CFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3/LiNO3

The absorber is a key component of absorption cooling systems, and its further development is essential to reduce the size and costs and facilitate the diffusion of absorption cooling systems. Computational fluid dynamics (CFD) can facilitate the characterization of the equipment used in absorption...

Full description

Autores:
Zapata, Andrés
Amaris, Carlos
Sagastume, Alexis
Rodríguez, Andrés
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8771
Acceso en línea:
https://hdl.handle.net/11323/8771
https://doi.org/10.1016/j.csite.2021.101311
https://repositorio.cuc.edu.co/
Palabra clave:
CFD
Heat and mass transfer
Absorption refrigeration system
Bubble absorber
Ammonia
Lithium nitrate
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_de58909531a87bbe9191d8cacf585ac7
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8771
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv CFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3/LiNO3
title CFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3/LiNO3
spellingShingle CFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3/LiNO3
CFD
Heat and mass transfer
Absorption refrigeration system
Bubble absorber
Ammonia
Lithium nitrate
title_short CFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3/LiNO3
title_full CFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3/LiNO3
title_fullStr CFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3/LiNO3
title_full_unstemmed CFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3/LiNO3
title_sort CFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3/LiNO3
dc.creator.fl_str_mv Zapata, Andrés
Amaris, Carlos
Sagastume, Alexis
Rodríguez, Andrés
dc.contributor.author.spa.fl_str_mv Zapata, Andrés
Amaris, Carlos
Sagastume, Alexis
Rodríguez, Andrés
dc.subject.spa.fl_str_mv CFD
Heat and mass transfer
Absorption refrigeration system
Bubble absorber
Ammonia
Lithium nitrate
topic CFD
Heat and mass transfer
Absorption refrigeration system
Bubble absorber
Ammonia
Lithium nitrate
description The absorber is a key component of absorption cooling systems, and its further development is essential to reduce the size and costs and facilitate the diffusion of absorption cooling systems. Computational fluid dynamics (CFD) can facilitate the characterization of the equipment used in absorption cooling systems at lower costs and complexity, but they must be properly developed and validated to provide reliability. This study provides a detailed description and assessment of a 3D CFD bubble absorber model developed to simulate the absorption process in a vertical double pipe with the NH3/LiNO3 solution. It includes a comprehensive methodology to develop the CFD model and its validation considering the effect of the solution flow and the cooling water temperature on absorber performance parameters such as the absorption mass flux and the solution heat transfer coefficient. The results show that the ‘Volume of Fluid model’ and the ‘Realizable k-epsilon model’ provide the lowest residuals and computational times in the simulations while a good correspondence between the CFD model and the experimental data with errors below 10% and 7% for the absorption mass flux and solution heat transfer coefficient, respectively, was obtained. The maximum absorption rate and heat transfer coefficient were 0.00441 kg m−2 s−1 and 786 W m−2 K−1, respectively.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-04T15:34:43Z
dc.date.available.none.fl_str_mv 2021-10-04T15:34:43Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2214-157X
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8771
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.csite.2021.101311
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2214-157X
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8771
https://doi.org/10.1016/j.csite.2021.101311
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] G.A. Florides, S.A. Tassou, S.A. Kalogirou, L.C. Wrobel, Review of solar and low energy cooling technologies for buildings, Renew. Sustain. Energy Rev. 6 (2002) 557–572.
[2] J. Mendoza, J. Rhenals, A. Avila, A. Martinez, T. De la Vega, E. Durango, Heat absorption cooling with renewable energies: a case study with photovoltaic solar energy and biogas in Cordoba, Colombia, INGE CUC 17 (2021) 1–10, https://doi.org/10.17981/ingecuc.17.2.2021.01.
[3] K.R. Ullah, R. Saidur, H.W. Ping, R.K. Akikur, N.H. Shuvo, A review of solar thermal refrigeration and cooling methods, Renew. Sustain. Energy Rev. 24 (2013) 499–513, https://doi.org/10.1016/J.RSER.2013.03.024.
[4] C. Amaris, B.C. Miranda, M. Balbis-Morejon, ´ Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system, Therm. Sci. Eng. Prog. 20 (2020), https://doi.org/10.1016/j.tsep.2020.100684.
[5] Y.T. Ge, S.A. Tassou, I. Chaer, N. Suguartha, Performance evaluation of a tri-generation system with simulation and experiment, Appl. Energy 86 (2009) 2317–2326, https://doi.org/10.1016/j.apenergy.2009.03.018.
[6] D.S. Ayou, J.C. Bruno, R. Saravanan, A. Coronas, An overview of combined absorption power and cooling cycles, Renew. Sustain. Energy Rev. 21 (2013) 728–748, https://doi.org/10.1016/j.rser.2012.12.068.
[7] M. Mittermaier, F. Ziegler, Theoretical evaluation of absorption and desorption processes under typical conditions for chillers and heat transformers, Int. J. Refrig. 59 (2015) 91–101, https://doi.org/10.1016/j.ijrefrig.2015.07.015.
[8] P. Srikhirin, S. Aphornratana, S. Chungpaibulpatana, A review of absorption refrigeration technologies, Renew. Sustain. Energy Rev. 5 (2000) 343–372, https:// doi.org/10.1016/S1364-0321(01)00003-X.
[9] C. Amaris, M. Bourouis, Boiling process assessment for absorption heat pumps: a review, Int. J. Heat Mass Tran. 179 (2021) 121723, https://doi.org/10.1016/J. IJHEATMASSTRANSFER.2021.121723.
[10] C. Amaris, M. Vall`es, M. Bourouis, Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: a review, Appl. Energy 231 (2018) 826–853, https://doi.org/10.1016/j.apenergy.2018.09.071.
[11] Y.T. Kang, A. Akisawa, T. Kashiwagi, Analytical investigation of two different absorption modes: falling film and bubble types, Int. J. Refrig. 23 (2000) 430–443.
[12] X. Wu, S. Xu, M. Jiang, Development of bubble absorption refrigeration technology: a review, Renew. Sustain. Energy Rev. 82 (2018) 3468–3482, https://doi. org/10.1016/J.RSER.2017.10.109.
[13] M.A. Johnson, J. De La Pena, ˜ R.B. Mesler, Bubble shapes in nucleate boiling, AIChE J. 12 (1966) 344–348, https://doi.org/10.1002/aic.690120225.
[14] Y.T. Kang, T. Nagano, T. Kashiwagi, Visualization of bubble behavior and bubble diameter correlation for NH 3 ± H 2 O bubble absorption A ˆ lation entre le comportement de la bulle et Etude de la corre A ´ tre lors d ’ absorption NH 3 -H 2 O : de son diame A ˆ thode visuelle me, Int. J. Refrig. 25 (2002) 127–135.
[15] T.L. Merrill, H. Perez-Blanco, Combined heat and mass transfer during bubble absorption in binary solutions, Int. J. Heat Mass Tran. 40 (1997) 589–603, https://doi.org/10.1016/0017-9310(96)00118-4.
[16] K. Terasaka, J. Oka, H. Tsuge, Ammonia absorption from a bubble expanding at a submerged orifice into water, Chem. Eng. Sci. 57 (2002) 3757–3765, https:// doi.org/10.1016/S0009-2509(02)00308-1.
[17] T. Elperin, A. Fominykh, Four stages of the simultaneous mass and heat transfer during bubble formation and rise in a bubbly absorber, Chem. Eng. Sci. 58 (2003) 3555–3564, https://doi.org/10.1016/S0009-2509(03)00192-1.
[18] M.D. Staicovici, A non-equilibrium phenomenological theory of the mass and heat transfer in physical and chemical interactions: Part II — modeling of the NH3/H2O bubble absorption, analytical study of absorption and experiments, Int. J. Heat Mass Tran. 43 (2000) 4175–4188, https://doi.org/10.1016/S0017-9310(00)00030-2.
