Applying genetic algorithm for hybrid job shop scheduling in a cosmetic industry
This work considers the problem of scheduling a given set of jobs in a Flexible Job Shop in a cosmetic industry, located in Colombia, taking into account the natural complexity of the process and a lot of amount of variables involved, this problem is considered as NP-hard in the strong sense. Theref...
- Autores:
-
Macias, Edgar
Niebles, Fabricio
Jimenez, Genett
Neira Rodado, Dionicio
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/1167
- Acceso en línea:
- https://hdl.handle.net/11323/1167
https://repositorio.cuc.edu.co/
- Palabra clave:
- Scheduling
Genetic Algorithms
Cosmetic Industry
Hybrid Jobshop
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_de3038ac61325499104b00d9497bcda0 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/1167 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Applying genetic algorithm for hybrid job shop scheduling in a cosmetic industry |
title |
Applying genetic algorithm for hybrid job shop scheduling in a cosmetic industry |
spellingShingle |
Applying genetic algorithm for hybrid job shop scheduling in a cosmetic industry Scheduling Genetic Algorithms Cosmetic Industry Hybrid Jobshop |
title_short |
Applying genetic algorithm for hybrid job shop scheduling in a cosmetic industry |
title_full |
Applying genetic algorithm for hybrid job shop scheduling in a cosmetic industry |
title_fullStr |
Applying genetic algorithm for hybrid job shop scheduling in a cosmetic industry |
title_full_unstemmed |
Applying genetic algorithm for hybrid job shop scheduling in a cosmetic industry |
title_sort |
Applying genetic algorithm for hybrid job shop scheduling in a cosmetic industry |
dc.creator.fl_str_mv |
Macias, Edgar Niebles, Fabricio Jimenez, Genett Neira Rodado, Dionicio |
dc.contributor.author.spa.fl_str_mv |
Macias, Edgar Niebles, Fabricio Jimenez, Genett Neira Rodado, Dionicio |
dc.subject.eng.fl_str_mv |
Scheduling Genetic Algorithms Cosmetic Industry Hybrid Jobshop |
topic |
Scheduling Genetic Algorithms Cosmetic Industry Hybrid Jobshop |
description |
This work considers the problem of scheduling a given set of jobs in a Flexible Job Shop in a cosmetic industry, located in Colombia, taking into account the natural complexity of the process and a lot of amount of variables involved, this problem is considered as NP-hard in the strong sense. Therefore, it is possible to find and optimal solution in a reasonable computational time for only small instances, which in general, does not reflect the industrial reality. For that reason, it is proposed the use of metaheuristics as an alternative approach in order to determine, with a low computational effort, the best assignment of jobs in order to minimize the number of tardy jobs. This optimization objective will allow to company to improve their customer service. A Genetic Algorithm (GA) is proposed. Computational experiments are carried out comparing the proposed approach versus instances of literature by Chiang and Fu. Results show the efficiency of our GA Algorithm. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2018-11-16T21:23:55Z |
dc.date.available.none.fl_str_mv |
2018-11-16T21:23:55Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
978-150906465-6 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/1167 |
dc.identifier.doi.spa.fl_str_mv |
DOI: 10.1109/CoDIT.2017.8102732 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
978-150906465-6 DOI: 10.1109/CoDIT.2017.8102732 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/1167 https://repositorio.cuc.edu.co/ |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Proceedings of 2017 4th International Conference on Control, Decision and Information Technologies |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/27f21fb6-2363-4f10-83a6-87d86ea29eb5/download https://repositorio.cuc.edu.co/bitstreams/e6379fe4-54a6-4bd8-8d69-0d3fd3445cbc/download https://repositorio.cuc.edu.co/bitstreams/65e90249-cbf7-4bfd-a3d2-b44e9ab375bb/download https://repositorio.cuc.edu.co/bitstreams/5a0da6a3-bb2c-4839-856f-4da4316c8c70/download |
bitstream.checksum.fl_str_mv |
86f9aa9b99055c5acafc818043d2e775 8a4605be74aa9ea9d79846c1fba20a33 6440287cded9050b310f6635a087576b f6434753986cef486b2f088eacb49f24 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760850277498880 |
spelling |
Macias, EdgarNiebles, FabricioJimenez, GenettNeira Rodado, Dionicio2018-11-16T21:23:55Z2018-11-16T21:23:55Z2017978-150906465-6https://hdl.handle.net/11323/1167DOI: 10.1109/CoDIT.2017.8102732Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This work considers the problem of scheduling a given set of jobs in a Flexible Job Shop in a cosmetic industry, located in Colombia, taking into account the natural complexity of the process and a lot of amount of variables involved, this problem is considered as NP-hard in the strong sense. Therefore, it is possible to find and optimal solution in a reasonable computational time for only small instances, which in general, does not reflect the industrial reality. For that reason, it is proposed the use of metaheuristics as an alternative approach in order to determine, with a low computational effort, the best assignment of jobs in order to minimize the number of tardy jobs. This optimization objective will allow to company to improve their customer service. A Genetic Algorithm (GA) is proposed. Computational experiments are carried out comparing the proposed approach versus instances of literature by Chiang and Fu. Results show the efficiency of our GA Algorithm.Macias, Edgar-3831fd3b-d7e7-40c5-8c18-081a1905e92b-0Niebles, Fabricio-9c5cd288-598a-41ab-9df1-2509a53f8852-0Jimenez, Genett-c617c38d-cd1c-4e6d-86d7-f49de63ce897-0Neira Rodado, Dionicio-0000-0003-0837-7083-600Proceedings of 2017 4th International Conference on Control, Decision and Information TechnologiesAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2SchedulingGenetic AlgorithmsCosmetic IndustryHybrid JobshopApplying genetic algorithm for hybrid job shop scheduling in a cosmetic industryArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALApplying genetic algorithm for hybrid job shop scheduling.pdfApplying genetic algorithm for hybrid job shop scheduling.pdfapplication/pdf6070https://repositorio.cuc.edu.co/bitstreams/27f21fb6-2363-4f10-83a6-87d86ea29eb5/download86f9aa9b99055c5acafc818043d2e775MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/e6379fe4-54a6-4bd8-8d69-0d3fd3445cbc/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILApplying genetic algorithm for hybrid job shop scheduling.pdf.jpgApplying genetic algorithm for hybrid job shop scheduling.pdf.jpgimage/jpeg39900https://repositorio.cuc.edu.co/bitstreams/65e90249-cbf7-4bfd-a3d2-b44e9ab375bb/download6440287cded9050b310f6635a087576bMD54TEXTApplying genetic algorithm for hybrid job shop scheduling.pdf.txtApplying genetic algorithm for hybrid job shop scheduling.pdf.txttext/plain1224https://repositorio.cuc.edu.co/bitstreams/5a0da6a3-bb2c-4839-856f-4da4316c8c70/downloadf6434753986cef486b2f088eacb49f24MD5511323/1167oai:repositorio.cuc.edu.co:11323/11672024-09-17 14:10:54.363open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |