Assessment of time series models for mean discharge modeling and forecasting in a sub-basin of the paranaíba river, Brazil

Stochastic modeling to forecast hydrological variables under changing climatic conditions is essential for water resource management and adaptation planning. This study explores the applicability of stochastic models, specifically SARIMA and SARIMAX, to forecast monthly average river discharge in a...

Full description

Autores:
Melo Costa, Gabriela Emiliana de
Menezes Filho, Frederico Carlos M. de
Canales, Fausto A.
Fava, Maria Clara
Amorim Brandão, Abderraman R.
Pedrollo de Paes, Rafael
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13383
Acceso en línea:
https://hdl.handle.net/11323/13383
https://repositorio.cuc.edu.co/
Palabra clave:
SARIMA
SARIMAX
ARIMA
Streamflow forecast
Hydrological modeling
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_ded921425eb529df82bf5881351aa901
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13383
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Assessment of time series models for mean discharge modeling and forecasting in a sub-basin of the paranaíba river, Brazil
title Assessment of time series models for mean discharge modeling and forecasting in a sub-basin of the paranaíba river, Brazil
spellingShingle Assessment of time series models for mean discharge modeling and forecasting in a sub-basin of the paranaíba river, Brazil
SARIMA
SARIMAX
ARIMA
Streamflow forecast
Hydrological modeling
title_short Assessment of time series models for mean discharge modeling and forecasting in a sub-basin of the paranaíba river, Brazil
title_full Assessment of time series models for mean discharge modeling and forecasting in a sub-basin of the paranaíba river, Brazil
title_fullStr Assessment of time series models for mean discharge modeling and forecasting in a sub-basin of the paranaíba river, Brazil
title_full_unstemmed Assessment of time series models for mean discharge modeling and forecasting in a sub-basin of the paranaíba river, Brazil
title_sort Assessment of time series models for mean discharge modeling and forecasting in a sub-basin of the paranaíba river, Brazil
dc.creator.fl_str_mv Melo Costa, Gabriela Emiliana de
Menezes Filho, Frederico Carlos M. de
Canales, Fausto A.
Fava, Maria Clara
Amorim Brandão, Abderraman R.
Pedrollo de Paes, Rafael
dc.contributor.author.none.fl_str_mv Melo Costa, Gabriela Emiliana de
Menezes Filho, Frederico Carlos M. de
Canales, Fausto A.
Fava, Maria Clara
Amorim Brandão, Abderraman R.
Pedrollo de Paes, Rafael
dc.subject.proposal.eng.fl_str_mv SARIMA
SARIMAX
ARIMA
Streamflow forecast
Hydrological modeling
topic SARIMA
SARIMAX
ARIMA
Streamflow forecast
Hydrological modeling
description Stochastic modeling to forecast hydrological variables under changing climatic conditions is essential for water resource management and adaptation planning. This study explores the applicability of stochastic models, specifically SARIMA and SARIMAX, to forecast monthly average river discharge in a sub-basin of the Paranaíba River near Patos de Minas, MG, Brazil. The Paranaíba River is a vital water source for the Alto Paranaíba region, serving industrial supply, drinking water effluent dilution for urban communities, agriculture, fishing, and tourism. The study evaluates the performance of SARIMA and SARIMAX models in long-term discharge modeling and forecasting, demonstrating the SARIMAX model’s superior performance in various metrics, including the Nash–Sutcliffe coefficient (NSE), the root mean square error (RMSE), and the mean absolute percentage error (MAPE). The inclusion of precipitation as a regressor variable considerably improves the forecasting accuracy, and can be attributed to the multivariate structure of the SARIMAX model. While stochastic models like SARIMAX offer valuable decision-making tools for water resource management, the study underscores the significance of employing long-term time series encompassing flood and drought periods and including model uncertainty analysis to enhance the robustness of forecasts. In this study, the SARIMAX model provides a better fit for extreme values, overestimating peaks by around 11.6% and troughs by about 5.0%, compared with the SARIMA model, which tends to underestimate peaks by an average of 6.5% and overestimate troughs by approximately 76.0%. The findings contribute to the literature on water management strategies and mitigating risks associated with extreme hydrological events.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-11-08
dc.date.accessioned.none.fl_str_mv 2024-09-25T14:38:31Z
dc.date.available.none.fl_str_mv 2024-09-25T14:38:31Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Costa, G.E.d.M.e.; Menezes Filho, F.C.M.d.; Canales, F.A.; Fava, M.C.; Brandão, A.R.A.; de Paes, R.P. Assessment of Time Series Models for Mean Discharge Modeling and Forecasting in a Sub-Basin of the Paranaíba River, Brazil. Hydrology 2023, 10, 208. https://doi.org/ 10.3390/hydrology10110208
dc.identifier.issn.none.fl_str_mv 2306-5338
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13383
dc.identifier.doi.none.fl_str_mv 10.3390/hydrology10110208
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Costa, G.E.d.M.e.; Menezes Filho, F.C.M.d.; Canales, F.A.; Fava, M.C.; Brandão, A.R.A.; de Paes, R.P. Assessment of Time Series Models for Mean Discharge Modeling and Forecasting in a Sub-Basin of the Paranaíba River, Brazil. Hydrology 2023, 10, 208. https://doi.org/ 10.3390/hydrology10110208
2306-5338
10.3390/hydrology10110208
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13383
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Hydrology
dc.relation.references.none.fl_str_mv 1. Patel, S.S.; Ramachandran, P. A Comparison of Machine Learning Techniques for Modeling River Flow Time Series: The Case of Upper Cauvery River Basin. Water Resour. Manag. 2015, 29, 589–602. [CrossRef]
2. Ehteram, M.; Afan, H.A.; Dianatikhah, M.; Ahmed, A.N.; Ming Fai, C.; Hossain, M.S.; Allawi, M.F.; Elshafie, A. Assessing the Predictability of an Improved ANFIS Model for Monthly Streamflow Using Lagged Climate Indices as Predictors. Water 2019, 11, 1130. [CrossRef]
3. Höge, M.; Scheidegger, A.; Baity-Jesi, M.; Albert, C.; Fenicia, F. Improving Hydrologic Models for Predictions and Process Understanding Using Neural ODEs. Hydrol. Earth Syst. Sci. 2022, 26, 5085–5102. [CrossRef]
4. Tolentino, A.H.A.; Vieira, E.D.O.; Rezende, B.N.; Amaral, P.A.A.; Frazão, L.A. Soil loss in the São Lamberto river basin with use of temporary series of Landsat. Agrarian 2020, 13, 362–376. [CrossRef]
5. Khairuddin, N.; Aris, A.Z.; Elshafie, A.; Sheikhy Narany, T.; Ishak, M.Y.; Isa, N.M. Efficient Forecasting Model Technique for River Stream Flow in Tropical Environment. Urban Water J. 2019, 16, 183–192. [CrossRef]
6. Devi, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [CrossRef]
7. Pandi, D.; Kothandaraman, S.; Kuppusamy, M. Hydrological Models: A Review. Int. J. Hydrol. Sci. Technol. 2021, 12, 223. [CrossRef]
8. Wagena, M.B.; Goering, D.; Collick, A.S.; Bock, E.; Fuka, D.R.; Buda, A.; Easton, Z.M. Comparison of Short-Term Streamflow Forecasting Using Stochastic Time Series, Neural Networks, Process-Based, and Bayesian Models. Environ. Model. Softw. 2020, 126, 104669. [CrossRef]
9. Ng, K.W.; Huang, Y.F.; Koo, C.H.; Chong, K.L.; El-Shafie, A.; Najah Ahmed, A. A Review of Hybrid Deep Learning Applications for Streamflow Forecasting. J. Hydrol. 2023, 625, 130141. [CrossRef]
10. Jehanzaib, M.; Ajmal, M.; Achite, M.; Kim, T.-W. Comprehensive Review: Advancements in Rainfall-Runoff Modelling for Flood Mitigation. Climate 2022, 10, 147. [CrossRef]
11. Sharma, P.; Machiwal, D. Streamflow Forecasting. In Advances in Streamflow Forecasting. From Traditional to Modern Approaches; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–50, ISBN 978-0-12-820673-7
12. Kilinc, H.C.; Yurtsever, A. Short-Term Streamflow Forecasting Using Hybrid Deep Learning Model Based on Grey Wolf Algorithm for Hydrological Time Series. Sustainability 2022, 14, 3352. [CrossRef]
13. Naghettini, M. (Ed.) Fundamentals of Statistical Hydrology; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-43560-2.
14. Cibin, R.; Athira, P.; Sudheer, K.P.; Chaubey, I. Application of Distributed Hydrological Models for Predictions in Ungauged Basins: A Method to Quantify Predictive Uncertainty. Hydrol. Process. 2014, 28, 2033–2045. [CrossRef]
15. Vogel, R.M. Stochastic Watershed Models for Hydrologic Risk Management. Water Secur. 2017, 1, 28–35. [CrossRef]
16. Larsen, S.; Karaus, U.; Claret, C.; Sporka, F.; Hamerlík, L.; Tockner, K. Flooding and Hydrologic Connectivity Modulate Community Assembly in a Dynamic River-Floodplain Ecosystem. PLoS ONE 2019, 14, e0213227. [CrossRef] [PubMed]
17. Machiwal, D.; Jha, M.K. Hydrologic Time Series Analysis: Theory and Practice; Springer Netherlands: Dordrecht, The Netherlands, 2012; ISBN 978-94-007-1860-9.
18. Maçaira, P.M.; Tavares Thomé, A.M.; Cyrino Oliveira, F.L.; Carvalho Ferrer, A.L. Time Series Analysis with Explanatory Variables: A Systematic Literature Review. Environ. Model. Softw. 2018, 107, 199–209. [CrossRef]
19. Box, G.E.P.; Jenkins, G.M. Time Series Analysis, Forecasting and Control; Holden-Day: San Francisco, CA, USA, 1976.
20. Bayer, F.M.; Souza, A.M. Forecasting with Wavelets and Traditional Models: A Comparative. Rev. Bras. Biom. 2010, 28, 40–61.
21. Vagropoulos, S.I.; Chouliaras, G.I.; Kardakos, E.G.; Simoglou, C.K.; Bakirtzis, A.G. Comparison of SARIMAX, SARIMA, Modified SARIMA and ANN-Based Models for Short-Term PV Generation Forecasting. In Proceedings of the 2016 IEEE International Energy Conference and Exhibition, Leuven, Belgium, 4–8 April 2016; pp. 1–6. [CrossRef]
22. Adnan, R.M.; Yuan, X.; Kisi, O.; Yuan, Y.; Tayyab, M.; Lei, X. Application of Soft Computing Models in Streamflow Forecasting. Proc. Inst. Civ. Eng. Water Manag. 2019, 172, 123–134. [CrossRef]
23. Bleidorn, M.T.; Pinto, W.D.P.; Braum, E.S.; Lima, G.B.; Montebeller, C.A. Modelling and Prevision of Monthly Mean Flow of Jucu River, ES, Using SARIMA Model. IRRIGA 2019, 24, 320–335. [CrossRef]
24. Farjalla, V.F.; Pires, A.P.F.; Agostinho, A.A.; Amado, A.M.; Bozelli, R.L.; Dias, B.F.S.; Dib, V.; Faria, B.M.; Figueiredo, A.; Gomes, E.A.T.; et al. Turning Water Abundance into Sustainability in Brazil. Front. Environ. Sci. 2021, 9, 1–12. [CrossRef]
25. ANA—Agência Nacional de Águas e Saneamento Básico Conjuntura Dos Recursos Hídricos No Brasil. 2021. Available online: https://relatorio-conjuntura-ana-2021.webflow.io/ (accessed on 15 August 2022).
26. Gordy, M. Disaster Risk Reduction and the Global System; SpringerBriefs in Climate Studies; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-41666-3.
27. Intergovernmental Panel on Climate Change. Climate Change 2021—The Physical Science Basis; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: New York, NY, USA, 2023; ISBN 9781009157896.
28. Lyra, A.; Tavares, P.; Chou, S.C.; Sueiro, G.; Dereczynski, C.; Sondermann, M.; Silva, A.; Marengo, J.; Giarolla, A. Climate Change Projections over Three Metropolitan Regions in Southeast Brazil Using the Non-Hydrostatic Eta Regional Climate Model at 5-Km Resolution. Theor. Appl. Climatol. 2018, 132, 663–682. [CrossRef]
29. Chou, S.C.; Lyra, A.; Mourão, C.; Dereczynski, C.; Pilotto, I.; Gomes, J.; Bustamante, J.; Tavares, P.; Silva, A.; Rodrigues, D.; et al. Assessment of Climate Change over South America under RCP 4.5 and 8.5 Downscaling Scenarios. Am. J. Clim. Chang. 2014, 3, 512–527. [CrossRef]
30. Towner, J.; Cloke, H.L.; Lavado, W.; Santini, W.; Bazo, J.; Coughlan de Perez, E.; Stephens, E.M. Attribution of Amazon Floods to Modes of Climate Variability: A Review. Meteorol. Appl. 2020, 27, e1949. [CrossRef]
31. Souza, F.A.A.D.; Mendiondo, E.M.; Taffarello, D.; Guzmán-Arias, D.; Fava, M.C.; Abreu, F.; Freitas, C.C.; de Macedo, M.B.; Estrada, C.R.; do Lago, C.A. Socio-Hydrological Observatory for Water Security (SHOWS): Examples of Adaptation Strategies with Next Challenges from Brazilian Risk Areas. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA, 11–15 December 2017; Volume 2017, p. H13S-08.
32. Centro Nacional de Monitoramento e Alertas de Desastres Naturais. Anuário Da Sala de Situação Do CEMADEN, 2017; CEMADEN: São José dos Campos, Brazil, 2019.
33. Kassem, A.A.; Raheem, A.M.; Khidir, K.M. Daily Streamflow Prediction for Khazir River Basin Using ARIMA and ANN Models. Zanco J. Pure Appl. Sci. 2020, 32, 30–39. [CrossRef]
34. Sun, Y.; Niu, J.; Sivakumar, B. A Comparative Study of Models for Short-Term Streamflow Forecasting with Emphasis on Wavelet-Based Approach. Stoch. Environ. Res. Risk Assess. 2019, 33, 1875–1891. [CrossRef]
35. Danandeh Mehr, A.; Ghadimi, S.; Marttila, H.; Torabi Haghighi, A. A New Evolutionary Time Series Model for Streamflow Forecasting in Boreal Lake-River Systems. Theor. Appl. Climatol. 2022, 148, 255–268. [CrossRef]
36. Bayer, D.; Castro, N.; Bayer, F. Modeling and forecasting mean monthly streamflows using time series. Rev. Bras. Recur. Hídricos 2012, 17, 229–239. [CrossRef]
37. Chechi, L.; Sanches, F. de O. Analysis of a Series of Precipitation for Erechim (RS) and a Method of Possible Climate Prediction. Rev. Ambiência 2013, 9, 43–55. [CrossRef]
38. Pinto, W.D.P.; Lima, G.B.; Zanetti, J.B. Comparative Analysis of Models for Times to Series Modeling and Forecasting of Scheme of Average Monthly Streamflow of the Doce River, Colatina Espirito Santo, Brazil. Ciência Nat. 2015, 37, 1–11. [CrossRef]
39. Caixeta, L.T.; de Menezes Filho, F.C.M.; Fonseca, V.L.A. Modeling and forecasting mean monthly streamflows of Paranaiba River using SARIMA model. Rev. Ibero-Am. Ciências Ambient. 2021, 12, 255–267. [CrossRef]
40. da Silva, L.L.; Goulart, A.T.; de Melo, C.; de Oliveira, R.d.C.W. Microbiological, Chemical and Physical-Chemical Assessment of the Contamination in the Paranaíba River. Soc. Nat. 2006, 18, 45–62. [CrossRef]
41. ANA—Agência Nacional de Águas e Saneamento Básico HIDROWEB. Available online: https://www.snirh.gov.br/hidroweb/ apresentacao (accessed on 15 September 2022)
42. IBGE—Instituto Brasileiro de Geografia e Estatística Portal Cidades. Available online: https://www.ibge.gov.br/cidades-eestados/mg/patos-de-minas.html (accessed on 15 September 2023).
43. Mendonça, F.; Danni-Oliveira, I.M. Climatologia: Noções Básicas e Climas Do Brasil; Oficina de Textos: São Paulo, Brazil, 2007.
44. Martins, F.B.; Gonzaga, G.; Dos Santos, D.F.; Reboita, M.S. Climate classification of Köppen and Thornthwaite for Minas Gerais: Crrent climate and climate changes. Rev. Bras. Climatol. 2018, 14, 129–156. [CrossRef]
45. de Oliveira, N.M.; Ribeiro, K.L.N.; Pereira, S.G.; Vieira, S.M. Milk Quality Assessment of Properties in the City of Patos de Minas, MG. Rev. Multidiscip. 2020, 23, 279–301.
46. Caixeta, C.L.B.; Piccinato Junior, D. Territory, Urbanity and Sustainability: A Study about the Recovery of Springs in a Rural Community in Patos de Minas/MG. Rev. Arquitetura IMED 2021, 10, 48–62. [CrossRef]
47. Federação das Indústrias do Estado do Rio de Janeiro IFDM. Índice FIRJAN de Desenvolvimento Municipal: Consulta. Available online: https://www.firjan.com.br/ifdm/ (accessed on 15 September 2023).
48. Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 3rd ed.; OTexts: Melbourne, VIC, Australia, 2021; ISBN 978-0987507136.
49. Alharbi, F.R.; Csala, D. A Seasonal Autoregressive Integrated Moving Average with Exogenous Factors (SARIMAX) Forecasting Model-Based Time Series Approach. Inventions 2022, 7, 94. [CrossRef]
50. Fazla, A.; Aydin, M.E.; Kozat, S.S. Joint Optimization of Linear and Nonlinear Models for Sequential Regression. Digit. Signal Process. 2023, 132, 103802. [CrossRef]
51. Oikonomou, P.D.; Alzraiee, A.H.; Karavitis, C.A.; Waskom, R.M. A Novel Framework for Filling Data Gaps in Groundwater Level Observations. Adv. Water Resour. 2018, 119, 111–124. [CrossRef]51. Oikonomou, P.D.; Alzraiee, A.H.; Karavitis, C.A.; Waskom, R.M. A Novel Framework for Filling Data Gaps in Groundwater Level Observations. Adv. Water Resour. 2018, 119, 111–124. [CrossRef]
52. Hyndman, R.J. Discussion of “High-Dimensional Autocovariance Matrices and Optimal Linear Prediction”. Electron. J. Stat. 2015, 9, 792–796. [CrossRef]
53. Morettin, P.A. The Levinson Algorithm and Its Applications in Time Series Analysis. Int. Stat. Rev. 1984, 52, 83–92. [CrossRef]
54. Hyndman, R.; Athanasopoulos, G.; Bergmeir, C.; Caceres, G.; Chhay, L.; Kuroptev, K.; O’Hara-Wild, M.; Petropoulos, F.; Razbash, S.; Wang, E.; et al. CRAN—Package Forecast. Available online: https://cran.r-project.org/web/packages/forecast/ (accessed on 18 September 2022).
55. Chakrabarti, A.; Ghosh, J.K. AIC, BIC and Recent Advances in Model Selection. In Philosophy of Statistics; Bandyopadhyay, P.S., Forster, M.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 583–605.
56. Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [CrossRef]
57. Kim, S.; Kim, H. A New Metric of Absolute Percentage Error for Intermittent Demand Forecasts. Int. J. Forecast. 2016, 32, 669–679. [CrossRef]
58. Dazzi, S.; Vacondio, R.; Mignosa, P. Flood Stage Forecasting Using Machine-Learning Methods: A Case Study on the Parma River (Italy). Water 2021, 13, 1612. [CrossRef]
59. Pushpalatha, R.; Perrin, C.; Le Moine, N.; Andréassian, V. A Review of Efficiency Criteria Suitable for Evaluating Low-Flow Simulations. J. Hydrol. 2012, 420–421, 171–182. [CrossRef]
60. Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [CrossRef]
61. Legates, D.R.; McCabe, G.J. Evaluating the Use of “Goodness-of-fit” Measures in Hydrologic and Hydroclimatic Model Validation. Water Resour. Res. 1999, 35, 233–241. [CrossRef]
62. Harmel, R.D.; Smith, P.K. Consideration of Measurement Uncertainty in the Evaluation of Goodness-of-Fit in Hydrologic and Water Quality Modeling. J. Hydrol. 2007, 337, 326–336. [CrossRef]
63. Harmel, R.D.; Smith, P.K.; Migliaccio, K.W. Modifying Goodness-of-Fit Indicators to Incorporate Both Measurement and Model Uncertainty in Model Calibration and Validation. Trans. ASABE 2010, 53, 55–63. [CrossRef]
64. Pant, J.; Sharma, R.K.; Juyal, A.; Singh, D.; Pant, H.; Pant, P. A Machine-Learning Approach to Time Series Forecasting of Temperature. In Proceedings of the 6th International Conference on Electronics, Communication and Aerospace Technology, Coimbatore, India, 1–3 December 2022; pp. 1125–1129. [CrossRef]
65. Hyndman, R.J.; Khandakar, Y. Automatic Time Series Forecasting: The Forecast Package for R. J. Stat. Softw. 2008, 27, 1–22. [CrossRef]
66. Lee, J.; Cho, Y. National-Scale Electricity Peak Load Forecasting: Traditional, Machine Learning, or Hybrid Model? Energy 2022, 239, 122366. [CrossRef]
67. Jain, S.K.; Mani, P.; Jain, S.K.; Prakash, P.; Singh, V.P.; Tullos, D.; Kumar, S.; Agarwal, S.P.; Dimri, A.P. A Brief Review of Flood Forecasting Techniques and Their Applications. Int. J. River Basin Manag. 2018, 16, 329–344. [CrossRef]
68. Konishi, S.; Kitagawa, G. Information Criteria and Statistical Modeling; Springer Series in Statistics; Springer: New York, NY, USA, 2008; Volume 27, ISBN 978-0-387-71886-6.
69. Martínez-Acosta, L.; Medrano-Barboza, J.P.; López-Ramos, Á.; Remolina López, J.F.; López-Lambraño, Á.A. SARIMA Approach to Generating Synthetic Monthly Rainfall in the Sinú River Watershed in Colombia. Atmosphere 2020, 11, 602. [CrossRef]
70. Chollet, F.; Kalinowski, T.; Allaire, J.J. Deep Learning with R, 2nd ed.; Manning Publications: Shelter Island, NY, USA, 2022; Volume 3, ISBN 9781633439849.
71. Mosavi, A.; Ozturk, P.; Chau, K.W. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536. [CrossRef]
72. Alonso Brito, G.R.; Rivero Villaverde, A.; Lau Quan, A.; Ruíz Pérez, M.E. Comparison between SARIMA and Holt–Winters Models for Forecasting Monthly Streamflow in the Western Region of Cuba. SN Appl. Sci. 2021, 3, 671. [CrossRef]
73. Wang, F.; Huang, G.H.; Cheng, G.H.; Li, Y.P. Impacts of Climate Variations on Non-Stationarity of Streamflow over Canada. Environ. Res. 2021, 197, 111118. [CrossRef] [PubMed]
74. Sokolova, G.V.; Verkhoturov, A.L.; Korolev, S.P. Impact of Deforestation on Streamflow in the Amur River Basin. Geosciences 2019, 9, 262. [CrossRef]
75. Hingray, B.; Picouet, C.; Musy, A. Hydrology—A Science for Engineers; CRC Press: Boca Raton, FL, USA, 2015; ISBN 978-1-4665- 9060-1.
76. Danandeh Mehr, A.; Gandomi, A.H. MSGP-LASSO: An Improved Multi-Stage Genetic Programming Model for Streamflow Prediction. Inf. Sci. 2021, 561, 181–195. [CrossRef]
77. Meis, M.; Benjamín, M.; Rodriguez, D. Forecasting the Daily Variability Discharge in the Fluvial System of the Paraná River: An ODPC Hydrology Application. Hydrol. Sci. J. 2022, 67, 2121–2128. [CrossRef]
78. Harat, Z.A.; Asadi Zarch, M.A. Comparison of SARIMA and SARIMAX for Long-Term Drought Prediction. Desert Manag. 2022, 10, 1–16.
79. Narasimha Murthy, K.V.; Saravana, R.; Vijaya Kumar, K. Modeling and Forecasting Rainfall Patterns of Southwest Monsoons in North–East India as a SARIMA Process. Meteorol. Atmos. Phys. 2018, 130, 99–106. [CrossRef]
80. Menezes Filho, F.C.M. de Modeling and forecasting of monthly mean temperatures in Rio Paranaíba/MG using time series model. Rev. Ibero-Am. Ciências Ambient. 2020, 11, 251–261. [CrossRef]
81. Marengo, J.A.; Nobre, C.A.; Seluchi, M.E.; Cuartas, A.; Alves, L.M.; Mendiondo, E.M.; Obregón, G.; Sampaio, G. A Seca e a Crise Hídrica de 2014–2015 Em São Paulo. Rev. USP 2015, 106, 31–44. [CrossRef]
82. Kim, T.; Shin, J.-Y.; Kim, H.; Kim, S.; Heo, J.-H. The Use of Large-Scale Climate Indices in Monthly Reservoir Inflow Forecasting and Its Application on Time Series and Artificial Intelligence Models. Water 2019, 11, 374. [CrossRef]
83. Meis, M.; Llano, M.P.; Rodriguez, D. A Statistical Tool for a Hydrometeorological Forecast in the Lower La Plata Basin. Int. J. River Basin Manag. 2022, 21, 1–12. [CrossRef]
84. Li, C.; Cheng, X.; Li, N.; Du, X.; Yu, Q.; Kan, G. A Framework for Flood Risk Analysis and Benefit Assessment of Flood Control Measures in Urban Areas. Int. J. Environ. Res. Public Health 2016, 13, 787. [CrossRef] [PubMed]
85. Houspanossian, J.; Giménez, R.; Whitworth-Hulse, J.I.; Nosetto, M.D.; Tych, W.; Atkinson, P.M.; Rufino, M.C.; Jobbágy, E.G. Agricultural Expansion Raises Groundwater and Increases Flooding in the South American Plains. Science 2023, 380, 1344–1348. [CrossRef] [PubMed]
86. Wu, J.; Yin, J.; Hao, Y.; Liu, Y.; Fan, Y.; Huo, X.; Liu, Y.; Yeh, T.C.J. The Role of Anthropogenic Activities in Karst Spring Discharge Volatility. Hydrol. Process. 2015, 29, 2855–2866. [CrossRef]
87. Vega-Durán, J.; Escalante-Castro, B.; Canales, F.A.; Acuña, G.J.; Ka ´zmierczak, B. Evaluation of Areal Monthly Average Precipitation Estimates from MERRA2 and ERA5 Reanalysis in a Colombian Caribbean Basin. Atmosphere 2021, 12, 1430. [CrossRef]
88. Brêda, J.P.L.F.; Cauduro Dias de Paiva, R.; Siqueira, V.A.; Collischonn, W. Assessing Climate Change Impact on Flood Discharge in South America and the Influence of Its Main Drivers. J. Hydrol. 2023, 619, 129284. [CrossRef]
89. Verma, S.; Prasad, A.D.; Verma, M.K. Time Series Modelling and Forecasting of Mean Annual Rainfall Over MRP Complex Region Chhattisgarh Associated with Climate Variability. In Recent Advances in Sustainable Environment—Select Proceedings of RAiSE 2022; Reddy, K.R., Kalia, S., Tangellapalli, S., Prakash, D., Eds.; Springer Nature: Singapore, 2023; pp. 51–67, ISBN 9789811655463.
90. Pacheco, F.A.L.; do Valle Junior, R.F.; de Melo Silva, M.M.A.P.; Pissarra, T.C.T.; Carvalho de Melo, M.; Valera, C.A.; Sanches Fernandes, L.F. Prognosis of Metal Concentrations in Sediments and Water of Paraopeba River Following the Collapse of B1 Tailings Dam in Brumadinho (Minas Gerais, Brazil). Sci. Total Environ. 2022, 809, 151157. [CrossRef]
dc.relation.citationendpage.none.fl_str_mv 20
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationissue.none.fl_str_mv 11
dc.relation.citationvolume.none.fl_str_mv 10
dc.rights.none.fl_str_mv © Copyright 2023 Elsevier B.V., All rights reserved.
dc.rights.license.none.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© Copyright 2023 Elsevier B.V., All rights reserved.
