Modelacion de una heuristica para el análisis del desempeño de un modelo deterministico de ruteo de vehículos multiples depósitos bajo un ambiente estocástico
En esta investigación se propone modelar una heurística para el análisis del desempeño de un modelo determinístico de ruteo de vehículos múltiples depósitos en un ambiente estocástico, en una empresa de acueducto del municipio de Uribia, Guajira, la cual se encarga de la distribución de agua potable...
- Autores:
-
Martinez Carranza, Cristian Andres
Medina Turizo, Daniel Eduardo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2014
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/4854
- Acceso en línea:
- https://hdl.handle.net/11323/4854
https://repositorio.cuc.edu.co/
- Palabra clave:
- Ambiente estocástico
Clusterización
Colonias de hormigas
Simulación discreta
Diseño de experimentos
Stochastic environment
Clusterization
Colonies of ants
Discrete simulation
Design of experiments
- Rights
- openAccess
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
RCUC2_de7a3eb702787b4a1be6440e196989cd |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/4854 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelacion de una heuristica para el análisis del desempeño de un modelo deterministico de ruteo de vehículos multiples depósitos bajo un ambiente estocástico |
dc.title.translated.spa.fl_str_mv |
Modeling a heuristic for the analysis of the performance of a deterministic vehicle routing model multiple deposits under a stochastic environment |
title |
Modelacion de una heuristica para el análisis del desempeño de un modelo deterministico de ruteo de vehículos multiples depósitos bajo un ambiente estocástico |
spellingShingle |
Modelacion de una heuristica para el análisis del desempeño de un modelo deterministico de ruteo de vehículos multiples depósitos bajo un ambiente estocástico Ambiente estocástico Clusterización Colonias de hormigas Simulación discreta Diseño de experimentos Stochastic environment Clusterization Colonies of ants Discrete simulation Design of experiments |
title_short |
Modelacion de una heuristica para el análisis del desempeño de un modelo deterministico de ruteo de vehículos multiples depósitos bajo un ambiente estocástico |
title_full |
Modelacion de una heuristica para el análisis del desempeño de un modelo deterministico de ruteo de vehículos multiples depósitos bajo un ambiente estocástico |
title_fullStr |
Modelacion de una heuristica para el análisis del desempeño de un modelo deterministico de ruteo de vehículos multiples depósitos bajo un ambiente estocástico |
title_full_unstemmed |
Modelacion de una heuristica para el análisis del desempeño de un modelo deterministico de ruteo de vehículos multiples depósitos bajo un ambiente estocástico |
title_sort |
Modelacion de una heuristica para el análisis del desempeño de un modelo deterministico de ruteo de vehículos multiples depósitos bajo un ambiente estocástico |
dc.creator.fl_str_mv |
Martinez Carranza, Cristian Andres Medina Turizo, Daniel Eduardo |
dc.contributor.advisor.spa.fl_str_mv |
Nieto Isaza, Santiago |
dc.contributor.author.spa.fl_str_mv |
Martinez Carranza, Cristian Andres Medina Turizo, Daniel Eduardo |
dc.subject.spa.fl_str_mv |
Ambiente estocástico Clusterización Colonias de hormigas Simulación discreta Diseño de experimentos Stochastic environment Clusterization Colonies of ants Discrete simulation Design of experiments |
topic |
Ambiente estocástico Clusterización Colonias de hormigas Simulación discreta Diseño de experimentos Stochastic environment Clusterization Colonies of ants Discrete simulation Design of experiments |
description |
En esta investigación se propone modelar una heurística para el análisis del desempeño de un modelo determinístico de ruteo de vehículos múltiples depósitos en un ambiente estocástico, en una empresa de acueducto del municipio de Uribia, Guajira, la cual se encarga de la distribución de agua potable a través de flotas de carro tanques para pequeñas comunidades indígenas del sector. Inicialmente se realiza una amplia revisión de la literatura de los VRP de tipo estocástico. Luego se realiza la modelación de un SMDVRP en tres etapas, la primera es un procedimiento de clusterización por depósitos bajo el criterio de mínima distancia recorrida, en la segunda se utiliza un método para la optimización de rutas de un (CVRP) basado en algoritmos de colonias de hormigas y en la tercera etapa se realiza la modelación estocástica del problema en base a dos variables de estudio. Por último se realiza un diseño de experimentos a los resultados obtenidos de la modelación del SVRP, para esto se definen unos factores de diseño con sus respectivos niveles, unos bloques de variabilidad y las variables de respuesta de interés del caso. El objetivo del diseño de experimentos para determinar qué factores son significativos de acuerdo con las variables de respuesta del caso y que ofrecen un mejor desempeño operacional del modelo de simulación estudiado. Los resultados obtenidos presentan un ahorro del 27% sobre los costos operacionales con respecto a la política de distribución actual que utiliza la empresa a la cual se hace el estudio. |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014-07-15 |
dc.date.accessioned.none.fl_str_mv |
2019-06-14T13:38:12Z |
dc.date.available.none.fl_str_mv |
2019-06-14T13:38:12Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/4854 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/4854 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Barcos, L., Rodriguez M., V., Álvarez , M. J., & Robusté, F. (2002). Algoritmo basado en la optimización mediante colonias de hormigas para resolución del problema del transporte de carga desde varios orígenes a varios destinos. V Congreso de Ingeniería del Transporte. Bertsimas, D. (1992). A Vehicle Routing Problem with Stochastic Demand. Institute for Operation Research and the Management Scienses . Biing Sheu, J. (2006). A hybrid fuzzy-optimization approach to customer groupingbased logistics distribution operations. Applied Mathematical Modelling. Chan, Y., Carter, W., & Burnes , M. (2001). A multiple-depot, multiple-vehicle, location-routingproblem with stochastically processed demands. Computers & Operations Research. Christiansen, C., & Lysgaard, J. (2007). Abranch-and-price algorithm for the capacitated vehicle routing problem with stochastic demands. Operations Research Letters. Cordeau, J. F., Laporte, G., Savelsbergh, M., & Vigo, D. (2007). Vehicle Routing. Elsevier B.V., 410-412. Daza, J. M., Montoya, J. R., & Narducci, F. (2009). RESOLUCIÓN DEL PROBLEMA DE ENRUTAMINETO DE VEHÍCULOS CON LIMITACIONES DE CAPACIDAD UTILIZANDO UN PROCEDIMIENTO METAHEURÍSTICO DE DOS FASES. EIA. Erbao, C., & Mingyong, L. (2009). A hybrid differential evolution algorithm to vehicle routing problem with fuzzy demands. Journal of Computational and Applied Mathematics. Farhang Moghaddam, B., Ruiz, R., & Jafar Sadjadi, S. (2011). Vehicle routing problem with uncertain demands: An advanced particle swarm algorithm. Computers & Industrial Engineering. François Cordeau, J., Laporte, G., W.P. Savelsbergh, M., & Vigo, D. (2007). Vehicle Routing. Elsevier B.V., 410-417. Gendreau, M., Laporte, G., & René, S. (1995). A TABU SEARCH HEURISTIC FOR THE VEHICLE ROUTING PROBLEM WITH STOCHASTIC DEMANDS AND CUSTOMERS. INFORMS. Gendreau, M., Laporte, G., & Séguin, R. (1996). Stochastic vehicle routing. European Journal of Operational Research 88, 3-12. Géraldine, H., Cordeau, J.-F., & Laporte, G. (2011). An integer L-shaped algorithm for the Dial-a-Ride Problem with stochastic customer delays. Discrete Applied Mathematics. González Vargas , G., & Gonzáles Aristizábal, F. (2006). Metaheurísticas aplicadas al ruteo de vehículos. Un caso estudio. Parte 1: formulación del problema. redalyc. Goodson, J., Ohlmann, J., & Thomas, B. (2011). Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand. European Journal of Operational Research. Google. (2014). Google Earth. Recuperado el 29 de 03 de 2014, de Google Earth: http://www.google.com/gadgets/directory?pid=earth&synd=earth&hl=es&gl= co Haughton , M. (1998). THE PERFORMANCE OF RUTE MODIFICATION AND DEMAND STABILIZATION STRATEGIES IN STOCHASTIC VEHICLE ROUTING. Transportation Research . Haughton , M., & Stenger, A. (1999). Comparing strategies for addressing delivery shortages in stochastic demand setting. Elsevier Science Ltd. Haugland, D., Ho, S., & Laporte, G. (2006). Designing delivery districts for the vehicle routing problem with stochastic demands. European Journal of Operational Research. Juan, A., Faulin, J., Grasman, S., Riera, D., Marull, J., & Mendez, C. (2010). Using safety stocks and simulation to solve the vehicle routing problem with stochastic demands. Transportation Research. Laporte, G., louveaux, F., & Mercure , H. (1992). The Vehicle Routing Problem with Stochastic Travel Times. Tansportation Science. LAPORTE, G., LOUVEAUX, F., & MERCURE, H. (1992). The Vehicle Routing Problem with Stochastic Travel Times. Transportation Science. López Franco, J., & Nieto Izasa, S. (2012). Heurística para la Generación de un Conjunto de Referencia de Soluciones que Resuelvan el Problema de Ruteo de Vehículos con Múltiples Depósitos MDVRP. Latin American and Caribbean Conference for Engineering and Technology. Marinakis, Y., Iordanidou, G.-R., & Marinaki, M. (2013). Particle Swarm Optimization for the Vehicle Routing Problem with Stochastic Demands. Applied Soft Computing. Novoa, C., & Storer, R. (2008). An approximate dynamic programming approach for the vehicle routing problem with stochastic demands. European Journal of Operational Research. Olivera, A. (2004). Heurísticas para Problemas de Ruteo de Vehículos. Pandelis, D., Kyriakidis, E., & Dimitrakos, T. (2011). Single vehicle routing problems with a predefined customer sequence, compartmentalized load and stochastic demands. European Journal of Operational Research. Rocha, L., Gonzáles, C., & Orjuela, J. (2011). Una revisión del estado del arte del problema de ruteo de vehículos: Evolución histórica y métodos de solución. Secomandi , N. (2000). Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands. Computers & Operations Research. Taş, D., Gendreau, M., Dellaert, N., van Woensel, T., & de Kok, A. (2013). Vehicle Routing with Soft Time Windows and Stochastic Travel Times: A Column Generation and Branch-and-Price Solution Approach. European Journal of Operational Research. Tatarakis, A., & Minis , I. (2008). Stochastic single vehicle routing with a predefined customer sequence and multiple depot returns. European Journal of Operational Research. Van Woensel, T., Kerbache, L., Peremans, H., & Vandaele, N. (2001). A VEHICLE ROUTING PROBLEM WITH STOCHASTIC TRAVEL TIMES. Xiangyong Li, a., Peng Tian, a., & Stephen C.H Leung, b. (2010). Vehicle routing problems with the windows and stochastic travel and service times: Models and Algorithm. ELSEVIER. Yan, S., Chi, C.-J., & Tang, C.-H. (2005). Inter-city bus routing and timetable setting under stochastic demands. Transportation Research. Yan, S., Lin, J.-R., & Lai, C.-W. (2013). The planning and real-time adjustment of courier routing and scheduling under stochastic travel times and demands. Transporta tion Research. |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Industrial |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/308422e4-50ac-48f5-988b-e4feaa23e119/download https://repositorio.cuc.edu.co/bitstreams/a7591068-f2e8-440f-9e00-42876c91407c/download https://repositorio.cuc.edu.co/bitstreams/65c14f34-81d6-4244-971b-82d5e4b8cac4/download https://repositorio.cuc.edu.co/bitstreams/ca436e67-39c3-4f27-8f4e-07959d7b2c2b/download https://repositorio.cuc.edu.co/bitstreams/2e19c21d-e60b-49de-a9d7-dce482a874d8/download |
