Análisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela
Introducción: La panela es un producto derivado de la caña de azúcar. En su elaboración se utiliza una hornilla tradicional, diseñada especialmente para este propósito. Según estudios encontrados en la literatura, se ha identificado que la eficiencia térmica de las hornillas paneleras se estima en u...
- Autores:
-
Meneses Chacón, Edxon Stiven
Jaramillo-Ibarra, Julián Ernesto
Mas de les Valls, Elisabet
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/12217
- Palabra clave:
- CFD
turbulent flow
radiation heat transfer
industrial furnace
CFD
flujo turbulento
transferencia de calor por radiación
horno industrial
- Rights
- openAccess
- License
- INGE CUC - 2019
id |
RCUC2_de8ee0a2808e4a488ff1b08610090eb1 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/12217 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Análisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela |
dc.title.translated.eng.fl_str_mv |
Numerical analysis of the thermal and fluid dynamic behavior of the flue gases in a traditional furnace for panela production |
title |
Análisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela |
spellingShingle |
Análisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela CFD turbulent flow radiation heat transfer industrial furnace CFD flujo turbulento transferencia de calor por radiación horno industrial |
title_short |
Análisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela |
title_full |
Análisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela |
title_fullStr |
Análisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela |
title_full_unstemmed |
Análisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela |
title_sort |
Análisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela |
dc.creator.fl_str_mv |
Meneses Chacón, Edxon Stiven Jaramillo-Ibarra, Julián Ernesto Mas de les Valls, Elisabet |
dc.contributor.author.spa.fl_str_mv |
Meneses Chacón, Edxon Stiven Jaramillo-Ibarra, Julián Ernesto Mas de les Valls, Elisabet |
dc.subject.eng.fl_str_mv |
CFD turbulent flow radiation heat transfer industrial furnace |
topic |
CFD turbulent flow radiation heat transfer industrial furnace CFD flujo turbulento transferencia de calor por radiación horno industrial |
dc.subject.spa.fl_str_mv |
CFD flujo turbulento transferencia de calor por radiación horno industrial |
description |
Introducción: La panela es un producto derivado de la caña de azúcar. En su elaboración se utiliza una hornilla tradicional, diseñada especialmente para este propósito. Según estudios encontrados en la literatura, se ha identificado que la eficiencia térmica de las hornillas paneleras se estima en un 30% promedio. Objetivo: Esta investigación tiene como objetivo contribuir en la búsqueda de nuevas soluciones para el mejoramiento del nivel de eficiencia, modificando principalmente el ducto de humos. Metodología: El desarrollo de este estudio es el siguiente: primero, se realiza una investigación del efecto de la radiación y del espesor óptico en un horno simplificado. Posteriormente, se realiza una serie de simulaciones con modificaciones en el diseño del ducto de humos para un horno de tamaño real. Resultados: Los resultados mostraron que se debe considerar el efecto de la radiación. Aunque el espesor óptico sea bajo, tiene un impacto relevante en el proceso de transferencia de calor debido a las altas temperaturas en el horno. Un movimiento caótico de los gases implicó más calor transferido a las pailas, y se obtuvieron altos valores de Nusselt con la adición de nuevos elementos en el conducto. Conclusiones: El arreglo 1, proporciona los mejores resultados con un aumento de la eficiencia térmica y de Nusselt. No se encontraron diferencias significativas entre los modelos de radiación DOM y P-1. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-03-07 00:00:00 2024-04-09T20:15:15Z |
dc.date.available.none.fl_str_mv |
2019-03-07 00:00:00 2024-04-09T20:15:15Z |
dc.date.issued.none.fl_str_mv |
2019-03-07 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.eng.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0122-6517 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/12217 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.17981/ingecuc.15.1.2019.12 |
dc.identifier.doi.none.fl_str_mv |
10.17981/ingecuc.15.1.2019.12 |
dc.identifier.eissn.none.fl_str_mv |
2382-4700 |
identifier_str_mv |
0122-6517 10.17981/ingecuc.15.1.2019.12 2382-4700 |
url |
https://hdl.handle.net/11323/12217 https://doi.org/10.17981/ingecuc.15.1.2019.12 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Inge Cuc |
dc.relation.references.eng.fl_str_mv |
P. V. K. Jagannadha Rao, M. Das, and S. K. Das, “Changes in physical and thermo-physical properties of sugarcane, palmyra-palm and date-palm juices at different concentration of sugar,” J. Food Eng., vol. 90, no. 4, pp. 559–566, Feb. 2009. doi: https://doi.org/10.1016/j.jfoodeng.2008.07.024 N. Singh, D. Kumar, S. Raisuddin, and A. P. Sahu, “Genotoxic effects of arsenic: prevention by functional food-jaggery.,” Cancer Lett., vol. 268, no. 2, pp. 325–30, Sep. 2008. doi: https://doi.org/10.1016/j.canlet.2008.04.011 A. P. Sahu and B. N. Paul, “The role of dietary whole sugar-jaggery in prevention of respiratory toxicity of air toxics and in lung cancer,” Toxicol. Lett., vol. 95, Supplement 1, p. 154, Jul. 1998. doi: https://doi.org/10.1016/S0378-4274(98)80615-2 H. García, A. Toscana, N. Santana, and O. Insuasty, Guía tecnológica para el manejo integral del sistema productivo de caña panelera. Bogotá, Colombia: Ministerio de Agricultura y Desarrollo Rural, Corpoica, 2007. K. S. S. Rao, A. Sampathrajan, and S. A. Ramjani, “Efficiency of traditional jaggery making furnace,” Madras Agric. J., vol. 90, no. 3, pp. 184–185, Jan. 2003. Available: http://www.panelamonitor.org/media/docrepo/document/files/efficiency-of-traditional-jaggery-making-furnace.pdf V. R. Sardeshpande, D. J. Shendage, and I. R. Pillai, “Thermal performance evaluation of a four pan jaggery processing furnace for improvement in energy utilization,” Energy, vol. 35, no. 12, pp. 4740–4747, Dec. 2010. doi: https://doi.org/10.1016/j.energy.2010.09.018 K. González, Determinación de pérdidas energéticas y sus puntos críticos, en hornillas paneleras Ward-Cimpa en la hoya del río Suárez, Univ. Industrial de Santander, Colombia, 2010. P. Arya, U. K. Jaiswal, and S. Kumar, “Design based improvement in a three pan Jaggery making plant for rural India,” Int. J. Eng. Res., vol. 2, no.3, pp. 264-268, Jul. 2013. O. Mendieta, “Desarrollo de un modelo experimental para el coeficiente de transferencia de calor en el proceso de evaporación del jugo de caña de azúcar en un arreglo de película delgada,” Univ. Industrial de Santander, Bucaramanga, Colombia, 2012. G. B. Agalave, “Performance improvement of a single pan traditional Jaggery making furnace by using fins and baffle,” Int. J. Adv. Res. Sci. Eng., vol. 4, no. 4, pp. 85–89, Apr. 2015. Available: https://www.ijarse.com/images/fullpdf/1429353638_12_Research_Paper.pdf J. Osorio, H. Ciro, and A. Espinosa, “Evaluación Térmica y Validación de un Modelo por Métodos Computacionales para la Hornilla Panelera GP150,” Dyna, vol. 77, no. 162, pp. 237–247, Jun. 2010. Available: http://bdigital.unal.edu.co/5373/1/jairoosorio.2010.pdf D. Choudhury, Introduction to the renormalization group method and turbulence modeling, Lebanon NH, USA: Fluent Inc., 1973. R. La Madrid, D. Marcelo, E. M. Orbegoso, and R. Saavedra, “Heat transfer study on open heat exchangers used in jaggery production modules – Computational Fluid Dynamics simulation and field data assessment,” Energy Convers. Manag., vol. 125, pp. 107–120, Oct. 2016. Doi: https://doi.org/10.1016/j.enconman.2016.03.005 D. Wilcox, “Formulation of the k-omega Turbulence Model Revisited,” in 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 8–11, 2007. doi: https://doi.org/10.2514/6.2007-1408 M. F. Modest, “Chapter 23 - Inverse Radiative Heat Transfer,” in Radiative Heat Transfer, 3rd Ed., pp. 779-802, Cambrigde, MA, USA: Academic Press, 2013. doi: https://doi.org/10.1016/B978-0-12-386944-9.50023-6 G. Colomer, M. Costa, R. Cònsul, and A. Oliva, “Three-dimensional numerical simulation of convection and radiation in a differentially heated cavity using the discrete ordinates method,” Int. J. Heat Mass Transf., vol. 47, no. 2, pp. 257–269, Jan. 