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 20 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Brazil
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.publisher.place.none.fl_str_mv Switzerland
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.source.none.fl_str_mv https://www.mdpi.com/2306-5338/10/11/208
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/1a75cef9-f775-4f4e-8c5a-29364c6849b7/download
https://repositorio.cuc.edu.co/bitstreams/fd4728a2-39d9-4fae-ab73-d833b5991926/download
https://repositorio.cuc.edu.co/bitstreams/47414907-bff2-4f25-b4f3-48e0c95eb9ca/download
https://repositorio.cuc.edu.co/bitstreams/d400bd1a-c7a1-485b-8025-c8f824e77e0f/download
bitstream.checksum.fl_str_mv 895db0375db8d4222794b0407bb3a226
73a5432e0b76442b22b026844140d683
4403df9b51a70e3ec50ddf06c65f1a3a
0d0f7ffbcc875142ee22cfcf6f18a17c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760826620575744
spelling Atribución 4.0 Internacional (CC BY 4.0)© Copyright 2023 Elsevier B.V., All rights reserved.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Melo Costa, Gabriela Emiliana deMenezes Filho, Frederico Carlos M. deCanales, Fausto A.Fava, Maria ClaraAmorim Brandão, Abderraman R.Pedrollo de Paes, Rafael2024-09-25T14:38:31Z2024-09-25T14:38:31Z2023-11-08Costa, G.E.d.M.e.; Menezes Filho, F.C.M.d.; Canales, F.A.; Fava, M.C.; Brandão, A.R.A.; de Paes, R.P. Assessment of Time Series Models for Mean Discharge Modeling and Forecasting in a Sub-Basin of the Paranaíba River, Brazil. Hydrology 2023, 10, 208. https://doi.org/ 10.3390/hydrology101102082306-5338https://hdl.handle.net/11323/1338310.3390/hydrology10110208Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Stochastic modeling to forecast hydrological variables under changing climatic conditions is essential for water resource management and adaptation planning. This study explores the applicability of stochastic models, specifically SARIMA and SARIMAX, to forecast monthly average river discharge in a sub-basin of the Paranaíba River near Patos de Minas, MG, Brazil. The Paranaíba River is a vital water source for the Alto Paranaíba region, serving industrial supply, drinking water effluent dilution for urban communities, agriculture, fishing, and tourism. The study evaluates the performance of SARIMA and SARIMAX models in long-term discharge modeling and forecasting, demonstrating the SARIMAX model’s superior performance in various metrics, including the Nash–Sutcliffe coefficient (NSE), the root mean square error (RMSE), and the mean absolute percentage error (MAPE). The inclusion of precipitation as a regressor variable considerably improves the forecasting accuracy, and can be attributed to the multivariate structure of the SARIMAX model. While stochastic models like SARIMAX offer valuable decision-making tools for water resource management, the study underscores the significance of employing long-term time series encompassing flood and drought periods and including model uncertainty analysis to enhance the robustness of forecasts. In this study, the SARIMAX model provides a better fit for extreme values, overestimating peaks by around 11.6% and troughs by about 5.0%, compared with the SARIMA model, which tends to underestimate peaks by an average of 6.5% and overestimate troughs by approximately 76.0%. The findings contribute to the literature on water management strategies and mitigating risks associated with extreme hydrological events.20 páginasapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)Switzerlandhttps://www.mdpi.com/2306-5338/10/11/208Assessment of time series models for mean discharge modeling and forecasting in a sub-basin of the paranaíba river, BrazilArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85BrazilHydrology1. Patel, S.S.; Ramachandran, P. A Comparison of Machine Learning Techniques for Modeling River Flow Time Series: The Case of Upper Cauvery River Basin. Water Resour. Manag. 2015, 29, 589–602. [CrossRef]2. Ehteram, M.; Afan, H.A.; Dianatikhah, M.; Ahmed, A.N.; Ming Fai, C.; Hossain, M.S.; Allawi, M.F.; Elshafie, A. Assessing the Predictability of an Improved ANFIS Model for Monthly Streamflow Using Lagged Climate Indices as Predictors. Water 2019, 11, 1130. [CrossRef]3. Höge, M.; Scheidegger, A.; Baity-Jesi, M.; Albert, C.; Fenicia, F. Improving Hydrologic Models for Predictions and Process Understanding Using Neural ODEs. Hydrol. Earth Syst. Sci. 2022, 26, 5085–5102. [CrossRef]4. Tolentino, A.H.A.; Vieira, E.D.O.; Rezende, B.N.; Amaral, P.A.A.; Frazão, L.A. Soil loss in the São Lamberto river basin with use of temporary series of Landsat. Agrarian 2020, 13, 362–376. [CrossRef]5. Khairuddin, N.; Aris, A.Z.; Elshafie, A.; Sheikhy Narany, T.; Ishak, M.Y.; Isa, N.M. Efficient Forecasting Model Technique for River Stream Flow in Tropical Environment. Urban Water J. 2019, 16, 183–192. [CrossRef]6. Devi, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [CrossRef]7. Pandi, D.; Kothandaraman, S.; Kuppusamy, M. Hydrological Models: A Review. Int. J. Hydrol. Sci. Technol. 2021, 12, 223. [CrossRef]8. Wagena, M.B.; Goering, D.; Collick, A.S.; Bock, E.; Fuka, D.R.; Buda, A.; Easton, Z.M. Comparison of Short-Term Streamflow Forecasting Using Stochastic Time Series, Neural Networks, Process-Based, and Bayesian Models. Environ. Model. Softw. 2020, 126, 104669. [CrossRef]9. Ng, K.W.; Huang, Y.F.; Koo, C.H.; Chong, K.L.; El-Shafie, A.; Najah Ahmed, A. A Review of Hybrid Deep Learning Applications for Streamflow Forecasting. J. Hydrol. 2023, 625, 130141. [CrossRef]10. Jehanzaib, M.; Ajmal, M.; Achite, M.; Kim, T.-W. Comprehensive Review: Advancements in Rainfall-Runoff Modelling for Flood Mitigation. Climate 2022, 10, 147. [CrossRef]11. Sharma, P.; Machiwal, D. Streamflow Forecasting. In Advances in Streamflow Forecasting. From Traditional to Modern Approaches; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–50, ISBN 978-0-12-820673-712. Kilinc, H.C.; Yurtsever, A. Short-Term Streamflow Forecasting Using Hybrid Deep Learning Model Based on Grey Wolf Algorithm for Hydrological Time Series. Sustainability 2022, 14, 3352. [CrossRef]13. Naghettini, M. (Ed.) Fundamentals of Statistical Hydrology; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-43560-2.14. Cibin, R.; Athira, P.; Sudheer, K.P.; Chaubey, I. Application of Distributed Hydrological Models for Predictions in Ungauged Basins: A Method to Quantify Predictive Uncertainty. Hydrol. Process. 2014, 28, 2033–2045. [CrossRef]15. Vogel, R.M. Stochastic Watershed Models for Hydrologic Risk Management. Water Secur. 2017, 1, 28–35. [CrossRef]16. Larsen, S.; Karaus, U.; Claret, C.; Sporka, F.; Hamerlík, L.; Tockner, K. Flooding and Hydrologic Connectivity Modulate Community Assembly in a Dynamic River-Floodplain Ecosystem. PLoS ONE 2019, 14, e0213227. [CrossRef] [PubMed]17. Machiwal, D.; Jha, M.K. Hydrologic Time Series Analysis: Theory and Practice; Springer Netherlands: Dordrecht, The Netherlands, 2012; ISBN 978-94-007-1860-9.18. Maçaira, P.M.; Tavares Thomé, A.M.; Cyrino Oliveira, F.L.; Carvalho Ferrer, A.L. Time Series Analysis with Explanatory Variables: A Systematic Literature Review. Environ. Model. Softw. 2018, 107, 199–209. [CrossRef]19. Box, G.E.P.; Jenkins, G.M. Time Series Analysis, Forecasting and Control; Holden-Day: San Francisco, CA, USA, 1976.20. Bayer, F.M.; Souza, A.M. Forecasting with Wavelets and Traditional Models: A Comparative. Rev. Bras. Biom. 2010, 28, 40–61.21. Vagropoulos, S.I.; Chouliaras, G.I.; Kardakos, E.G.; Simoglou, C.K.; Bakirtzis, A.G. Comparison of SARIMAX, SARIMA, Modified SARIMA and ANN-Based Models for Short-Term PV Generation Forecasting. In Proceedings of the 2016 IEEE International Energy Conference and Exhibition, Leuven, Belgium, 4–8 April 2016; pp. 1–6. [CrossRef]22. Adnan, R.M.; Yuan, X.; Kisi, O.; Yuan, Y.; Tayyab, M.; Lei, X. Application of Soft Computing Models in Streamflow Forecasting. Proc. Inst. Civ. Eng. Water Manag. 2019, 172, 123–134. [CrossRef]23. Bleidorn, M.T.; Pinto, W.D.P.; Braum, E.S.; Lima, G.B.; Montebeller, C.A. Modelling and Prevision of Monthly Mean Flow of Jucu River, ES, Using SARIMA Model. IRRIGA 2019, 24, 320–335. [CrossRef]24. Farjalla, V.F.; Pires, A.P.F.; Agostinho, A.A.; Amado, A.M.; Bozelli, R.L.; Dias, B.F.S.; Dib, V.; Faria, B.M.; Figueiredo, A.; Gomes, E.A.T.; et al. Turning Water Abundance into Sustainability in Brazil. Front. Environ. Sci. 2021, 9, 1–12. [CrossRef]25. ANA—Agência Nacional de Águas e Saneamento Básico Conjuntura Dos Recursos Hídricos No Brasil. 2021. Available online: https://relatorio-conjuntura-ana-2021.webflow.io/ (accessed on 15 August 2022).26. Gordy, M. Disaster Risk Reduction and the Global System; SpringerBriefs in Climate Studies; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-41666-3.27. Intergovernmental Panel on Climate Change. Climate Change 2021—The Physical Science Basis; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: New York, NY, USA, 2023; ISBN 9781009157896.28. Lyra, A.; Tavares, P.; Chou, S.C.; Sueiro, G.; Dereczynski, C.; Sondermann, M.; Silva, A.; Marengo, J.; Giarolla, A. Climate Change Projections over Three Metropolitan Regions in Southeast Brazil Using the Non-Hydrostatic Eta Regional Climate Model at 5-Km Resolution. Theor. Appl. Climatol. 2018, 132, 663–682. [CrossRef]29. Chou, S.C.; Lyra, A.; Mourão, C.; Dereczynski, C.; Pilotto, I.; Gomes, J.; Bustamante, J.; Tavares, P.; Silva, A.; Rodrigues, D.; et al. Assessment of Climate Change over South America under RCP 4.5 and 8.5 Downscaling Scenarios. Am. J. Clim. Chang. 2014, 3, 512–527. [CrossRef]30. Towner, J.; Cloke, H.L.; Lavado, W.; Santini, W.; Bazo, J.; Coughlan de Perez, E.; Stephens, E.M. Attribution of Amazon Floods to Modes of Climate Variability: A Review. Meteorol. Appl. 2020, 27, e1949. [CrossRef]31. Souza, F.A.A.D.; Mendiondo, E.M.; Taffarello, D.; Guzmán-Arias, D.; Fava, M.C.; Abreu, F.; Freitas, C.C.; de Macedo, M.B.; Estrada, C.R.; do Lago, C.A. Socio-Hydrological Observatory for Water Security (SHOWS): Examples of Adaptation Strategies with Next Challenges from Brazilian Risk Areas. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA, 11–15 December 2017; Volume 2017, p. H13S-08.32. Centro Nacional de Monitoramento e Alertas de Desastres Naturais. Anuário Da Sala de Situação Do CEMADEN, 2017; CEMADEN: São José dos Campos, Brazil, 2019.33. Kassem, A.A.; Raheem, A.M.; Khidir, K.M. Daily Streamflow Prediction for Khazir River Basin Using ARIMA and ANN Models. Zanco J. Pure Appl. Sci. 2020, 32, 30–39. [CrossRef]34. Sun, Y.; Niu, J.; Sivakumar, B. A Comparative Study of Models for Short-Term Streamflow Forecasting with Emphasis on Wavelet-Based Approach. Stoch. Environ. Res. Risk Assess. 2019, 33, 1875–1891. [CrossRef]35. Danandeh Mehr, A.; Ghadimi, S.; Marttila, H.; Torabi Haghighi, A. A New Evolutionary Time Series Model for Streamflow Forecasting in Boreal Lake-River Systems. Theor. Appl. Climatol. 2022, 148, 255–268. [CrossRef]36. Bayer, D.; Castro, N.; Bayer, F. Modeling and forecasting mean monthly streamflows using time series. Rev. Bras. Recur. Hídricos 2012, 17, 229–239. [CrossRef]37. Chechi, L.; Sanches, F. de O. Analysis of a Series of Precipitation for Erechim (RS) and a Method of Possible Climate Prediction. Rev. Ambiência 2013, 9, 43–55. [CrossRef]38. Pinto, W.D.P.; Lima, G.B.; Zanetti, J.B. Comparative Analysis of Models for Times to Series Modeling and Forecasting of Scheme of Average Monthly Streamflow of the Doce River, Colatina Espirito Santo, Brazil. Ciência Nat. 2015, 37, 1–11. [CrossRef]39. Caixeta, L.T.; de Menezes Filho, F.C.M.; Fonseca, V.L.A. Modeling and forecasting mean monthly streamflows of Paranaiba River using SARIMA model. Rev. Ibero-Am. Ciências Ambient. 