bitstream.checksum.fl_str_mv |
aca8c030ab512b3f8163112717062b9d 934f4ca17e109e0a05eaeaba504d7ce4 8a4605be74aa9ea9d79846c1fba20a33 6b70c428a3a3fb79c62b72ec13c88fa5 e9140de5b87fa6a3ee2f6b068b0b28cf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760813122256896 |
spelling |
Nieto Isaza, SantiagoMartinez Carranza, Cristian AndresMedina Turizo, Daniel Eduardo2019-06-14T13:38:12Z2019-06-14T13:38:12Z2014-07-15https://hdl.handle.net/11323/4854Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/En esta investigación se propone modelar una heurística para el análisis del desempeño de un modelo determinístico de ruteo de vehículos múltiples depósitos en un ambiente estocástico, en una empresa de acueducto del municipio de Uribia, Guajira, la cual se encarga de la distribución de agua potable a través de flotas de carro tanques para pequeñas comunidades indígenas del sector. Inicialmente se realiza una amplia revisión de la literatura de los VRP de tipo estocástico. Luego se realiza la modelación de un SMDVRP en tres etapas, la primera es un procedimiento de clusterización por depósitos bajo el criterio de mínima distancia recorrida, en la segunda se utiliza un método para la optimización de rutas de un (CVRP) basado en algoritmos de colonias de hormigas y en la tercera etapa se realiza la modelación estocástica del problema en base a dos variables de estudio. Por último se realiza un diseño de experimentos a los resultados obtenidos de la modelación del SVRP, para esto se definen unos factores de diseño con sus respectivos niveles, unos bloques de variabilidad y las variables de respuesta de interés del caso. El objetivo del diseño de experimentos para determinar qué factores son significativos de acuerdo con las variables de respuesta del caso y que ofrecen un mejor desempeño operacional del modelo de simulación estudiado. Los resultados obtenidos presentan un ahorro del 27% sobre los costos operacionales con respecto a la política de distribución actual que utiliza la empresa a la cual se hace el estudio.This research proposes a heuristic model for analyzing the performance of a deterministic model of multiple vehicle routing in a stochastic environment deposits, in a company aqueduct Uribia, Guajira, which is responsible for the distribution of drinking water by tank truck fleets for small indigenous communities sector. Initially an extensive literature review of stochastic VRP type is performed. SMDVRP modeling of a three-step is then performed, the first is a method of clustering on deposits under the criterion of minimum distance, the second a method of route optimization of a (CVRP) based algorithms used ant colonies and in the third stage the stochastic modeling of the problem is performed on the basis of two variables of the study. Finally, a design of experiments to the results of the modeling SVRP to this design factors at their respective levels are defined, and blocks of variable response variables of interest the case is performed. The objective of design of experiments to determine which factors are significant according to the response variables of the case and which offer better operational performance of the simulation model studied. The results show a 27% savings on operating costs compared to current distribution policy used by the company to which the study is done.spaUniversidad de la CostaIngeniería IndustrialAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ambiente estocásticoClusterizaciónColonias de hormigasSimulación discretaDiseño de experimentosStochastic environmentClusterizationColonies of antsDiscrete simulationDesign of experimentsModelacion de una heuristica para el análisis del desempeño de un modelo deterministico de ruteo de vehículos multiples depósitos bajo un ambiente estocásticoModeling a heuristic for the analysis of the performance of a deterministic vehicle routing model multiple deposits under a stochastic environmentTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionBarcos, L., Rodriguez M., V., Álvarez , M. J., & Robusté, F. (2002). Algoritmo basado en la optimización mediante colonias de hormigas para resolución del problema del transporte de carga desde varios orígenes a varios destinos. V Congreso de Ingeniería del Transporte. Bertsimas, D. (1992). A Vehicle Routing Problem with Stochastic Demand. Institute for Operation Research and the Management Scienses . Biing Sheu, J. (2006). A hybrid fuzzy-optimization approach to customer groupingbased logistics distribution operations. Applied Mathematical Modelling. Chan, Y., Carter, W., & Burnes , M. (2001). A multiple-depot, multiple-vehicle, location-routingproblem with stochastically processed demands. Computers & Operations Research. Christiansen, C., & Lysgaard, J. (2007). Abranch-and-price algorithm for the capacitated vehicle routing problem with stochastic demands. Operations Research Letters. Cordeau, J. F., Laporte, G., Savelsbergh, M., & Vigo, D. (2007). Vehicle Routing. Elsevier B.V., 410-412. Daza, J. M., Montoya, J. R., & Narducci, F. (2009). RESOLUCIÓN DEL PROBLEMA DE ENRUTAMINETO DE VEHÍCULOS CON LIMITACIONES DE CAPACIDAD UTILIZANDO UN PROCEDIMIENTO METAHEURÍSTICO DE DOS FASES. EIA. Erbao, C., & Mingyong, L. (2009). A hybrid differential evolution algorithm to vehicle routing problem with fuzzy demands. Journal of Computational and Applied Mathematics. Farhang Moghaddam, B., Ruiz, R., & Jafar Sadjadi, S. (2011). Vehicle routing problem with uncertain demands: An advanced particle swarm algorithm. Computers & Industrial Engineering. François Cordeau, J., Laporte, G., W.P. Savelsbergh, M., & Vigo, D. (2007). Vehicle Routing. Elsevier B.V., 410-417. Gendreau, M., Laporte, G., & René, S. (1995). A TABU SEARCH HEURISTIC FOR THE VEHICLE ROUTING PROBLEM WITH STOCHASTIC DEMANDS AND CUSTOMERS. INFORMS. Gendreau, M., Laporte, G., & Séguin, R. (1996). Stochastic vehicle routing. European Journal of Operational Research 88, 3-12. Géraldine, H., Cordeau, J.-F., & Laporte, G. (2011). An integer L-shaped algorithm for the Dial-a-Ride Problem with stochastic customer delays. Discrete Applied Mathematics. González Vargas , G., & Gonzáles Aristizábal, F. (2006). Metaheurísticas aplicadas al ruteo de vehículos. Un caso estudio. Parte 1: formulación del problema. redalyc. Goodson, J., Ohlmann, J., & Thomas, B. (2011). Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand. European Journal of Operational Research. Google. (2014). Google Earth. Recuperado el 29 de 03 de 2014, de Google Earth: http://www.google.com/gadgets/directory?pid=earth&synd=earth&hl=es&gl= co Haughton , M. (1998). THE PERFORMANCE OF RUTE MODIFICATION AND DEMAND STABILIZATION STRATEGIES IN STOCHASTIC VEHICLE ROUTING. Transportation Research . Haughton , M., & Stenger, A. (1999). Comparing strategies for addressing delivery shortages in stochastic demand setting. Elsevier Science Ltd. Haugland, D., Ho, S., & Laporte, G. (2006). Designing delivery districts for the vehicle routing problem with stochastic demands. European Journal of Operational Research. Juan, A., Faulin, J., Grasman, S., Riera, D., Marull, J., & Mendez, C. (2010). Using