[19] M.D. Staicovici, A non-equilibrium phenomenological theory of the mass and heat transfer in physical and chemical interactions: Part I — application to NH3/ H2O and other working systems, Int. J. Heat Mass Tran. 43 (2000) 4153–4173, https://doi.org/10.1016/S0017-9310(00)00029-6.
[20] M. Suresh, A. Mani, Heat and mass transfer studies on R134a bubble absorber in R134a/DMF solution based on phenomenological theory, Int. J. Heat Mass Tran. 53 (2010) 2813–2825, https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.016.
[21] M.K. Aggarwal, R.S. Agarwal, Thermodynamic properties of lithium nitrate-ammonia mixtures, Int. J. Energy Res. 10 (1986) 59–68, https://doi.org/10.1002/ er.4440100107.
[22] A.A.S. Lima, A.A.V. Ochoa, J.A.P. ˆ Da Costa, F. dos Santos, A.C. Carlos, Lima, V.F. M´ arcio, de Menezes, Energetic analysis of an absorption chiller using NH3/ LiNO3 as an alternative working fluid, Braz. J. Chem. Eng. 36 (2019) 1061–1073, https://doi.org/10.1590/0104-6632.20190362s20180473.
[23] J.M. Abdulateef, K. Sopian, M.A. Alghoul, Optimum design for solar absorption refrigeration systems and comparison of the performances using ammoniawater, ammonia-lithium nitrate and ammonia-sodium thiocyanate solutions, Int. J. Mech. Mater. Eng. 3 (2008) 17–24.
[24] R. Ayala, J.L. Frías, L. Lam, C.L. Heard, F.A. Holland, Experimental assessment of an ammonia/lithium nitrate absorption cooler operated on low temperature geothermal energy, Heat Recovery Syst. CHP 14 (1994) 437–446, https://doi.org/10.1016/0890-4332(94)90047-7.
[25] C. Amaris, M. Bourouis, M. Vall`es, Passive intensification of the ammonia absorption process with NH3/LiNO3 using carbon nanotubes and advanced surfaces in a tubular bubble absorber, Energy 68 (2014) 519–528, https://doi.org/10.1016/j.energy.2014.02.039.
[26] A.A.S. Lima, G.N.P. Leite, A.A.V. Ochoa, C.A.C. Dos Santos, J.A.P. da Costa, P.S.A. Michima, A.M.A. Caldas, Absorption refrigeration systems based on ammonia as refrigerant using different absorbents: review and applications, Energies 14 (2021), https://doi.org/10.3390/en14010048.
[27] C.A. Infante Ferreira, Combined momentum, heat and mass transfer in vertical slug flow absorbers, Int. J. Refrig. 8 (1985) 326–334.
[28] J. Cerezo, R. Best, R.J. Romero, A study of a bubble absorber using a plate heat exchanger with NH3-H2O, NH3-LiNO3and NH3-NaSCN, Appl. Therm. Eng. 31 (2011) 1869–1876, https://doi.org/10.1016/j.applthermaleng.2011.02.032.
[29] C. Amaris, M.E. Alvarez, M. Vall`es, M. Bourouis, Performance assessment of an NH3/LiNO3 bubble plate absorber applying a semi-empirical model and artificial neural networks, Energies 13 (2020), https://doi.org/10.3390/en13174313.
[30] F. Asfand, Y. Stiriba, M. Bourouis, CFD simulation to investigate heat and mass transfer processes in a membrane-based absorber for water-LiBr absorption cooling systems, Energy. https://doi.org/10.1016/j.energy.2015.08.018, 2015.
[31] F. Asfand, Y. Stiriba, M. Bourouis, Performance evaluation of membrane-based absorbers employing H2O/(LiBr + LiI + LiNO3 + LiCl) and H2O/(LiNO3 + KNO3 + NaNO3) as working pairs in absorption cooling systems, Energy. https://doi.org/10.1016/j.energy.2016.08.103, 2016.
[32] S.M. Hosseinnia, M. Naghashzadegan, R. Kouhikamali, CFD simulation of adiabatic water vapor absorption in large drops of water-LiBr solution, Appl. Therm. Eng. 102 (2016) 17–29, https://doi.org/10.1016/j.applthermaleng.2016.03.144.
[33] S.M. Hosseinnia, M. Naghashzadegan, R. Kouhikamali, CFD simulation of water vapor absorption in laminar falling film solution of water-LiBr ─ Drop and jet modes, Appl. Therm. Eng. 115 (2017) 860–873, https://doi.org/10.1016/j.applthermaleng.2017.01.022.
[34] S.K. Panda, A. Mani, CFD heat and mass transfer studies in a R134a-DMF bubble absorber with swirl flow entry of R134a vapour, Int. Compress. Eng. Refrig. Air Cond. High Perform. Build. Conf. (2016) 1–10.
[35] A.A.S. Lima, A.A. V Ochoa, J.A.P. Da Costa, J.R. Henríquez, CFD simulation of heat and mass transfer in an absorber that uses the pair ammonia/water as a working fluid, Int. J. Refrig. 98 (2019) 514–525, https://doi.org/10.1016/j.ijrefrig.2018.11.010.
[36] Y.T. Kang, T. Kashiwagi, R.N. Christensen, Ammonia-water bubble absorber with a plate heat exchanger, ASHRAE Trans., 1998, pp. 1565–1575.
[37] J. Cerezo, Estudio del proceso de absorcion ´ con amoníaco-agua en intercambiadores de placas para equipos de refrigeracion ´ por absorcion, ´ Universitat Rovira i Virgili, 2006.
[38] C. Amaris, Intensification of NH3 Bubble Absorption Process Using Advanced Surfaces and Carbon Nanotubes for NH3/LiNO3 Absorption Chillers, Universitat Rovira i Virgili, Tarragona, Spain, 2013. https://www.tdx.cat/handle/10803/128504.
[39] C. Amaris, M. Bourouis, M. Vall`es, Effect of advanced surfaces on the ammonia absorption process with NH3/LiNO3 in a tubular bubble absorber, Int. J. Heat Mass Tran. 72 (2014) 544–552, https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.031.
[40] ANSYS, ANSYS fluent theory guide, New York, USA. https://doi.org/10.1016/0140-3664(87)90311-2, 2013.
[41] W.M.H.K. Versteeg, An Introduction to Computational Fluid Dynamics. The Finite Volume Method, 1st ed., New York, 1995.
[42] S. Libotean, A. Martín, D. Salavera, M. Valles, X. Esteve, A. Coronas, Densities, viscosities, and heat capacities of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions between (293.15 and 353.15) K, J. Chem. Eng. Data 53 (2008) 2383–2388, https://doi.org/10.1021/je8003035.
[43] S. Libotean, D. Salavera, M. Valles, X. Esteve, A. Coronas, Vapor-liquid equilibrium of ammonia + lithium nitrate + water and ammonia + lithium nitrate solutions from (293.15 to 353.15) K, J. Chem. Eng. Data 52 (2007) 1050–1055, https://doi.org/10.1021/je7000045.
[44] Y. Cuenca, D. Salavera, A. Vernet, A.S. Teja, M. Vall`es, Thermal conductivity of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions over a wide range of concentrations and temperatures, Int. J. Refrig. 38 (2014) 333–340, https://doi.org/10.1016/j.ijrefrig.2013.08.010.
[45] W. Haltenberger, Enthalpy-concentration charts from vapor pressure data, Ind. Eng. Chem. 31 (1939) 783–786, https://doi.org/10.1021/ie50354a032.