2004. doi: https://doi.org/10.1016/S0017-9310(03)00387-9 M. F. Modest, Radiative Heat Transfer, 3rd Ed., Cambrigde, MA, USA: Academic Press, 2013. Doi: https://doi.org/10.1016/B978-0-12-386944-9.50023-6 OpenCFD Ltd (ESI Group), “OpenFOAM.” . S. B. Pope, Turbulent flows. Cambridge, MA, USA: Cambridge Univ. Press, 2000. doi: https://doi.org/10.1017/CBO9780511840531 D. Wilcox, Turbulence modeling for CFD. La Cañada, CA, USA: DCW Industries, Inc., 1998. J. E. Jaramillo Ibarra, “Suitability of different RANS models in the description of turbulent forced convection flows: application to air curtains,” TDX (Tesis Dr. en Xarxa), Univ. Politècnica de Catalunya. Dept. de Màquines i Motors Tèrmics Barcelona, España, 2008. J. E. Jaramillo, C. D. Pérez-Segarra, A. Oliva, and K. Claramunt, “Analysis of different RANS models applied to turbulent forced convection,” Int. J. Heat Mass Transf., vol. 50, no. 19–20, pp. 3749–3766, Sept. 2007. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.015 D. Wilcox, Turbulence Modeling for CFD, 2nd Ed., Miami, FL, USA: Amazon.com: Books, 2006. P. Crnjac, L. Škerget, J. Ravnik, and M. Hriberšek, “Implementation of the Rosseland and the P1 Radiation Models in the System of Navier-Stokes Equations with the Boundary Element Method,” Int. J. Comput. Methods Exp. Meas., vol. 5, no. 3, pp. 348–358, Abr. 2017. doi: https://doi.org/10.2495/CMEM-V5-N3-348-358 Y. A. Çengel, Heat and mass transfer : a practical approach. India: McGraw-Hill Education, Pvt. Limited, 2007. G. Gordillo and H. García, Manual para el diseño y operación de hornillas paneleras. Convenio de investigación y divulgación para el mejoramiento de la industria panelera, Barbosa, Santander, Colombia: CIMPA, 1992. C. J. Greenshields, OpenFOAM User-Guide, no. 5, May. 2015. |
dc.relation.citationendpage.none.fl_str_mv |
141 |
dc.relation.citationstartpage.none.fl_str_mv |
133 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
15 |
dc.relation.bitstream.none.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/download/1986/2078 https://revistascientificas.cuc.edu.co/ingecuc/article/download/1986/2094 https://revistascientificas.cuc.edu.co/ingecuc/article/download/1986/2310 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 1 , Año 2019 : (Enero - Junio) |
dc.rights.eng.fl_str_mv |
INGE CUC - 2019 |
dc.rights.uri.eng.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.eng.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
INGE CUC - 2019 http://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.eng.fl_str_mv |
application/pdf text/html application/xml |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
dc.source.eng.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/1986 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/f7a2affa-d89e-4006-8310-00c81a9c6fa7/download |
bitstream.checksum.fl_str_mv |
877eb6cd6291a4eb6ce6600e2cb1a2a1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760811175051264 |
spelling |
Meneses Chacón, Edxon StivenJaramillo-Ibarra, Julián ErnestoMas de les Valls, Elisabet2019-03-07 00:00:002024-04-09T20:15:15Z2019-03-07 00:00:002024-04-09T20:15:15Z2019-03-070122-6517https://hdl.handle.net/11323/12217https://doi.org/10.17981/ingecuc.15.1.2019.1210.17981/ingecuc.15.1.2019.122382-4700Introducción: La panela es un producto derivado de la caña de azúcar. En su elaboración se utiliza una hornilla tradicional, diseñada especialmente para este propósito. Según estudios encontrados en la literatura, se ha identificado que la eficiencia térmica de las hornillas paneleras se estima en un 30% promedio. Objetivo: Esta investigación tiene como objetivo contribuir en la búsqueda de nuevas soluciones para el mejoramiento del nivel de eficiencia, modificando principalmente el ducto de humos. Metodología: El desarrollo de este estudio es el siguiente: primero, se realiza una investigación del efecto de la radiación y del espesor óptico en un horno simplificado. Posteriormente, se realiza una serie de simulaciones con modificaciones en el diseño del ducto de humos para un horno de tamaño real. Resultados: Los resultados mostraron que se debe considerar el efecto de la radiación. Aunque el espesor óptico sea bajo, tiene un impacto