safety stocks and simulation to solve the vehicle routing problem with stochastic demands. Transportation Research. Laporte, G., louveaux, F., & Mercure , H. (1992). The Vehicle Routing Problem with Stochastic Travel Times. Tansportation Science. LAPORTE, G., LOUVEAUX, F., & MERCURE, H. (1992). The Vehicle Routing Problem with Stochastic Travel Times. Transportation Science. López Franco, J., & Nieto Izasa, S. (2012). Heurística para la Generación de un Conjunto de Referencia de Soluciones que Resuelvan el Problema de Ruteo de Vehículos con Múltiples Depósitos MDVRP. Latin American and Caribbean Conference for Engineering and Technology. Marinakis, Y., Iordanidou, G.-R., & Marinaki, M. (2013). Particle Swarm Optimization for the Vehicle Routing Problem with Stochastic Demands. Applied Soft Computing. Novoa, C., & Storer, R. (2008). An approximate dynamic programming approach for the vehicle routing problem with stochastic demands. European Journal of Operational Research. Olivera, A. (2004). Heurísticas para Problemas de Ruteo de Vehículos. Pandelis, D., Kyriakidis, E., & Dimitrakos, T. (2011). Single vehicle routing problems with a predefined customer sequence, compartmentalized load and stochastic demands. European Journal of Operational Research. Rocha, L., Gonzáles, C., & Orjuela, J. (2011). Una revisión del estado del arte del problema de ruteo de vehículos: Evolución histórica y métodos de solución. Secomandi , N. (2000). Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands. Computers & Operations Research. Taş, D., Gendreau, M., Dellaert, N., van Woensel, T., & de Kok, A. (2013). Vehicle Routing with Soft Time Windows and Stochastic Travel Times: A Column Generation and Branch-and-Price Solution Approach. European Journal of Operational Research. Tatarakis, A., & Minis , I. (2008). Stochastic single vehicle routing with a predefined customer sequence and multiple depot returns. European Journal of Operational Research. Van Woensel, T., Kerbache, L., Peremans, H., & Vandaele, N. (2001). A VEHICLE ROUTING PROBLEM WITH STOCHASTIC TRAVEL TIMES. Xiangyong Li, a., Peng Tian, a., & Stephen C.H Leung, b. (2010). Vehicle routing problems with the windows and stochastic travel and service times: Models and Algorithm. ELSEVIER. Yan, S., Chi, C.-J., & Tang, C.-H. (2005). Inter-city bus routing and timetable setting under stochastic demands. Transportation Research. Yan, S., Lin, J.-R., & Lai, C.-W. (2013). The planning and real-time adjustment of courier routing and scheduling under stochastic travel times and demands. Transporta tion Research.PublicationORIGINALMODELACIÓN DE UNA HEURÍSTICA PARA EL ANÁLISIS DEL DESEMPEÑO.pdfMODELACIÓN DE UNA HEURÍSTICA PARA EL ANÁLISIS DEL DESEMPEÑO.pdfapplication/pdf6688542https://repositorio.cuc.edu.co/bitstreams/308422e4-50ac-48f5-988b-e4feaa23e119/downloadaca8c030ab512b3f8163112717062b9dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/a7591068-f2e8-440f-9e00-42876c91407c/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/65c14f34-81d6-4244-971b-82d5e4b8cac4/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILMODELACIÓN DE UNA HEURÍSTICA PARA EL ANÁLISIS DEL DESEMPEÑO.pdf.jpgMODELACIÓN DE UNA HEURÍSTICA PARA EL ANÁLISIS DEL DESEMPEÑO.pdf.jpgimage/jpeg28098https://repositorio.cuc.edu.co/bitstreams/ca436e67-39c3-4f27-8f4e-07959d7b2c2b/download6b70c428a3a3fb79c62b72ec13c88fa5MD55TEXTMODELACIÓN DE UNA HEURÍSTICA PARA EL ANÁLISIS DEL DESEMPEÑO.pdf.txtMODELACIÓN DE UNA HEURÍSTICA PARA EL ANÁLISIS DEL DESEMPEÑO.pdf.txttext/plain319826https://repositorio.cuc.edu.co/bitstreams/2e19c21d-e60b-49de-a9d7-dce482a874d8/downloade9140de5b87fa6a3ee2f6b068b0b28cfMD5611323/4854oai:repositorio.cuc.edu.co:11323/48542024-09-17 12:48:39.637http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |