of apprentices (base models) which, when of the same type are called homogeneous and if of different, heterogeneous. The characteristic is that these apprent...

Full description

Autores:
Silva, Jesus
Rojas Plasencia, Karina Milagros
Senior Naveda, Alexa
Barrios, Rosio
Vargas Mercado, Carlos
Medina, Claudia
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7790
Acceso en línea:
https://hdl.handle.net/11323/7790
https://doi.org/10.1016/j.procs.2020.03.102
https://repositorio.cuc.edu.co/
Palabra clave:
Assembly of classifiers
decision trees
artificial neural network
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_dfa627e60d7bc157c61ebf9b3e1fefea
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7790
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Assembly of classifiers to determine the academic profile of students
title Assembly of classifiers to determine the academic profile of students
spellingShingle Assembly of classifiers to determine the academic profile of students
Assembly of classifiers
decision trees
artificial neural network
title_short Assembly of classifiers to determine the academic profile of students
title_full Assembly of classifiers to determine the academic profile of students
title_fullStr Assembly of classifiers to determine the academic profile of students
title_full_unstemmed Assembly of classifiers to determine the academic profile of students
title_sort Assembly of classifiers to determine the academic profile of students
dc.creator.fl_str_mv Silva, Jesus
Rojas Plasencia, Karina Milagros
Senior Naveda, Alexa
Barrios, Rosio
Vargas Mercado, Carlos
Medina, Claudia
dc.contributor.author.spa.fl_str_mv Silva, Jesus
Rojas Plasencia, Karina Milagros
Senior Naveda, Alexa
Barrios, Rosio
Vargas Mercado, Carlos
Medina, Claudia
dc.subject.spa.fl_str_mv Assembly of classifiers
decision trees
artificial neural network
topic Assembly of classifiers
decision trees
artificial neural network
description The assembly methods, or combination of models, arise with the purpose of improving the accuracy of predictions. An assembly contains a number of apprentices (base models) which, when of the same type are called homogeneous and if of different, heterogeneous. The characteristic is that these apprentices do not perform well. The assembly is generated using another algorithm that combines the apprentices, examples of which are the majority vote, the decision table and the neural networks [1]. This article proposes the use of an assembly of classifiers to determine the academic profile of the student, based on the student’s overall average and data related to educational factors.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-01-28T20:00:37Z
dc.date.available.none.fl_str_mv 2021-01-28T20:00:37Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7790
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.procs.2020.03.102
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7790
https://doi.org/10.1016/j.procs.2020.03.102
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1 1Zhi-Hua Z. Ensemble methods: Foundations and Algorithms, CRC Press, Taylor & Francis Group (2012)
2 Fayyad U., Piatetsky-Shapiro G., Smyth P. From Data Mining to Knowledge Discovery in Databases AI Magazine, 17 (3) (1996), pp. 37-54
3 Witten I., Frank E. Data Mining: Practical Machine Learning Tools and Techniques (2nd ed.), Morgan Kaufmann Publishers (2005)
4 WEKA 3: Data Mining Software in Java Homepage. https://www.cs.waikato.ac.nz/ ml/weka/ (2016)
5 Singh Y., Chanuhan A. Neural Networks in Data Mining Journal of Theorical & Applied Information Technology, 5 (1) (2009), pp. 37-42
6 Orallo J., Ramírez M., Ferri C. Introducción a la Minería de Datos, Pearson Education (2008)
7 Khasawneh K., Ozsoy M., Ghazaleh N., Ponomarev D. EnsembleHMD: Accurate Hardware Malware Detectors with Specialized Ensemble Classifiers IEEE Transactions on Dependable and Secure Computing, pp., 10 (2018)
8 Yan, Y., Yang, H., Wang, H.: Two simple and effective ensemble classifiers for twitter sen- timent analysis. Computing Conference 2017, pp. 1386–1393 (2017)
9 Vogado, L., Veras, R., Andrade, A., Araujo, F., Silva, R., Aires, K.: Diagnosing Leukemia in Blood Smear Images Using an Ensemble of Classifiers and Pre-Trained Convolutional Neural Networks. 30th (SIBGRAPI) Conference on Graphics, Patterns and Images, pp. 367– 373, Niteroi (2017)
10 Hestenes M., Stiefel E. Methods of Conjugate Gradients for Solving Linear Systems Journal of Research of the National Bureau of Standards, 49 (6) (1952), pp. 409-436
11 C. Sotelo-Figueroa, M.A. Castillo, Melin P.O., Pedrycz W., Kacprzyk J. Generic Memetic Algorithm for Course Timetabling ITC2007 Recent Advances on Hybrid Approaches for Designing Intelligent Systems, Springer (2014), pp. 481-492
12 Aladag, C., & Hocaoglu, G.: A tabu search algorithm to solve a course timetabling problem. Hacettepe journal of mathematics and statistics, pp. 53–64 (2007)
13 Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. Caltech Concurrent Computation Program (report 826) (1989)
14 Frausto-Solís J., Alonso-Pecina F., Mora-Vargas J. An efficient simulated annealing algorithm for feasible solutions of course timetabling, Springer (2008), pp. 675-685
15 Joudaki M., Imani M., Mazhari N. Using improved Memetic algorithm and local search to solve University Course Timetabling Problem (UCTTP), Islamic Azad University, Doroud, Iran (2010)
16 Viloria Amelec, Lezama Omar Bonerge Pineda Improvements for Determining the Number of Clusters in k-Means for Innovation Databases in SMEs Procedia Computer Science, 151 (2019), pp. 1201-1206
17 Kamatkar, S.J., Kamble, A., Viloria, A., Hernández-Fernández, L., & Cali, E.G. (2018, June). Database performance tuning and query optimization. In International Conference on Data Mining and Big Data (pp. 3-11). Springer, Cham.
18 Viloria Amelec, et al. Integration of Data Mining Techniques to PostgreSQL Database Manager System Procedia Computer Science, 155 (2019), pp. 575-580
19 Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). Tan Y., Shi Y., Tang Q. (Eds.), Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943, Springer, Cham (2018)
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Procedia Computer Science
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1877050920305408#!
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/f7568f06-10ef-452b-b53c-a92eca3a91f6/download
https://repositorio.cuc.edu.co/bitstreams/611f8b33-d082-4edb-ae18-89fbd07824d3/download
https://repositorio.cuc.edu.co/bitstreams/a1c51890-b739-448b-931c-fe6391e87184/download
https://repositorio.cuc.edu.co/bitstreams/56e158a3-36c0-455f-969a-933279c3773e/download
https://repositorio.cuc.edu.co/bitstreams/33c5bb9a-4a53-4e4f-b000-f9bdce0128ca/download
bitstream.checksum.fl_str_mv e30e9215131d99561d40d6b0abbe9bad
5bf22d6567caacd85f57ffb656fa27a4
4460e5956bc1d1639be9ae6146a50347
e0ab0e5346225fb9745d5c19da2470fa
6e89dd90e0bdda00e83f6e2c6661e625
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760806015008768
spelling Silva, JesusRojas Plasencia, Karina MilagrosSenior Naveda, AlexaBarrios, RosioVargas Mercado, CarlosMedina, Claudia2021-01-28T20:00:37Z2021-01-28T20:00:37Z2020https://hdl.handle.net/11323/7790https://doi.org/10.1016/j.procs.2020.03.102Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The assembly methods, or combination of models, arise with the purpose of improving the accuracy of predictions. An assembly contains a number of apprentices (base models) which, when of the same type are called homogeneous and if of different, heterogeneous. The characteristic is that these apprentices do not perform well. The assembly is generated using another algorithm that combines the apprentices, examples of which are the majority vote, the decision table and the neural networks [1]. This article proposes the use of an assembly of classifiers to determine the academic profile of the student, based on the student’s overall average and data related to educational factors.Silva, JesusRojas Plasencia, Karina Milagros-will be generated-orcid-0000-0001-9324-9478-600Senior Naveda, AlexaBarrios, RosioVargas Mercado, Carlos-will be generated-orcid-0000-0002-5436-0568-600Medina, Claudiaapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Procedia Computer Sciencehttps://www.sciencedirect.com/science/article/pii/S1877050920305408#!Assembly of classifiersdecision treesartificial neural networkAssembly of classifiers to determine the academic profile of studentsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1 1Zhi-Hua Z. Ensemble methods: Foundations and Algorithms, CRC Press, Taylor & Francis Group (2012)2 Fayyad U., Piatetsky-Shapiro G., Smyth P. From Data Mining to Knowledge Discovery in Databases AI Magazine, 17 (3) (1996), pp. 37-543 Witten I., Frank E. Data Mining: Practical Machine Learning Tools and Techniques (2nd ed.), Morgan Kaufmann Publishers (2005)4 WEKA 3: Data Mining Software in Java Homepage. https://www.cs.waikato.ac.nz/ ml/weka/ (2016)5 Singh Y., Chanuhan A. Neural Networks in Data Mining Journal of Theorical & Applied Information Technology, 5 (1) (2009), pp. 37-426 Orallo J., Ramírez M., Ferri C. Introducción a la Minería de Datos, Pearson Education (2008)7 Khasawneh K., Ozsoy M., Ghazaleh N., Ponomarev D. EnsembleHMD: Accurate Hardware Malware Detectors with Specialized Ensemble Classifiers IEEE Transactions on Dependable and Secure Computing, pp., 10 (2018)8 Yan, Y., Yang, H., Wang, H.: Two simple and effective ensemble classifiers for twitter sen- timent analysis. Computing Conference 2017, pp. 1386–1393 (2017)9 Vogado, L., Veras, R., Andrade, A., Araujo, F., Silva, R., Aires, K.: Diagnosing Leukemia in Blood Smear Images Using an Ensemble of Classifiers and Pre-Trained Convolutional Neural Networks. 30th (SIBGRAPI) Conference on Graphics, Patterns and Images, pp. 367– 373, Niteroi (2017)10 Hestenes M., Stiefel E. Methods of Conjugate Gradients for Solving Linear Systems Journal of Research of the National Bureau of Standards, 49 (6) (1952), pp. 409-43611 C. Sotelo-Figueroa, M.A. Castillo, Melin P.O., Pedrycz W., Kacprzyk J. Generic Memetic Algorithm for Course Timetabling ITC2007 Recent Advances on Hybrid Approaches for Designing Intelligent Systems, Springer (2014), pp. 481-49212 Aladag, C., & Hocaoglu, G.: A tabu search algorithm to solve a course timetabling problem. Hacettepe journal of mathematics and statistics, pp. 53–64 (2007)13 Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. Caltech Concurrent Computation Program (report 826) (1989)14 Frausto-Solís J., Alonso-Pecina F., Mora-Vargas J. An efficient simulated annealing algorithm for feasible solutions of course timetabling, Springer (2008), pp. 675-68515 Joudaki M., Imani M., Mazhari N. Using improved Memetic algorithm and local search to solve University Course Timetabling Problem (UCTTP), Islamic Azad University, Doroud, Iran (2010)16 Viloria Amelec, Lezama Omar Bonerge Pineda Improvements for Determining the Number of Clusters in k-Means for Innovation Databases in SMEs Procedia Computer Science, 151 (2019), pp. 1201-120617 Kamatkar, S.J., Kamble, A., Viloria, A., Hernández-Fernández, L., & Cali, E.G. (2018, June). Database performance tuning and query optimization. In International Conference on Data Mining and Big Data (pp. 3-11). Springer, Cham.18 Viloria Amelec, et al. Integration of Data Mining Techniques to PostgreSQL Database Manager System Procedia Computer Science, 155 (2019), pp. 575-58019 Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). Tan Y., Shi Y., Tang Q. (Eds.), Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943, Springer, Cham (2018)PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/f7568f06-10ef-452b-b53c-a92eca3a91f6/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALAssembly of classifiers to determine the academic profile of students.pdfAssembly of classifiers to determine the academic profile of students.pdfapplication/pdf100551https://repositorio.cuc.edu.co/bitstreams/611f8b33-d082-4edb-ae18-89fbd07824d3/download5bf22d6567caacd85f57ffb656fa27a4MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/a1c51890-b739-448b-931c-fe6391e87184/download4460e5956bc1d1639be9ae6146a50347MD52THUMBNAILAssembly of classifiers to determine the academic profile of students.pdf.jpgAssembly of classifiers to determine the academic profile of students.pdf.jpgimage/jpeg28113https://repositorio.cuc.edu.co/bitstreams/56e158a3-36c0-455f-969a-933279c3773e/downloade0ab0e5346225fb9745d5c19da2470faMD54TEXTAssembly of classifiers to determine the academic profile of students.pdf.txtAssembly of classifiers to determine the academic profile of students.pdf.txttext/plain1057https://repositorio.cuc.edu.co/bitstreams/33c5bb9a-4a53-4e4f-b000-f9bdce0128ca/download6e89dd90e0bdda00e83f6e2c6661e625MD5511323/7790oai:repositorio.cuc.edu.co:11323/77902024-09-17 12:47:10.231http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==