2021, 12, 255–267. [CrossRef]40. da Silva, L.L.; Goulart, A.T.; de Melo, C.; de Oliveira, R.d.C.W. Microbiological, Chemical and Physical-Chemical Assessment of the Contamination in the Paranaíba River. Soc. Nat. 2006, 18, 45–62. [CrossRef]41. ANA—Agência Nacional de Águas e Saneamento Básico HIDROWEB. Available online: https://www.snirh.gov.br/hidroweb/ apresentacao (accessed on 15 September 2022)42. IBGE—Instituto Brasileiro de Geografia e Estatística Portal Cidades. Available online: https://www.ibge.gov.br/cidades-eestados/mg/patos-de-minas.html (accessed on 15 September 2023).43. Mendonça, F.; Danni-Oliveira, I.M. Climatologia: Noções Básicas e Climas Do Brasil; Oficina de Textos: São Paulo, Brazil, 2007.44. Martins, F.B.; Gonzaga, G.; Dos Santos, D.F.; Reboita, M.S. Climate classification of Köppen and Thornthwaite for Minas Gerais: Crrent climate and climate changes. Rev. Bras. Climatol. 2018, 14, 129–156. [CrossRef]45. de Oliveira, N.M.; Ribeiro, K.L.N.; Pereira, S.G.; Vieira, S.M. Milk Quality Assessment of Properties in the City of Patos de Minas, MG. Rev. Multidiscip. 2020, 23, 279–301.46. Caixeta, C.L.B.; Piccinato Junior, D. Territory, Urbanity and Sustainability: A Study about the Recovery of Springs in a Rural Community in Patos de Minas/MG. Rev. Arquitetura IMED 2021, 10, 48–62. [CrossRef]47. Federação das Indústrias do Estado do Rio de Janeiro IFDM. Índice FIRJAN de Desenvolvimento Municipal: Consulta. Available online: https://www.firjan.com.br/ifdm/ (accessed on 15 September 2023).48. Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 3rd ed.; OTexts: Melbourne, VIC, Australia, 2021; ISBN 978-0987507136.49. Alharbi, F.R.; Csala, D. A Seasonal Autoregressive Integrated Moving Average with Exogenous Factors (SARIMAX) Forecasting Model-Based Time Series Approach. Inventions 2022, 7, 94. [CrossRef]50. Fazla, A.; Aydin, M.E.; Kozat, S.S. Joint Optimization of Linear and Nonlinear Models for Sequential Regression. Digit. Signal Process. 2023, 132, 103802. [CrossRef]51. Oikonomou, P.D.; Alzraiee, A.H.; Karavitis, C.A.; Waskom, R.M. A Novel Framework for Filling Data Gaps in Groundwater Level Observations. Adv. Water Resour. 2018, 119, 111–124. [CrossRef]51. Oikonomou, P.D.; Alzraiee, A.H.; Karavitis, C.A.; Waskom, R.M. A Novel Framework for Filling Data Gaps in Groundwater Level Observations. Adv. Water Resour. 2018, 119, 111–124. [CrossRef]52. Hyndman, R.J. Discussion of “High-Dimensional Autocovariance Matrices and Optimal Linear Prediction”. Electron. J. Stat. 2015, 9, 792–796. [CrossRef]53. Morettin, P.A. The Levinson Algorithm and Its Applications in Time Series Analysis. Int. Stat. Rev. 1984, 52, 83–92. [CrossRef]54. Hyndman, R.; Athanasopoulos, G.; Bergmeir, C.; Caceres, G.; Chhay, L.; Kuroptev, K.; O’Hara-Wild, M.; Petropoulos, F.; Razbash, S.; Wang, E.; et al. CRAN—Package Forecast. Available online: https://cran.r-project.org/web/packages/forecast/ (accessed on 18 September 2022).55. Chakrabarti, A.; Ghosh, J.K. AIC, BIC and Recent Advances in Model Selection. In Philosophy of Statistics; Bandyopadhyay, P.S., Forster, M.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 583–605.56. Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [CrossRef]57. Kim, S.; Kim, H. A New Metric of Absolute Percentage Error for Intermittent Demand Forecasts. Int. J. Forecast. 2016, 32, 669–679. [CrossRef]58. Dazzi, S.; Vacondio, R.; Mignosa, P. Flood Stage Forecasting Using Machine-Learning Methods: A Case Study on the Parma River (Italy). Water 2021, 13, 1612. [CrossRef]59. Pushpalatha, R.; Perrin, C.; Le Moine, N.; Andréassian, V. A Review of Efficiency Criteria Suitable for Evaluating Low-Flow Simulations. J. Hydrol. 2012, 420–421, 171–182. [CrossRef]60. Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [CrossRef]61. Legates, D.R.; McCabe, G.J. Evaluating the Use of “Goodness-of-fit” Measures in Hydrologic and Hydroclimatic Model Validation. Water Resour. Res. 1999, 35, 233–241. [CrossRef]62. Harmel, R.D.; Smith, P.K. Consideration of Measurement Uncertainty in the Evaluation of Goodness-of-Fit in Hydrologic and Water Quality Modeling. J. Hydrol. 2007, 337, 326–336. [CrossRef]63. Harmel, R.D.; Smith, P.K.; Migliaccio, K.W. Modifying Goodness-of-Fit Indicators to Incorporate Both Measurement and Model Uncertainty in Model Calibration and Validation. Trans. ASABE 2010, 53, 55–63. [CrossRef]64. Pant, J.; Sharma, R.K.; Juyal, A.; Singh, D.; Pant, H.; Pant, P. A Machine-Learning Approach to Time Series Forecasting of Temperature. In Proceedings of the 6th International Conference on Electronics, Communication and Aerospace Technology, Coimbatore, India, 1–3 December 2022; pp. 1125–1129. [CrossRef]65. Hyndman, R.J.; Khandakar, Y. Automatic Time Series Forecasting: The Forecast Package for R. J. Stat. Softw. 2008, 27, 1–22. [CrossRef]66. Lee, J.; Cho, Y. National-Scale Electricity Peak Load Forecasting: Traditional, Machine Learning, or Hybrid Model? Energy 2022, 239, 122366. [CrossRef]67. Jain, S.K.; Mani, P.; Jain, S.K.; Prakash, P.; Singh, V.P.; Tullos, D.; Kumar, S.; Agarwal, S.P.; Dimri, A.P. A Brief Review of Flood Forecasting Techniques and Their Applications. Int. J. River Basin Manag. 2018, 16, 329–344. [CrossRef]68. Konishi, S.; Kitagawa, G. Information Criteria and Statistical Modeling; Springer Series in Statistics; Springer: New York, NY, USA, 2008; Volume 27, ISBN 978-0-387-71886-6.69. Martínez-Acosta, L.; Medrano-Barboza, J.P.; López-Ramos, Á.; Remolina López, J.F.; López-Lambraño, Á.A. SARIMA Approach to Generating Synthetic Monthly Rainfall in the Sinú River Watershed in Colombia. Atmosphere 2020, 11, 602. [CrossRef]70. Chollet, F.; Kalinowski, T.; Allaire, J.J. Deep Learning with R, 2nd ed.; Manning Publications: Shelter Island, NY, USA, 2022; Volume 3, ISBN 9781633439849.71. Mosavi, A.; Ozturk, P.; Chau, K.W. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536. [CrossRef]72. Alonso Brito, G.R.; Rivero Villaverde, A.; Lau Quan, A.; Ruíz Pérez, M.E. Comparison between SARIMA and Holt–Winters Models for Forecasting Monthly Streamflow in the Western Region of Cuba. SN Appl. Sci. 2021, 3, 671. [CrossRef]73. Wang, F.; Huang, G.H.; Cheng, G.H.; Li, Y.P. Impacts of Climate Variations on Non-Stationarity of Streamflow over Canada. Environ. Res. 2021, 197, 111118. [CrossRef] [PubMed]74. Sokolova, G.V.; Verkhoturov, A.L.; Korolev, S.P. Impact of Deforestation on Streamflow in the Amur River Basin. Geosciences 2019, 9, 262. [CrossRef]75. Hingray, B.; Picouet, C.; Musy, A. Hydrology—A Science for Engineers; CRC Press: Boca Raton, FL, USA, 2015; ISBN 978-1-4665- 9060-1.76. Danandeh Mehr, A.; Gandomi, A.H. MSGP-LASSO: An Improved Multi-Stage Genetic Programming Model for Streamflow Prediction. Inf. Sci. 2021, 561, 181–195. [CrossRef]77. Meis, M.; Benjamín, M.; Rodriguez, D. Forecasting the Daily Variability Discharge in the Fluvial System of the Paraná River: An ODPC Hydrology Application. Hydrol. Sci. J. 2022, 67, 2121–2128. [CrossRef]78. Harat, Z.A.; Asadi Zarch, M.A. Comparison of SARIMA and SARIMAX for Long-Term Drought Prediction. Desert Manag. 2022, 10, 1–16.79. Narasimha Murthy, K.V.; Saravana, R.; Vijaya Kumar, K. Modeling and Forecasting Rainfall Patterns of Southwest Monsoons in North–East India as a SARIMA Process. Meteorol. Atmos. Phys. 2018, 130, 99–106. [CrossRef]80. Menezes Filho, F.C.M. de Modeling and forecasting of monthly mean temperatures in Rio Paranaíba/MG using time series model. Rev. Ibero-Am. Ciências Ambient. 2020, 11, 251–261. [CrossRef]81. Marengo, J.A.; Nobre, C.A.; Seluchi, M.E.; Cuartas, A.; Alves, L.M.; Mendiondo, E.M.; Obregón, G.; Sampaio, G. A Seca e a Crise Hídrica de 2014–2015 Em São Paulo. Rev. USP 2015, 106, 31–44. [CrossRef]82. Kim, T.; Shin, J.-Y.; Kim, H.; Kim, S.; Heo, J.-H. The Use of Large-Scale Climate Indices in Monthly Reservoir Inflow Forecasting and Its Application on Time Series and Artificial Intelligence Models. Water 2019, 11, 374. [CrossRef]83. Meis, M.; Llano, M.P.; Rodriguez, D. A Statistical Tool for a Hydrometeorological Forecast in the Lower La Plata Basin. Int. J. River Basin Manag. 2022, 21, 1–12. [CrossRef]84. Li, C.; Cheng, X.; Li, N.; Du, X.; Yu, Q.; Kan, G. A Framework for Flood Risk Analysis and Benefit Assessment of Flood Control Measures in Urban Areas. Int. J. Environ. Res. Public Health 2016, 13, 787. [CrossRef] [PubMed]85. Houspanossian, J.; Giménez, R.; Whitworth-Hulse, J.I.; Nosetto, M.D.; Tych, W.; Atkinson, P.M.; Rufino, M.C.; Jobbágy, E.G. Agricultural Expansion Raises Groundwater and Increases Flooding in the South American Plains. Science 2023, 380, 1344–1348. [CrossRef] [PubMed]86. Wu, J.; Yin, J.; Hao, Y.; Liu, Y.; Fan, Y.; Huo, X.; Liu, Y.; Yeh, T.C.J. The Role of Anthropogenic Activities in Karst Spring Discharge Volatility. Hydrol. Process. 2015, 29, 2855–2866. [CrossRef]87. Vega-Durán, J.; Escalante-Castro, B.; Canales, F.A.; Acuña, G.J.; Ka ´zmierczak, B. Evaluation of Areal Monthly Average Precipitation Estimates from MERRA2 and ERA5 Reanalysis in a Colombian Caribbean Basin. Atmosphere 2021, 12, 1430. [CrossRef]88. Brêda, J.P.L.F.; Cauduro Dias de Paiva, R.; Siqueira, V.A.; Collischonn, W. Assessing Climate Change Impact on Flood Discharge in South America and the Influence of Its Main Drivers. J. Hydrol. 2023, 619, 129284. [CrossRef]89. Verma, S.; Prasad, A.D.; Verma, M.K. Time Series Modelling and Forecasting of Mean Annual Rainfall Over MRP Complex Region Chhattisgarh Associated with Climate Variability. In Recent Advances in Sustainable Environment—Select Proceedings of RAiSE 2022; Reddy, K.R., Kalia, S., Tangellapalli, S., Prakash, D., Eds.; Springer Nature: Singapore, 2023; pp. 51–67, ISBN 9789811655463.90. Pacheco, F.A.L.; do Valle Junior, R.F.; de Melo Silva, M.M.A.P.; Pissarra, T.C.T.; Carvalho de Melo, M.; Valera, C.A.; Sanches Fernandes, L.F. Prognosis of Metal Concentrations in Sediments and Water of Paraopeba River Following the Collapse of B1 Tailings Dam in Brumadinho (Minas Gerais, Brazil). Sci. Total Environ. 2022, 809, 151157. [CrossRef]2011110SARIMASARIMAXARIMAStreamflow forecastHydrological modelingPublicationORIGINALAssessment of time series models for mean discharge modeling and forecasting in a sub-basin of the paranaíba river, Brazil.pdfAssessment of time series models for mean discharge modeling and forecasting in a sub-basin of the paranaíba river, Brazil.pdfapplication/pdf6417284https://repositorio.cuc.edu.co/bitstreams/1a75cef9-f775-4f4e-8c5a-29364c6849b7/download895db0375db8d4222794b0407bb3a226MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/fd4728a2-39d9-4fae-ab73-d833b5991926/download73a5432e0b76442b22b026844140d683MD52TEXTAssessment of time series models for mean discharge modeling and forecasting in a sub-basin of the paranaíba river, Brazil.pdf.txtAssessment of time series models for mean discharge modeling and forecasting in a sub-basin of the paranaíba river, Brazil.pdf.txtExtracted texttext/plain100165https://repositorio.cuc.edu.co/bitstreams/47414907-bff2-4f25-b4f3-48e0c95eb9ca/download4403df9b51a70e3ec50ddf06c65f1a3aMD53THUMBNAILAssessment of time series models for mean discharge modeling and forecasting in a sub-basin of the paranaíba river, Brazil.pdf.jpgAssessment of time series models for mean discharge modeling and forecasting in a sub-basin of the paranaíba river, Brazil.pdf.jpgGenerated Thumbnailimage/jpeg16220https://repositorio.cuc.edu.co/bitstreams/d400bd1a-c7a1-485b-8025-c8f824e77e0f/download0d0f7ffbcc875142ee22cfcf6f18a17cMD5411323/13383oai:repositorio.cuc.edu.co:11323/133832024-09-26 03:01:35.6https://creativecommons.org/licenses/by/4.0/© Copyright 2023 Elsevier B.V., All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K