relevante en el proceso de transferencia de calor debido a las altas temperaturas en el horno. Un movimiento caótico de los gases implicó más calor transferido a las pailas, y se obtuvieron altos valores de Nusselt con la adición de nuevos elementos en el conducto. Conclusiones: El arreglo 1, proporciona los mejores resultados con un aumento de la eficiencia térmica y de Nusselt. No se encontraron diferencias significativas entre los modelos de radiación DOM y P-1.Introduction: Panela is a product derived from sugar cane that is prepared using a traditional burner designed especially for this purpose. According to studies found in the literature, it was identified that the thermal efficiency of panela burners is 30% on average. Objective: The objective of this investigation is to contribute to the search for new alternatives for the improvement of the low efficiency present on these systems, mainly affecting the flue gases duct. Methodology: The development of this study is as follows: first, a research of the radiation and optical thickness effect in a simplified furnace is carried out. Afterward, a series of simulations with modifications in the design of the flue gas duct for a real size furnace are analyzed. Results: The results showed that the radiation effect must be considered and, even though the optical thickness is low, it has a relevant impact in the heat transfer process due to the high temperatures in the furnace. A chaotic movement of the gases implied more heat transferred to the heaters and high values of Nusselt with the addition of new elements in the duct were obtained. Conclusions: Arrangement 1, provides the best results with a Nusselt and thermal efficiency increase. No significant differences between the DOM and the P-1 radiation were found.application/pdftext/htmlapplication/xmlengUniversidad de la CostaINGE CUC - 2019http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/1986CFDturbulent flowradiation heat transferindustrial furnaceCFDflujo turbulentotransferencia de calor por radiaciónhorno industrialAnálisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panelaNumerical analysis of the thermal and fluid dynamic behavior of the flue gases in a traditional furnace for panela productionArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CucP. V. K. Jagannadha Rao, M. Das, and S. K. Das, “Changes in physical and thermo-physical properties of sugarcane, palmyra-palm and date-palm juices at different concentration of sugar,” J. Food Eng., vol. 90, no. 4, pp. 559–566, Feb. 2009. doi: https://doi.org/10.1016/j.jfoodeng.2008.07.024N. Singh, D. Kumar, S. Raisuddin, and A. P. Sahu, “Genotoxic effects of arsenic: prevention by functional food-jaggery.,” Cancer Lett., vol. 268, no. 2, pp. 325–30, Sep. 2008. doi: https://doi.org/10.1016/j.canlet.2008.04.011A. P. Sahu and B. N. Paul, “The role of dietary whole sugar-jaggery in prevention of respiratory toxicity of air toxics and in lung cancer,” Toxicol. Lett., vol. 95, Supplement 1, p. 154, Jul. 1998. doi: https://doi.org/10.1016/S0378-4274(98)80615-2H. García, A. Toscana, N. Santana, and O. Insuasty, Guía tecnológica para el manejo integral del sistema productivo de caña panelera. Bogotá, Colombia: Ministerio de Agricultura y Desarrollo Rural, Corpoica, 2007.K. S. S. Rao, A. Sampathrajan, and S. A. Ramjani, “Efficiency of traditional jaggery making furnace,” Madras Agric. J., vol. 90, no. 3, pp. 184–185, Jan. 2003. Available: http://www.panelamonitor.org/media/docrepo/document/files/efficiency-of-traditional-jaggery-making-furnace.pdfV. R. Sardeshpande, D. J. Shendage, and I. R. Pillai, “Thermal performance evaluation of a four pan jaggery processing furnace for improvement in energy utilization,” Energy, vol. 35, no. 12, pp. 4740–4747, Dec. 2010. doi: https://doi.org/10.1016/j.energy.2010.09.018K. González, Determinación de pérdidas energéticas y sus puntos críticos, en hornillas paneleras Ward-Cimpa en la hoya del río Suárez, Univ. Industrial de Santander, Colombia, 2010.P. Arya, U. K. Jaiswal, and S. Kumar, “Design based improvement in a three pan Jaggery making plant for rural India,” Int. J. Eng. Res., vol. 2, no.3, pp. 264-268, Jul. 2013.O. Mendieta, “Desarrollo