[46] L.A. McNeely, Thermodynamic properties of aqueous solutions of lithium bromide, Build. Eng. 85 (1979) 413–434.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Case Studies in Thermal Engineering
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2214157X21004743
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/0558801e-557a-40ee-ba25-32ed97381049/download
https://repositorio.cuc.edu.co/bitstreams/7843a646-9ad7-4e86-8f34-ed204eded9ff/download
https://repositorio.cuc.edu.co/bitstreams/960d3dea-e4e4-44fb-85d2-e703f6dc08ce/download
https://repositorio.cuc.edu.co/bitstreams/3531034e-02ca-4d24-8880-42d0f9322b68/download
https://repositorio.cuc.edu.co/bitstreams/f1d057b2-3896-43ea-b82a-f590dac4f77f/download
bitstream.checksum.fl_str_mv 06e032044aa1c2c677050969d03517ca
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
2179407b98bf08024df4b794771ac882
6a975971f5e90b10f04493f2e4784d7b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760682707714048
spelling Zapata, AndrésAmaris, CarlosSagastume, AlexisRodríguez, Andrés2021-10-04T15:34:43Z2021-10-04T15:34:43Z20212214-157Xhttps://hdl.handle.net/11323/8771https://doi.org/10.1016/j.csite.2021.101311Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The absorber is a key component of absorption cooling systems, and its further development is essential to reduce the size and costs and facilitate the diffusion of absorption cooling systems. Computational fluid dynamics (CFD) can facilitate the characterization of the equipment used in absorption cooling systems at lower costs and complexity, but they must be properly developed and validated to provide reliability. This study provides a detailed description and assessment of a 3D CFD bubble absorber model developed to simulate the absorption process in a vertical double pipe with the NH3/LiNO3 solution. It includes a comprehensive methodology to develop the CFD model and its validation considering the effect of the solution flow and the cooling water temperature on absorber performance parameters such as the absorption mass flux and the solution heat transfer coefficient. The results show that the ‘Volume of Fluid model’ and the ‘Realizable k-epsilon model’ provide the lowest residuals and computational times in the simulations while a good correspondence between the CFD model and the experimental data with errors below 10% and 7% for the absorption mass flux and solution heat transfer coefficient, respectively, was obtained. The maximum absorption rate and heat transfer coefficient were 0.00441 kg m−2 s−1 and 786 W m−2 K−1, respectively.Zapata, AndrésAmaris, CarlosSagastume, Alexis-will be generated-orcid-0000-0003-0188-7101-600Rodríguez, Andrésapplication/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Case Studies in Thermal Engineeringhttps://www.sciencedirect.com/science/article/pii/S2214157X21004743CFDHeat and mass transferAbsorption refrigeration systemBubble absorberAmmoniaLithium nitrateCFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3/LiNO3Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] G.A. Florides, S.A. Tassou, S.A. Kalogirou, L.C. Wrobel, Review of solar and low energy cooling technologies for buildings, Renew. Sustain. Energy Rev. 6 (2002) 557–572.[2] J. Mendoza, J. Rhenals, A. Avila, A. Martinez, T. De la Vega, E. Durango, Heat absorption cooling with renewable energies: a case study with photovoltaic solar energy and biogas in Cordoba, Colombia, INGE CUC 17 (2021) 1–10, https://doi.org/10.17981/ingecuc.17.2.2021.01.[3] K.R. Ullah, R. Saidur, H.W. Ping, R.K. Akikur, N.H. Shuvo, A review of solar thermal refrigeration and cooling methods, Renew. Sustain. Energy Rev. 24 (2013) 499–513, https://doi.org/10.1016/J.RSER.2013.03.024.[4] C. Amaris, B.C. Miranda, M. Balbis-Morejon, ´ Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system, Therm. Sci. Eng. Prog. 20 (2020), https://doi.org/10.1016/j.tsep.2020.100684.[5] Y.T. Ge, S.A. Tassou, I. Chaer, N. Suguartha, Performance evaluation of a tri-generation system with simulation and experiment, Appl. Energy 86 (2009) 2317–2326, https://doi.org/10.1016/j.apenergy.2009.03.018.[6] D.S. Ayou, J.C. Bruno, R. Saravanan, A. Coronas, An overview of combined absorption power and cooling cycles, Renew. Sustain. Energy Rev. 21 (2013) 728–748, https://doi.org/10.1016/j.rser.2012.12.068.[7] M. Mittermaier, F. Ziegler, Theoretical evaluation of absorption and desorption processes under typical conditions for chillers and heat transformers, Int. J. Refrig. 59 (2015) 91–101, https://doi.org/10.1016/j.ijrefrig.2015.07.015.[8] P. Srikhirin, S. Aphornratana, S. Chungpaibulpatana, A review of absorption refrigeration technologies, Renew. Sustain. Energy Rev. 5 (2000) 343–372, https:// doi.org/10.1016/S1364-0321(01)00003-X.[9] C. Amaris, M. Bourouis, Boiling process assessment for absorption heat pumps: a review, Int. J. Heat Mass Tran. 179 (2021) 121723, https://doi.org/10.1016/J. IJHEATMASSTRANSFER.2021.121723.[10] C. Amaris, M. Vall`es, M. Bourouis, Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: a review, Appl. Energy 231 (2018) 826–853, https://doi.org/10.1016/j.apenergy.2018.09.071.[11] Y.T. Kang, A. Akisawa, T. Kashiwagi, Analytical investigation of two different absorption modes: falling film and bubble types, Int. J. Refrig. 23 (2000) 430–443.[12] X. Wu, S. Xu, M. Jiang, Development of bubble absorption refrigeration technology: a review, Renew. Sustain. Energy Rev. 82 (2018) 3468–3482, https://doi. org/10.1016/J.RSER.2017.10.109.[13] M.A. Johnson, J. De La Pena, ˜ R.B. Mesler, Bubble shapes in nucleate boiling, AIChE J. 12 (1966) 344–348, https://doi.org/10.1002/aic.690120225.[14] Y.T. Kang, T. Nagano, T. Kashiwagi, Visualization of bubble behavior and bubble diameter correlation for NH 3 ± H 2 O bubble absorption A ˆ lation entre le comportement de la bulle et Etude de la corre A ´ tre lors d ’ absorption NH 3 -H 2 O : de son diame A ˆ thode visuelle me, Int. J. Refrig. 25 (2002) 127–135.[15] T.L. Merrill, H. Perez-Blanco, Combined heat and mass transfer during bubble absorption in binary solutions, Int. J. Heat Mass Tran. 40 (1997) 589–603, https://doi.org/10.1016/0017-9310(96)00118-4.[16] K. Terasaka, J. Oka, H. Tsuge, Ammonia absorption from a bubble expanding at a submerged orifice into water, Chem. Eng. Sci. 57 (2002) 3757–3765, https:// doi.org/10.1016/S0009-2509(02)00308-1.[17] T. Elperin, A. Fominykh, Four stages of the simultaneous mass and heat transfer during bubble formation and rise in a bubbly absorber, Chem. Eng. Sci. 58 (2003) 3555–3564, https://doi.org/10.1016/S0009-2509(03)00192-1.[18] M.D. Staicovici, A non-equilibrium phenomenological theory of the mass and heat transfer in physical and chemical interactions: Part II — modeling of the NH3/H2O bubble absorption, analytical study of absorption and experiments, Int. J. Heat Mass Tran. 43 (2000) 4175–4188, https://doi.org/10.1016/S0017-9310(00)00030-2.[19] M.D. Staicovici, A non-equilibrium phenomenological theory of the mass and heat transfer in physical and chemical interactions: Part I — application to NH3/ H2O and other working systems, Int. J. Heat Mass Tran. 43 (2000) 4153–4173, https://doi.org/10.1016/S0017-9310(00)00029-6.[20] M. Suresh, A. Mani, Heat and mass transfer studies on R134a bubble absorber in R134a/DMF solution based on phenomenological theory, Int. J. Heat Mass Tran. 53 (2010) 2813–2825, https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.016.[21] M.K. Aggarwal, R.S. Agarwal, Thermodynamic properties of lithium nitrate-ammonia mixtures, Int. J. Energy Res. 10 (1986) 59–68, https://doi.org/10.1002/ er.4440100107.[22] A.A.S. Lima, A.A.V. Ochoa, J.A.P. ˆ Da Costa, F. dos Santos, A.C. Carlos, Lima, V.F. M´ arcio, de Menezes, Energetic analysis of an absorption chiller using NH3/ LiNO3 as an alternative working fluid, Braz. J. Chem. Eng. 36 (2019) 1061–1073, https://doi.org/10.1590/0104-6632.20190362s20180473.[23] J.M. Abdulateef, K. Sopian, M.A. Alghoul, Optimum design for solar absorption refrigeration systems and comparison of the performances using ammoniawater, ammonia-lithium nitrate and ammonia-sodium thiocyanate solutions, Int. J. Mech. Mater. Eng. 3 (2008) 17–24.[24] R. Ayala, J.L. Frías, L. Lam, C.L. Heard, F.A. Holland, Experimental assessment of an ammonia/lithium nitrate absorption cooler operated on low temperature geothermal energy, Heat Recovery Syst. CHP 14 (1994) 437–446, https://doi.org/10.1016/0890-4332(94)90047-7.[25] C. Amaris, M. Bourouis, M. Vall`es, Passive intensification of the ammonia absorption process with NH3/LiNO3 using carbon nanotubes and advanced surfaces in a tubular bubble absorber, Energy 68 (2014) 519–528, https://doi.org/10.1016/j.energy.2014.02.039.[26] A.A.S. Lima, G.N.P. Leite, A.A.V. Ochoa, C.A.C. Dos Santos, J.A.P. da Costa, P.S.A. Michima, A.M.A. Caldas, Absorption refrigeration systems based on ammonia as refrigerant using different absorbents: review and applications, Energies 14 (2021), https://doi.org/10.3390/en14010048.[27] C.A. Infante Ferreira, Combined momentum, heat and mass transfer in vertical slug flow absorbers, Int. J. Refrig. 8 (1985) 326–334.[28] J. Cerezo, R. Best, R.J. Romero, A study of a bubble absorber using a plate heat exchanger with NH3-H2O, NH3-LiNO3and NH3-NaSCN, Appl. Therm. Eng. 31 (2011) 1869–1876, https://doi.org/10.1016/j.applthermaleng.2011.02.032.[29] C. Amaris, M.E. Alvarez, M. Vall`es, M. Bourouis, Performance assessment of an NH3/LiNO3 bubble plate absorber applying a semi-empirical model and artificial neural networks, Energies 13 (2020), https://doi.org/10.3390/en13174313.[30] F. Asfand, Y. Stiriba, M. Bourouis, CFD simulation to investigate heat and mass transfer processes in a membrane-based absorber for water-LiBr absorption cooling systems, Energy. https://doi.org/10.1016/j.energy.2015.08.018, 2015.[31] F. Asfand, Y. Stiriba, M. Bourouis, Performance evaluation of membrane-based absorbers employing H2O/(LiBr + LiI + LiNO3 + LiCl) and H2O/(LiNO3 + KNO3 + NaNO3) as working pairs in absorption cooling systems, Energy. https://doi.org/10.1016/j.energy.2016.08.103, 2016.[32] S.M. Hosseinnia, M. Naghashzadegan, R. Kouhikamali, CFD simulation of adiabatic water vapor absorption in large drops of water-LiBr solution, Appl. Therm. Eng. 102 (2016) 17–29, https://doi.org/10.1016/j.applthermaleng.2016.03.144.[33] S.M. Hosseinnia, M. Naghashzadegan, R. Kouhikamali, CFD simulation of water vapor absorption in laminar falling film solution of water-LiBr ─ Drop and jet modes, Appl. Therm. Eng. 115 (2017) 860–873, https://doi.org/10.1016/j.applthermaleng.2017.01.022.[34] S.K. Panda, A. Mani, CFD heat and mass transfer studies in a R134a-DMF bubble absorber with swirl flow entry of R134a vapour, Int. Compress. Eng. Refrig. Air Cond. High Perform. Build. Conf. (2016) 1–10.[35] A.A.S. Lima, A.A. V Ochoa, J.A.P. Da Costa, J.R. Henríquez, CFD simulation of heat and mass transfer in an absorber that uses the pair ammonia/water as a working fluid, Int. J. Refrig. 98 (2019) 514–525, https://doi.org/10.1016/j.ijrefrig.2018.11.010.[36] Y.T. Kang, T. Kashiwagi, R.N. Christensen, Ammonia-water bubble absorber with a plate heat exchanger, ASHRAE Trans., 1998, pp. 1565–1575.[37] J. Cerezo, Estudio del proceso de absorcion ´ con amoníaco-agua en intercambiadores de placas para equipos de refrigeracion ´ por absorcion, ´ Universitat Rovira i Virgili, 2006.[38] C. Amaris, Intensification of NH3 Bubble Absorption Process Using Advanced Surfaces and Carbon Nanotubes for NH3/LiNO3 Absorption Chillers, Universitat Rovira i Virgili, Tarragona, Spain, 2013. https://www.tdx.cat/handle/10803/128504.[39] C. Amaris, M. Bourouis, M. Vall`es, Effect of advanced surfaces on the ammonia absorption process with NH3/LiNO3 in a tubular bubble absorber, Int. J. Heat Mass Tran. 72 (2014) 544–552, https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.031.[40] ANSYS, ANSYS fluent theory guide, New York, USA. https://doi.org/10.1016/0140-3664(87)90311-2, 2013.[41] W.M.H.K. Versteeg, An Introduction to Computational Fluid Dynamics. The Finite Volume Method, 1st ed., New York, 1995.[42] S. Libotean, A. Martín, D. Salavera, M. Valles, X. Esteve, A. Coronas, Densities, viscosities, and heat capacities of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions between (293.15 and 353.15) K, J. Chem. Eng. Data 53 (2008) 2383–2388, https://doi.org/10.1021/je8003035.[43] S. Libotean, D. Salavera, M. Valles, X. Esteve, A. Coronas, Vapor-liquid equilibrium of ammonia + lithium nitrate + water and ammonia + lithium nitrate solutions from (293.15 to 353.15) K, J. Chem. Eng. Data 52 (2007) 1050–1055, https://doi.org/10.1021/je7000045.[44] Y. Cuenca, D. Salavera, A. Vernet, A.S. Teja, M. Vall`es, Thermal conductivity of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions over a wide range of concentrations and temperatures, Int. J. Refrig. 38 (2014) 333–340, https://doi.org/10.1016/j.ijrefrig.2013.08.010.[45] W. Haltenberger, Enthalpy-concentration charts from vapor pressure data, Ind. Eng. Chem. 31 (1939) 783–786, https://doi.org/10.1021/ie50354a032.[46] L.A. McNeely, Thermodynamic properties of aqueous solutions of lithium bromide, Build. Eng. 85 (1979) 413–434.PublicationORIGINALCFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3-LiNO3.pdfCFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3-LiNO3.pdfapplication/pdf3010154https://repositorio.cuc.edu.co/bitstreams/0558801e-557a-40ee-ba25-32ed97381049/download06e032044aa1c2c677050969d03517caMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/7843a646-9ad7-4e86-8f34-ed204eded9ff/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/960d3dea-e4e4-44fb-85d2-e703f6dc08ce/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILCFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3-LiNO3.pdf.jpgCFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3-LiNO3.pdf.jpgimage/jpeg48362https://repositorio.cuc.edu.co/bitstreams/3531034e-02ca-4d24-8880-42d0f9322b68/download2179407b98bf08024df4b794771ac882MD54TEXTCFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3-LiNO3.pdf.txtCFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3-LiNO3.pdf.txttext/plain56792https://repositorio.cuc.edu.co/bitstreams/f1d057b2-3896-43ea-b82a-f590dac4f77f/download6a975971f5e90b10f04493f2e4784d7bMD5511323/8771oai:repositorio.cuc.edu.co:11323/87712024-09-16 16:47:20.034http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==