de un modelo experimental para el coeficiente de transferencia de calor en el proceso de evaporación del jugo de caña de azúcar en un arreglo de película delgada,” Univ. Industrial de Santander, Bucaramanga, Colombia, 2012.G. B. Agalave, “Performance improvement of a single pan traditional Jaggery making furnace by using fins and baffle,” Int. J. Adv. Res. Sci. Eng., vol. 4, no. 4, pp. 85–89, Apr. 2015. Available: https://www.ijarse.com/images/fullpdf/1429353638_12_Research_Paper.pdfJ. Osorio, H. Ciro, and A. Espinosa, “Evaluación Térmica y Validación de un Modelo por Métodos Computacionales para la Hornilla Panelera GP150,” Dyna, vol. 77, no. 162, pp. 237–247, Jun. 2010. Available: http://bdigital.unal.edu.co/5373/1/jairoosorio.2010.pdfD. Choudhury, Introduction to the renormalization group method and turbulence modeling, Lebanon NH, USA: Fluent Inc., 1973.R. La Madrid, D. Marcelo, E. M. Orbegoso, and R. Saavedra, “Heat transfer study on open heat exchangers used in jaggery production modules – Computational Fluid Dynamics simulation and field data assessment,” Energy Convers. Manag., vol. 125, pp. 107–120, Oct. 2016. Doi: https://doi.org/10.1016/j.enconman.2016.03.005D. Wilcox, “Formulation of the k-omega Turbulence Model Revisited,” in 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 8–11, 2007. doi: https://doi.org/10.2514/6.2007-1408M. F. Modest, “Chapter 23 - Inverse Radiative Heat Transfer,” in Radiative Heat Transfer, 3rd Ed., pp. 779-802, Cambrigde, MA, USA: Academic Press, 2013. doi: https://doi.org/10.1016/B978-0-12-386944-9.50023-6G. Colomer, M. Costa, R. Cònsul, and A. Oliva, “Three-dimensional numerical simulation of convection and radiation in a differentially heated cavity using the discrete ordinates method,” Int. J. Heat Mass Transf., vol. 47, no. 2, pp. 257–269, Jan. 2004. doi: https://doi.org/10.1016/S0017-9310(03)00387-9M. F. Modest, Radiative Heat Transfer, 3rd Ed., Cambrigde, MA, USA: Academic Press, 2013. Doi: https://doi.org/10.1016/B978-0-12-386944-9.50023-6OpenCFD Ltd (ESI Group), “OpenFOAM.” .S. B. Pope, Turbulent flows. Cambridge, MA, USA: Cambridge Univ. Press, 2000. doi: https://doi.org/10.1017/CBO9780511840531D. Wilcox, Turbulence modeling for CFD. La Cañada, CA, USA: DCW Industries, Inc., 1998.J. E. Jaramillo Ibarra, “Suitability of different RANS models in the description of turbulent forced convection flows: application to air curtains,” TDX (Tesis Dr. en Xarxa), Univ. Politècnica de Catalunya. Dept. de Màquines i Motors Tèrmics Barcelona, España, 2008.J. E. Jaramillo, C. D. Pérez-Segarra, A. Oliva, and K. Claramunt, “Analysis of different RANS models applied to turbulent forced convection,” Int. J. Heat Mass Transf., vol. 50, no. 19–20, pp. 3749–3766, Sept. 2007. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.015D. Wilcox, Turbulence Modeling for CFD, 2nd Ed., Miami, FL, USA: Amazon.com: Books, 2006.P. Crnjac, L. Škerget, J. Ravnik, and M. Hriberšek, “Implementation of the Rosseland and the P1 Radiation Models in the System of Navier-Stokes Equations with the Boundary Element Method,” Int. J. Comput. Methods Exp. Meas., vol. 5, no. 3, pp. 348–358, Abr. 2017. doi: https://doi.org/10.2495/CMEM-V5-N3-348-358Y. A. Çengel, Heat and mass transfer : a practical approach. India: McGraw-Hill Education, Pvt. Limited, 2007.G. Gordillo and H. García, Manual para el diseño y operación de hornillas paneleras. Convenio de investigación y divulgación para el mejoramiento de la industria panelera, Barbosa, Santander, Colombia: CIMPA, 1992.C. J. Greenshields, OpenFOAM User-Guide, no. 5, May. 2015.141133115https://revistascientificas.cuc.edu.co/ingecuc/article/download/1986/2078https://revistascientificas.cuc.edu.co/ingecuc/article/download/1986/2094https://revistascientificas.cuc.edu.co/ingecuc/article/download/1986/2310Núm. 1 , Año 2019 : (Enero - Junio)PublicationOREORE.xmltext/xml2795https://repositorio.cuc.edu.co/bitstreams/f7a2affa-d89e-4006-8310-00c81a9c6fa7/download877eb6cd6291a4eb6ce6600e2cb1a2a1MD5111323/12217oai:repositorio.cuc.edu.co:11323/122172024-09-17 12:48:15.952http://creativecommons.org/licenses/by-nc-nd/4.0INGE CUC - 2019metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co |