A review of the antibiotic ofloxacin: Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology

It is estimated that the growth of the population, the augmented expectancy of life, and the emergence of new pandemics will significantly increase the consumption of pharmaceutical drugs in the coming years. Due to its high efficiency, the group of fluoroquinolones, where the antibiotic ofloxacin h...

Full description

Autores:
georgin, jordana
Dison S.P., Franco
Gindri Ramos, Claudete
Allasia Piccilli, Daniel Gustavo
Lima, Eder C.
Sher, Farooq
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10433
Acceso en línea:
https://hdl.handle.net/11323/10433
https://repositorio.cuc.edu.co/
Palabra clave:
Adsorption
Ofloxacin hydrochloride
Ecotoxicology
Aquatic environment
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_de073b4f25f2ce8150d550a9b23c5200
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10433
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv A review of the antibiotic ofloxacin: Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology
title A review of the antibiotic ofloxacin: Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology
spellingShingle A review of the antibiotic ofloxacin: Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology
Adsorption
Ofloxacin hydrochloride
Ecotoxicology
Aquatic environment
title_short A review of the antibiotic ofloxacin: Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology
title_full A review of the antibiotic ofloxacin: Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology
title_fullStr A review of the antibiotic ofloxacin: Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology
title_full_unstemmed A review of the antibiotic ofloxacin: Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology
title_sort A review of the antibiotic ofloxacin: Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology
dc.creator.fl_str_mv georgin, jordana
Dison S.P., Franco
Gindri Ramos, Claudete
Allasia Piccilli, Daniel Gustavo
Lima, Eder C.
Sher, Farooq
dc.contributor.author.none.fl_str_mv georgin, jordana
Dison S.P., Franco
Gindri Ramos, Claudete
Allasia Piccilli, Daniel Gustavo
Lima, Eder C.
Sher, Farooq
dc.subject.proposal.eng.fl_str_mv Adsorption
Ofloxacin hydrochloride
Ecotoxicology
Aquatic environment
topic Adsorption
Ofloxacin hydrochloride
Ecotoxicology
Aquatic environment
description It is estimated that the growth of the population, the augmented expectancy of life, and the emergence of new pandemics will significantly increase the consumption of pharmaceutical drugs in the coming years. Due to its high efficiency, the group of fluoroquinolones, where the antibiotic ofloxacin hydrochloride (OFL) is found, is widely used to combat bacterial infections in humans and animals. The big problem is concentrated in the effluents generated by industries and hospitals. Additionally, most of the drug is not absorbed by the body and is released directly into domestic effluents. On the other hand, treatment stations have removal limitations for small concentrations. This review analyzed all adsorbents developed and used in OFL removal, listing the main parameters influencing the process. In the end, the other existing technologies in the literature and the gaps and future prospects were described. OFL adsorption in most studies occurs under basic conditions (pH between 6.5 and 8). The increase in concentration provides an increase in adsorption capacity. The adsorbents analyzed showed moderate kinetics, reaching equilibrium before 250 min for most studies. The pseudo-second-order model showed the best statistical fit. In most of the studies, the increase in temperature (313, 315, and 328 K) favored the adsorption of OFL. The Langmuir monolayer model represented most of the isothermal studies. The adsorption capacity varied from 3702 to 0.3986 mg g−1. In this aspect, factors such as OFL concentration and textural characteristics of the adsorbent exerted great influence. The thermodynamic parameters were compatible with the isothermal data, where the endothermic nature of the studies was confirmed. Physical interactions (π-π stacking, H bonding, hydrophobic and electrostatic interactions) governed the main adsorption mechanism. Although some studies stated that chemosorption occurred, thermodynamic parameters cannot validate the same. Coexisting ions in the solution can positively and negatively influence OFL adsorption. The listed studies are all applied to batch processes, where fixed bed studies should be better explored. From this review, it can be concluded that adsorption is a promising technique for OFL removal. However, it is extremely necessary to break the laboratory scale barrier and analyze possible conditions for applying these materials in treating real effluents together with combining technologies.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-31T22:07:58Z
dc.date.available.none.fl_str_mv 2023-08-31T22:07:58Z
2025
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Jordana Georgin, Dison Stracke Pfingsten Franco, Claudete Gindri Ramos, Daniel G.A. Piccilli, Eder C. Lima, Farooq Sher, A review of the antibiotic ofloxacin: Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology, Chemical Engineering Research and Design, Volume 193, 2023, Pages 99-120, ISSN 0263-8762, https://doi.org/10.1016/j.cherd.2023.03.025
dc.identifier.issn.spa.fl_str_mv 0263-8762
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10433
dc.identifier.doi.none.fl_str_mv 10.1016/j.cherd.2023.03.025
dc.identifier.eissn.spa.fl_str_mv 1744-3563
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Jordana Georgin, Dison Stracke Pfingsten Franco, Claudete Gindri Ramos, Daniel G.A. Piccilli, Eder C. Lima, Farooq Sher, A review of the antibiotic ofloxacin: Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology, Chemical Engineering Research and Design, Volume 193, 2023, Pages 99-120, ISSN 0263-8762, https://doi.org/10.1016/j.cherd.2023.03.025
0263-8762
10.1016/j.cherd.2023.03.025
1744-3563
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/10433
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Chemical Engineering Research and Design
dc.relation.references.spa.fl_str_mv Gonçalves, L.R., Roberto, M.M., Braga, A.P.A., Barozzi, G.B., Canizela, G.S., de Souza Gigeck, L., de Souza, L.R., MarinMorales, M.A., 2022. Another casualty of the SARS-CoV-2 pandemic—the environmental impact. Environ. Sci. Pollut. Res. 29, 1696–1711. https://doi.org/10.1007/s11356-021-17098-x
Klein, E.Y., Van Boeckel, T.P., Martinez, E.M., Pant, S., Gandra, S., Levin, S.A., Goossens, H., Laxminarayan, R., 2018. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. U. S. A. 115, E3463–E3470. https://doi.org/10.1073/pnas.1717295115
Van Boeckel, T.P., Brower, C., Gilbert, M., Grenfell, B.T., Levin, S.A., Robinson, T.P., Teillant, A., Laxminarayan, R., 2015. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. U. S. A. 112, 5649–5654. https://doi.org/10.1073/pnas.1503141112
Goyne, K.W., Chorover, J., Kubicki, J.D., Zimmerman, A.R., Brantley, S.L., 2005. Sorption of the antibiotic ofloxacin to mesoporous and nonporous alumina and silica. J. Colloid Interface Sci. 283, 160–170. https://doi.org/10.1016/j.jcis.2004. 08.150
C.U. Chukwudi, Harvey_Ions&FS_ScanElectronMicrosc1972II, 409–419.1980.pdf, 60, 2016: 4433–4441. https://doi.org/10.1128/ AAC.00594–16.Address.
Cliquet, P., Cox, E., Haasnoot, W., Schacht, E., Goddeeris, B.M., 2003. Generation of group-specific antibodies against sulfonamides. J. Agric. Food Chem. 51, 5835–5842. https://doi.org/ 10.1021/jf034316c
Dinos, G.P., 2017. The macrolide antibiotic renaissance. Br. J. Pharmacol. 174, 2967–2983. https://doi.org/10.1111/bph.13936
Balsalobre, L., Blanco, A., Alarcón, T., 2019. Beta-lactams, Antibiot. Drug Resist 57–72. https://doi.org/10.1002/ 9781119282549.ch3
Park, H.R., Kim, T.H., Bark, K.M., 2002. Physicochemical properties of quinolone antibiotics in various environments. Eur. J. Med. Chem. 37, 443–460. https://doi.org/10.1016/S0223-5234(02) 01361-2
Zhang, D., Wang, Y., 2019. Functional protein-based bioinspired nanomaterials: From coupled proteins, synthetic approaches, nanostructures to applications. Int. J. Mol. Sci. 20. https://doi. org/10.3390/ijms20123054
Kong, Q., He, X., Shu, L., Miao, M., 2017. Ofloxacin adsorption by activated carbon derived from luffa sponge: Kinetic, isotherm, and Process Saf. Environ. Prot. 112, 254–264. https://doi.org/ 10.1016/j.psep.2017.05.011
De Andrade, J.R., Oliveira, M.F., Da Silva, M.G.C., Vieira, M.G.A., 2018. Adsorption of Pharmaceuticals from Water and Wastewater Using Nonconventional Low-Cost Materials: A Review. Ind. Eng. Chem. Res. 57, 3103–3127. https://doi.org/10. 1021/acs.iecr.7b05137
Al-Omar, M.A., 2008. Ofloxacin. https://doi.org/10.1016/S1871- 5125(09)34006-6
Deng, C., Pan, X., Zhang, D., 2015. Influence of ofloxacin on photosystems I and II activities of Microcystis aeruginosa and the potential role of cyclic electron flow. J. Biosci. Bioeng. 119, 159–164. https://doi.org/10.1016/j.jbiosc.2014.07.014
de Ilurdoz, M.S., Sadhwani, J.J., Reboso, J.V., 2022. Antibiotic removal processes from water & wastewater for the protection of the aquatic environment - a review. J. Water Process Eng. 45, 102474. https://doi.org/10.1016/j.jwpe.2021.102474
Tong, X., Wang, X., He, X., Xu, K., Mao, F., 2019. Effects of ofloxacin on nitrogen removal and microbial community structure in a constructed wetland. Sci. Total Environ. 656, 503–511. https://doi.org/10.1016/j.scitotenv.2018.11.358
Feng, M., Wang, Z., Dionysiou, D.D., Sharma, V.K., 2018a. Metalmediated oxidation of fluoroquinolone antibiotics in water: A review on kinetics, transformation products, and toxicity assessment. J. Hazard. Mater. 344, 1136–1154. https://doi.org/10. 1016/j.jhazmat.2017.08.067
Wen, X.J., Niu, C.G., Zhang, L., Liang, C., Zeng, G.M., 2018. A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: possible degradation pathways, mineralization activity, and an in-depth mechanism insight. Appl. Catal. B Environ. 221, 701–714. https://doi.org/10.1016/j. apcatb.2017.09.060
Sodré, F.F., Montagner, C.C., Locatelli, M.A.F., Jardim, W.F., 2007. Ocorrência de Interferentes Endócrinos e Produtos Farmacêuticos em Águas Superficiais da Região de Campinas (SP, Brasil). J. Braz. Soc. Ecotoxicol. 2, 187–196. https://doi.org/ 10.5132/jbse.2007.02.012
Golet, E.M., Xifra, I., Siegrist, H., Alder, A.C., Giger, W., 2003. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ. Sci. Technol. 37, 3243–3249. https://doi.org/10.1021/es0264448
Wang, X., Zhao, Y., Sun, Y., Liu, D., 2022. Highly effective removal of ofloxacin from water with copper-doped ZIF-8. Molecules 27, 1–13. https://doi.org/10.3390/molecules27134312
Babić, S., Periša, M., Škorić, I., 2013. Photolytic degradation of norfloxacin, enrofloxacin, and ciprofloxacin in various aqueous media. Chemosphere 91, 1635–1642. https://doi.org/10. 1016/j.chemosphere.2012.12.072
Maged, A., Iqbal, J., Kharbish, S., Ismael, I.S., Bhatnagar, A., 2020. Tuning tetracycline removal from aqueous solution onto activated 2:1 layered clay mineral: Characterization, sorption and mechanistic studies. J. Hazard. Mater. 384, 121320. https:// doi.org/10.1016/j.jhazmat.2019.121320
Yamaguchi, T., Okihashi, M., Harada, K., Konishi, Y., Uchida, K., Do, M.H.N., Bui, H.D.T., Nguyen, T.D., Do Nguyen, P., Van Chau, V., Van Dao, K.T., Nguyen, H.T.N., Kajimura, K., Kumeda, Y., Bui, C.T., Vien, M.Q., Le, N.H., Hirata, K., Yamamoto, Y., 2015. Antibiotic residue monitoring results for pork, chicken, and beef samples in Vietnam in 2012-2013. J. Agric. Food Chem. 63, 5141–5145. https://doi.org/10.1021/ jf505254y
Ahmed, M.B., Zhou, J.L., Ngo, H.H., Guo, W., 2015. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total Environ. 532, 112–126. https://doi.org/10. 1016/j.scitotenv.2015.05.130
Kemper, N., 2008. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol. Indic. 8, 1–13. https://doi.org/10. 1016/j.ecolind.2007.06.002
Feng, Z., Odelius, K., Rajarao, G.K., Hakkarainen, M., 2018b. Microwave carbonized cellulose for trace pharmaceutical adsorption. Chem. Eng. J. 346, 557–566. https://doi.org/10.1016/j. cej.2018.04.014
Hamscher, G., Pawelzick, H.T., Sczesny, S., Nau, H., Hartung, J., 2003. Antibiotics in dust originating from a pig-fattening farm: A new source of health hazard for farmers. Environ. Health Perspect. 111, 1590–1594. https://doi.org/10.1289/ehp.6288
Paul, R., Gerling, S., Berger, M., Blümlein, K., Jäckel, U., Schuchardt, S., 2019. Occupational Exposure to Antibiotics in Poultry Feeding Farms. Ann. Work Expo. Heal. 63, 821–827. https://doi.org/10.1093/annweh/wxz047
Langdon, A., Crook, N., Dantas, G., 2016. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med 8. https://doi.org/10.1186/s13073-016-0294-z
Tian, X., Jin, H., Nie, Y., Zhou, Z., Yang, C., Li, Y., Wang, Y., 2017. Heterogeneous Fenton-like degradation of ofloxacin over a wide pH range of 3.6–10.0 over modified mesoporous iron oxide. Chem. Eng. J. 328, 397–405. https://doi.org/10.1016/j.cej. 2017.07.049
Al-Musawi, T.J., Yilmaz, M., Ramírez-Coronel, A.A., Al-Awsi, G.R.L., Alwaily, E.R., Asghari, A., Balarak, D., 2023. Degradation of amoxicillin under a UV or visible light photocatalytic treatment process using Fe2O3/bentonite/TiO2: Performance, kinetic, degradation pathway, energy consumption, and toxicology studies. Opt. (Stuttg. ) 272. https://doi.org/10.1016/j. ijleo.2022.170230
Kyzas, G.Z., Mengelizadeh, N., Khodadadi Saloot, M., Mohebi, S., Balarak, D., 2022. Sonochemical degradation of ciprofloxacin by hydrogen peroxide and persulfate activated by ultrasound and ferrous ions. Colloids Surf. A Physicochem. Eng. Asp. 642, 128627. https://doi.org/10.1016/j.colsurfa.2022.128627
Wang, L., Li, Y., Ben, W., Hu, J., Cui, Z., Qu, K., Qiang, Z., 2019. Insitu sludge ozone-reduction process for effective removal of fluoroquinolone antibiotics in wastewater treatment plants. Sep. Purif. Technol. 213, 419–425. https://doi.org/10.1016/j. seppur.2018.12.062
Chen, H.Y., Li, X.K., Meng, L., Liu, G., Ma, X., Piao, C., Wang, K., 2022. The fate and behavior mechanism of antibiotic resistance genes and microbial communities in anaerobic reactors treating oxytetracycline manufacturing wastewater. J. Hazard. Mater. 424, 127352. https://doi.org/10.1016/j.jhazmat. 2021.127352
Choi, S., Shin, J., Chae, K.J., Kim, Y.M., 2020. Mitigation via physiochemically enhanced primary treatment of antibiotic resistance genes in influent from a municipal wastewater treatment plant. Sep. Purif. Technol. 247, 116946. https://doi. org/10.1016/j.seppur.2020.116946
Liang, C., Wei, D., Zhang, S., Ren, Q., Shi, J., Liu, L., 2021. Removal of antibiotic resistance genes from swine wastewater by membrane filtration treatment. Ecotoxicol. Environ. Saf. 210, 111885. https://doi.org/10.1016/j.ecoenv.2020.111885
Thakur, A., Sharma, N., Mann, A., 2020a. Removal of ofloxacin hydrochloride and paracetamol from aqueous solutions: Binary mixtures and competitive adsorption. Mater. Today Proc. 28, 1514–1519. https://doi.org/10.1016/j.matpr.2020.04.833
Jawad, A.H., Kadhum, A.M., Ngoh, Y.S., 2018. Applicability of dragon fruit (Hylocereus polyrhizus) peels as low-cost biosorbent for adsorption of methylene blue from aqueous solution: Kinetics, equilibrium and thermodynamics studies. Desalin. Water Treat. 109, 231–240. https://doi.org/10.5004/ dwt.2018.21976
Franco, D.S.P., Georgin, J., Lima, E.C., Silva, L.F.O., 2022a. Journal of Water Process Engineering Advances made in removing paraquat herbicide by adsorption technology: A review. J. Water Process Eng. 49, 102988. https://doi.org/10.1016/j.jwpe. 2022.102988
Georgin, J., Franco, D.S.P., Da Boit Martinello, K., Lima, E.C., Silva, L.F.O., 2022a. A review of the toxicology presence and removal of ketoprofen through adsorption technology. J. Environ. Chem. Eng. 10, 107798. https://doi.org/10.1016/j.jece.2022. 107798
Ghosal, P.S., Gupta, A.K., 2017. Determination of thermodynamic parameters from Langmuir isotherm constant-revisited. J. Mol. Liq. 225, 137–146. https://doi.org/10.1016/j.molliq.2016.11. 058
Gupta, N., Poddar, K., Sarkar, D., Kumari, N., Padhan, B., Sarkar, A., 2019. Fruit waste management by pigment production and utilization of residual as bioadsorbent. J. Environ. Manag. 244, 138–143. https://doi.org/10.1016/j.jenvman.2019.05.055
Foo, K.Y., Hameed, B.H., 2009. Utilization of rice husk ash as novel adsorbent: A judicious recycling of the colloidal agricultural waste. Adv. Colloid Interface Sci. 152, 39–47. https://doi.org/10. 1016/j.cis.2009.09.005
Worch, E., 2008. Fixed-bed adsorption in drinking water treatment: A critical review on models and parameter estimation. J. Water Supply Res. Technol. 57, 171–183. https://doi.org/10. 2166/aqua.2008.100
Ma, P., Liu, Q., Liu, P., Li, H., Han, X., Liu, L., Zou, W., 2021. Green synthesis of Fe/Cu oxides composite particles stabilized by pine needle extract and investigation of their adsorption activity for norfloxacin and ofloxacin. J. Dispers. Sci. Technol. 42, 1350–1367. https://doi.org/10.1080/01932691.2020.1764367
Akhtar, L., Ahmad, M., Iqbal, S., Abdelhafez, A.A., Mehran, M.T., 2021. Biochars’ adsorption performance towards moxifloxacin and ofloxacin in aqueous solution: Role of pyrolysis temperature and biomass type. Environ. Technol. Innov. 24, 101912. https://doi.org/10.1016/j.eti.2021.101912
Liu, Y., Yuan, Y., Wang, Z., Wen, Y., Liu, L., Wang, T., Xie, X., 2022. Removal of ofloxacin from water by natural ilmenite-biochar composite: A study on the synergistic adsorption mechanism of multiple effects. Bioresour. Technol. 363, 127938. https:// doi.org/10.1016/j.biortech.2022.127938
Dhiman, N., 2022. Analysis of non-competitive and competitive adsorption behaviour of ciprofloxacin hydrochloride and ofloxacin hydrochloride from aqueous solution using Oryza sativa husk ash (single and binary adsorption of antibiotics). Clean Mater 5, 100108. https://doi.org/10.1016/j.clema.2022. 100108
Rueangchai, N., Noisong, P., Sansuk, S., 2023. A facile synthesis of hydroxyapatite and hydroxyapatite/activated carbon composite for paracetamol and ofloxacin removal. Mater. Today Commun. 34, 105326. https://doi.org/10.1016/j.mtcomm.2023. 105326
Sturini, M., Puscalau, C., Guerra, G., Maraschi, F., Bruni, G., Monteforte, F., Profumo, A., Capsoni, D., 2021. Combined layer-by-layer/hydrothermal synthesis of fe3o4@mil-100(Fe) for ofloxacin adsorption from environmental waters. Nanomaterials 11. https://doi.org/10.3390/nano11123275
Yu, R., Wu, Z., 2022. The adsorption property of in-situ synthesis of MOF in alginate gel for ofloxacin in the wastewater. Environ. Technol. (U. Kingd. ). ( 1–12. https://doi.org/10.1080/ 09593330.2022.2029579
He, S., Chen, Q., Chen, G., Shi, G., Ruan, C., Feng, M., Ma, Y., Jin, X., Liu, X., Du, C., He, C., Dai, H., Cao, C., 2022. N-doped activated carbon for high-efficiency ofloxacin adsorption. Microporous Mesoporous Mater. 335, 111848. https://doi.org/10.1016/j. micromeso.2022.111848
Yu, R., Wu, Z., 2020. High adsorption for ofloxacin and reusability by the use of ZIF-8 for wastewater treatment. Microporous Mesoporous Mater. 308, 110494. https://doi.org/10.1016/j. micromeso.2020.110494
Sulaiman, N.S., Mohamad Amini, M.H., Danish, M., Sulaiman, O., Hashim, R., Demirel, S., Demirel, G.K., 2022. Characterization and ofloxacin adsorption studies of chemically modified activated carbon from cassava stem. Mater. (Basel) 15. https:// doi.org/10.3390/ma15155117
Antonelli, R., Martins, F.R., Malpass, G.R.P., da Silva, M.G.C., Vieira, M.G.A., 2020. Ofloxacin adsorption by calcined Verdelodo bentonite clay: Batch and fixed bed system evaluation. J. Mol. Liq. 315, 113718. https://doi.org/10.1016/j.molliq.2020. 113718
Jaswal, A., Kaur, M., Singh, S., Kansal, S.K., Umar, A., Garoufalis, C.S., Baskoutas, S., 2021. Adsorptive removal of antibiotic ofloxacin in aqueous phase using rGO-MoS2 heterostructure. J. Hazard. Mater. 417, 125982. https://doi.org/10.1016/j. jhazmat.2021.125982
Hao, J., Wu, L., Lu, X., Zeng, Y., Jia, B., Luo, T., He, S., Liang, L., 2022. A stable Fe/Co bimetallic modified biochar for ofloxacin removal from water: adsorption behavior and mechanisms. RSC Adv. 12, 31650–31662. https://doi.org/10.1039/d2ra05334a
Ye, M., Fang, Y., Xiang, H., Liu, H., Yan, H., Wang, B., Lin, X., Liang, J., Qian, W., 2022. Preparation and modification of bagasse biochar unveiling ofloxacin wastewater adsorption. Environ. Technol. (U. Kingd. ) 0, 1–12. https://doi.org/10.1080/09593330. 2022.2152222
Verma, P., Das, T., Kumar, P., Das, S., 2022. Surface-passivated rGO@CuO/6A5N2TU colloidal heterostructures for efficient removal of ofloxacin from contaminated water through dualmode complexation: insights into kinetics and adsorption isotherm model study. Appl. Nanosci. https://doi.org/10.1007/ s13204-022-02736-8
Singh, V., Srivastava, V.C., 2022. Transformation of textile dyeing industrial sludge into economical biochar for sorption of ofloxacin: equilibrium, kinetic, and cost analysis. Biomass-.-. Convers. Biorefinery. https://doi.org/10.1007/s13399-022-02554-6
Awasthi, P., Bangari, R.S., Sinha, N., BNNSs, P.V.D.F., 2023. nanocomposite membrane for simultaneous removal of Tetracycline and Ofloxacin. Water, J. Mol. Liq. 370, 120970. https://doi.org/10.1016/j.molliq.2022.120970
Gao, B., Chang, Q., Yang, H., 2021. Selective adsorption of ofloxacin and ciprofloxacin from a binary system using ligninbased adsorbents: Quantitative analysis, adsorption mechanisms, and structure-activity relationship. Sci. Total Environ. 765, 144427. https://doi.org/10.1016/j.scitotenv.2020. 144427
Yang, Y., Zhong, Z., Li, J., Du, H., Li, Z., 2022. Efficient with lowcost removal and adsorption mechanisms of norfloxacin, ciprofloxacin, and ofloxacin on modified thermal kaolin: experimental and theoretical studies. J. Hazard. Mater. 430, 128500. https://doi.org/10.1016/j.jhazmat.2022.128500
Qin, X., Zhong, X., Wang, B., Wang, G., Liu, F., Weng, L., 2023. Fractionation of levofloxacin and ofloxacin during their transport in NOM-goethite: Batch and column studies. Environ. Pollut. 316, 120542. https://doi.org/10.1016/j.envpol. 2022.120542
Le-Minh, N., Khan, S.J., Drewes, J.E., Stuetz, R.M., 2010. Fate of antibiotics during municipal water recycling treatment processes. Water Res 44, 4295–4323. https://doi.org/10.1016/j. watres.2010.06.020
Cheng, D., Liu, X., Zhao, S., Cui, B., Bai, J., Li, Z., 2017. Influence of the natural colloids on the multi-phase distributions of antibiotics in the surface water from the largest lake in North China. Sci. Total Environ. 578, 649–659. https://doi.org/10.1016/ j.scitotenv.2016.11.012
Carbajo, J.B., Petre, A.L., Rosal, R., Herrera, S., Letón, P., GarcíaCalvo, E., Fernández-Alba, A.R., Perdigón-Melón, J.A., 2015. Continuous ozonation treatment of ofloxacin: Transformation products, water matrix effect and aquatic toxicity. J. Hazard. Mater. 292, 34–43. https://doi.org/10.1016/j.jhazmat.2015.02. 075
Ashfaq, M., Khan, K.N., Rasool, S., Mustafa, G., Saif-Ur-Rehman, M., Nazar, M.F., Sun, Q., Yu, C.P., 2016. Occurrence and ecological risk assessment of fluoroquinolone antibiotics in hospital waste of Lahore, Pakistan. Environ. Toxicol. Pharmacol. 42, 16–22. https://doi.org/10.1016/j.etap.2015.12.015
Chen, P., Blaney, L., Cagnetta, G., Huang, J., Wang, B., Wang, Y., Deng, S., Yu, G., 2019. Degradation of Ofloxacin by Perylene Diimide Supramolecular Nanofiber Sunlight-Driven Photocatalysis. Environ. Sci. Technol. 53, 1564–1575. https:// doi.org/10.1021/acs.est.8b05827
Cherukuri, P.K., Songkiatisak, P., Ding, F., Jault, J.M., Xu, X.H.N., 2020. Antibiotic Drug Nanocarriers for Probing of Multidrug ABC Membrane Transporter of Bacillus subtilis. ACS Omega 5, 1625–1633. https://doi.org/10.1021/acsomega.9b03698
Sharma, P., Kumar, N., Chauhan, R., Singh, V., Srivastava, V.C., Bhatnagar, R., 2020. Growth of hierarchical ZnO nano flower on large functionalized rGO sheet for superior photocatalytic mineralization of antibiotic. Chem. Eng. J. 392, 123746. https:// doi.org/10.1016/j.cej.2019.123746
Chang, X., Meyer, M.T., Liu, X., Zhao, Q., Chen, H., an Chen, J., Qiu, Z., Yang, L., Cao, J., Shu, W., 2010. Determination of antibiotics in sewage from hospitals, nursery, and slaughterhouse, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China. Environ. Pollut. 158, 1444–1450. https://doi.org/10.1016/j.envpol.2009.12.034
Kovalakova, P., Cizmas, L., McDonald, T.J., Marsalek, B., Feng, M., Sharma, V.K., 2020. Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere 251, 126351. https://doi.org/10.1016/j.chemosphere.2020.126351
Fernandes, M.J., Paíga, P., Silva, A., Llaguno, C.P., Carvalho, M., Vázquez, F.M., Delerue-Matos, C., 2020. Antibiotics and antidepressants occurrence in surface waters and sediments collected in the north of Portugal. Chemosphere 239. https:// doi.org/10.1016/j.chemosphere.2019.124729
Andreozzi, R., Marotta, R., Paxéus, N., 2003. Pharmaceuticals in STP effluents and their solar photodegradation in the aquatic environment. Chemosphere 50, 1319–1330. https://doi.org/10. 1016/S0045-6535(02)00769-5
Nakata, H., Kannan, K., Jones, P.D., Giesy, J.P., 2005. Determination of fluoroquinolone antibiotics in wastewater effluents by liquid chromatography-mass spectrometry and fluorescence detection. Chemosphere 58, 759–766. https://doi. org/10.1016/j.chemosphere.2004.08.097
Larsson, D.G.J., de Pedro, C., Paxeus, N., 2007. Effluent from drug manufacturers contains extremely high levels of pharmaceuticals. J. Hazard. Mater. 148, 751–755. https://doi.org/10. 1016/j.jhazmat.2007.07.008
Quoc Tuc, D., Elodie, M.G., Pierre, L., Fabrice, A., Marie-Jeanne, T., Martine, B., Joelle, E., Marc, C., 2017. Fate of antibiotics from the hospital and domestic sources in a sewage network. Sci. Total Environ. 575, 758–766. https://doi.org/10.1016/j.scitotenv. 2016.09.118
Yang, X., Flowers, R.C., Weinberg, H.S., Singer, P.C., 2011. Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water Res 45, 5218–5228. https://doi.org/10.1016/j. watres.2011.07.026
Chen, H., Jing, L., Teng, Y., Wang, J., 2018. Characterization of antibiotics in a large-scale river system of China: Occurrence pattern, spatiotemporal distribution, and environmental risks. Sci. Total Environ. 618, 409–418. https://doi.org/10.1016/j. scitotenv.2017.11.054
Camotti Bastos, M., Rheinheimer dos Santos, D., Aubertheau, É., de Castro Lima, J.A.M., Le Guet, T., Caner, L., Mondamert, L., Labanowski, J., 2018. Antibiotics and microbial resistance in Brazilian soils under manure application. L. Degrad. Dev. 29, 2472–2484. https://doi.org/10.1002/ldr.2964
Zhou, L.J., Ying, G.G., Zhao, J.L., Yang, J.F., Wang, L., Yang, B., Liu, S., 2011. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environ. Pollut. 159, 1877–1885. https://doi.org/10.1016/j.envpol.2011.03.034
Wu, M.H., Que, C.J., Xu, G., Sun, Y.F., Ma, J., Xu, H., Sun, R., Tang, L., 2016. Occurrence, fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water. Ecotoxicol. Environ. Saf. 132, 132–139. https://doi.org/ 10.1016/j.ecoenv.2016.06.006
Zhang, B., Han, X., Gu, P., Fang, S., Bai, J., 2017. Response surface methodology approach for optimization of ciprofloxacin adsorption using activated carbon derived from the residue of desilicated rice husk. J. Mol. Liq. 238, 316–325. https://doi.org/ 10.1016/j.molliq.2017.04.022
Samaraweera, D.N.D., Liu, X., Zhong, G., Priyadarshana, T., Naseem Malik, R., Zhang, G., Khorram, M.S., Zhu, Z., Peng, X., 2019. Antibiotics in two municipal sewage treatment plants in Sri Lanka: Occurrence, consumption and removal efficiency. Emerg. Contam. 5, 272–278. https://doi.org/10.1016/j.emcon. 2019.08.001
Aydin, S., Aydin, M.E., Ulvi, A., Kilic, H., 2019. Antibiotics in hospital effluents: occurrence, contribution to urban wastewater, removal in a wastewater treatment plant, and environmental risk assessment. Environ. Sci. Pollut. Res. 26, 544–558. https:// doi.org/10.1007/s11356-018-3563-0
Bu, Q., Wang, B., Huang, J., Deng, S., Yu, G., 2013. Pharmaceuticals and personal care products in the aquatic environment in China: A review. J. Hazard. Mater. 262, 189–211. https://doi.org/ 10.1016/j.jhazmat.2013.08.040
Riaz, L., Mahmood, T., Khalid, A., Rashid, A., Ahmed Siddique, M.B., Kamal, A., Coyne, M.S., 2018. Fluoroquinolones (FQs) in the environment: A review on their abundance, sorption, and toxicity in soil. Chemosphere 191, 704–720. https://doi.org/10. 1016/j.chemosphere.2017.10.092
Lin, A.Y.C., Yu, T.H., Lin, C.F., 2008. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere 74, 131–141. https://doi.org/10.1016/j.chemosphere.2008.08.027
Tran, N.H., Hoang, L., Nghiem, L.D., Nguyen, N.M.H., Ngo, H.H., Guo, W., Trinh, Q.T., Mai, N.H., Chen, H., Nguyen, D.D., Ta, T.T., Gin, K.Y.H., 2019. Occurrence and risk assessment of multiple classes of antibiotics in urban canals and lakes in Hanoi, Vietnam. Sci. Total Environ. 692, 157–174. https://doi. org/10.1016/j.scitotenv.2019.07.092
Guerra, P., Kim, M., Shah, A., Alaee, M., Smyth, S.A., 2014. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes. Sci. Total Environ. 473-474, 235–243. https://doi.org/10.1016/j.scitotenv.2013.12.008
Minh, T.B., Leung, H.W., Loi, I.H., Chan, W.H., So, M.K., Mao, J.Q., Choi, D., Lam, J.C.W., Zheng, G., Martin, M., Lee, J.H.W., Lam, P.K.S., Richardson, B.J., 2009. Antibiotics in the Hong Kong metropolitan area: Ubiquitous distribution and fate in Victoria
Harbour. Mar. Pollut. Bull. 58, 1052–1062. https://doi.org/10. 1016/j.marpolbul.2009.02.004
Kim, H., Hwang, Y.S., Sharma, V.K., 2014. Adsorption of antibiotics and iopromide onto single-walled and multi-walled carbon nanotubes. Chem. Eng. J. 255, 23–27. https://doi.org/10. 1016/j.cej.2014.06.035
Hartmann, A., Alder, A.C., Koller, T., Widmer, R.M., 1998. Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital wastewater. Environ. Toxicol. Chem. 17, 377–382. https://doi.org/10.1897/ 1551-5028(1998)017<0377:IOFAAT>2.3.CO;2
Gattey, D.M., 2007. Toxicology, Garner Klintworth’s Pathobiol. Ocul. Dis. Part B, Third Ed. 1079–1090. https://doi.org/10.5005/ jp/books/14224_17
Rusch, M., Spielmeyer, A., Zorn, H., Hamscher, G., 2019. Degradation and transformation of fluoroquinolones by microorganisms with special emphasis on ciprofloxacin. Appl. Microbiol. Biotechnol. 103, 6933–6948. https://doi.org/10.1007/ s00253-019-10017-8
Xiao, K.Q., Li, B., Ma, L., Bao, P., Zhou, X., Zhang, T., Zhu, Y.G., 2016. Metagenomic profiles of antibiotic resistance genes in paddy soils from South China. FEMS Microbiol. Ecol. 92. https://doi.org/10.1093/femsec/fiw023
Gao, H., Zhao, F., Li, R., Jin, S., Zhang, H., Zhang, K., Li, S., Shu, Q., Na, G., 2022. Occurrence and distribution of antibiotics and antibiotic resistance genes in the water of Liaohe River Basin, China. J. Environ. Chem. Eng. 10, 108297. https://doi.org/10. 1016/j.jece.2022.108297
Nguyen, T.D., Itayama, T., Ramaraj, R., Iwami, N., Shimizu, K., Dao, T.S., Pham, T.L., Maseda, H., 2021. Chronic ecotoxicology and statistical investigation of ciprofloxacin and ofloxacin to Daphnia magna under extendedly long-term exposure. Environ. Pollut. 291, 118095. https://doi.org/10.1016/j.envpol. 2021.118095
Nguyen, T.D., Itayama, T., Ramaraj, R., Iwami, N., Shimizu, K., Dao, T.S., Pham, T.L., Maseda, H., 2022. Physiological response of Simocephalus vetulus to five antibiotics and their mixture under 48-h acute exposure. Sci. Total Environ. 829, 154585. https://doi.org/10.1016/j.scitotenv.2022.154585
Xu, J., Liu, X., Lv, Y., Guo, X., Lu, S., 2020a. Response of Cyperus involucratus to sulfamethoxazole and ofloxacin-contaminated environments: Growth physiology, transportation, and microbial community. Ecotoxicol. Environ. Saf. 206, 111332. https://doi.org/10.1016/j.ecoenv.2020.111332
Singh, V., Pandey, B., Suthar, S., 2019. Phytotoxicity and degradation of antibiotic ofloxacin in duckweed (Spirodela polyrhiza) system. Ecotoxicol. Environ. Saf. 179, 88–95. https:// doi.org/10.1016/j.ecoenv.2019.04.018
Vasquez, M.I., Garcia-Käufer, M., Hapeshi, E., Menz, J., Kostarelos, K., Fatta-Kassinos, D., Kümmerer, K., 2013. Chronic ecotoxic effects to Pseudomonas putida and Vibrio fischeri, and cytostatic and genotoxic effects to the hepatoma cell line (HepG2) of ofloxacin photo(cata)lytically treated solutions. Sci. Total Environ. 450-451, 356–365. https://doi.org/10.1016/j.scitotenv. 2012.05.096
Kato, M., Onodera, T., 1988. Morphological investigation of cavity formation in articular cartilage induced by oiloxacin in rats. Toxicol. Sci. 11, 110–119. https://doi.org/10.1093/toxsci/11.1. 110
Burkhardt, J.E., Hill, M.A., Carlton, W.W., 1992. Morphologic and biochemical changes in articular cartilages of immature beagle dogs dosed with difloxacin. Toxicol. Pathol. 20, 246–252. https://doi.org/10.1177/019262339202000211
Machida, M., Kusajima, H., Aijima, H., Maeda, A., Ishida, R., Uchida, H., 1990. Toxicokinetic study of norfloxacin-induced arthropathy in juvenile animals. Toxicol. Appl. Pharmacol. 105, 403–412. https://doi.org/10.1016/0041-008X(90)90144-J
A.W. Gough, R.E. Sigler, Quinolone Arthropathy & mdash; Acute Toxicity to Immature Articular Cartilage *, (n.d.) 436–449. Corrao, G., Zambon, A., Bertù, L., Mauri, A., Paleari, V., Rossi, C., Venegoni, M., 2006. Evidence of tendinitis provoked by fluoroquinolone treatment a case-control study. Drug Saf. 29, 889–896. https://doi.org/10.2165/00002018-200629100-00006
Yang, L., Etminan, M., Mikelberg, F.S., 2014. Oral fluoroquinolones and risk of glaucoma. J. Glaucoma 23, 464–466. https://doi.org/ 10.1097/IJG.0b013e31829463c1
Droste, J.H.J., Wieringa, M.H., Weyler, J.J., Nelen, V.J., Vermeire, P.A., Bever, H.P.Van, 2000. Does the use of antibiotics in early childhood increase the risk of asthma and allergic disease? Clin. Exp. Allergy 30, 1548–1553. https://doi.org/10.1046/j.1365- 2222.2000.00939.x
Mikkelsen, K.H., Allin, K.H., Knop, F.K., 2016. Effect of antibiotics on gut microbiota, glucose metabolism, and body weight regulation: A review of the literature. Diabetes, Obes. Metab. 18, 444–453. https://doi.org/10.1111/dom.12637
Cohen, J.S., 2001. Peripheral neuropathy associated with fluoroquinolones. Ann. Pharmacother. 35, 1540–1547. https://doi. org/10.1345/aph.1Z429
Cani, P.D., Bibiloni, R., Knauf, C., Neyrinck, A.M., Delzenne, N.M., 2008. Changes in gut microbiota control metabolic diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481. https://doi.org/10.2337/db07-1403.Additional
Shao, S., Pan, W., Wang, B., Liu, Y., Gan, H., Li, M., Liao, T., Yang, X., Yang, Q., Huang, C., Geng, M., Pan, G., Liu, K., Zhu, P., Tao, F., 2023. Association between antibiotic exposure and the risk of infertility in women of childbearing age: A case-control study. Ecotoxicol. Environ. Saf. 249, 114414. https://doi.org/10. 1016/j.ecoenv.2022.114414
Zhang, J., Liu, Z., Song, S., Fang, J., Wang, L., Zhao, L., Li, C., Li, W., Byun, H.M., Guo, L., Li, P., 2022. The exposure levels and health risk assessment of antibiotics in urine and its association with platelet mitochondrial DNA methylation in adults from Tianjin, China: A preliminary study. Ecotoxicol. Environ. Saf. 231, 113204. https://doi.org/10.1016/j.ecoenv.2022.113204
Sheng, Z.G., Huang, W., Liu, Y.X., Yuan, Y., Zhu, B.Z., 2013. Ofloxacin induces apoptosis via β1 integrin-EGFR-Rac1-Nox2 pathway in microencapsulated chondrocytes. Toxicol. Appl. Pharmacol. 267, 74–87. https://doi.org/10.1016/j.taap.2012.12. 015
Franco, D.S.P., Fagundes, J.L.S., Georgin, J., Salau, N.P.G., Dotto, G.L., 2020a. A mass transfer study considering intraparticle diffusion and axial dispersion for fixed-bed adsorption of crystal violet on pecan pericarp (Carya illinoensis). Chem. Eng. J. 397, 125423. https://doi.org/10.1016/j.cej.2020.125423
Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Dotto, G.L., DuranValle, C.J., Aguascalientes, I.T.De, 2019. Adsorption in Water Treatment. Elsevier Inc,https://doi.org/10.1016/B978-0-12- 409547-2.14390-2
Langmuir, I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403. https://doi.org/10.1021/ja02242a004
Freundlich, H.M.F., 1906. Over the adsorption in solution. J. Phys. Chem. 57, 358–471. Marczewski, A.W., 2010. Analysis of kinetic langmuir model. Part I: Integrated kinetic langmuir equation (IKL): A new complete analytical solution of the langmuir rate equation. Langmuir 26, 15229–15238. https://doi.org/10.1021/la1010049
Kerkhoff, C.M., da Boit Martinello, K., Franco, D.S.P., Netto, M.S., Georgin, J., Foletto, E.L., Piccilli, D.G.A., Silva, L.F.O., Dotto, G.L., 2021. Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp. J. Mol. Liq. 339, 117184. https:// doi.org/10.1016/j.molliq.2021.117184
Georgin, J., Franco, D.S.P., Netto, M.S., Manzar, M.S., Zubair, M., Meili, L., Piccilli, D.G.A., Silva, L.F.O., 2019. Adsorption of the First-Line Covid Treatment Analgesic onto Activated Carbon from Residual Pods of Erythrina Speciosa. Environ. Manag. (2022)). https://doi.org/10.1007/s00267-022-01716-6
Franco, D.S.P., Georgin, J., Netto, M.S., da Boit Martinello, K., Silva, L.F.O., 2022b. Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): Analytical interpretation via statistical physical model. J. Mol. Liq. 356, 119021. https://doi.org/10.1016/j.molliq.2022.119021
Ighalo, J.O., Igwegbe, C.A., Adeniyi, A.G., Adeyanju, C.A., Ogunniyi, S., 2020a. Mitigation of Metronidazole (Flagyl) pollution in aqueous media by adsorption: a review. Environ. Technol. Rev. 9, 137–148. https://doi.org/10.1080/21622515. 2020.1849409
Iftekhar, S., Ramasamy, D.L., Srivastava, V., Asif, M.B., Sillanpää, M., 2018. Understanding the factors affecting the adsorption of Lanthanum using different adsorbents: A critical review. Chemosphere 204, 413–430. https://doi.org/10.1016/J. CHEMOSPHERE.2018.04.053
Lyklema, J., 1984. Points of zero charge in the presence of specific adsorption. J. Colloid Interface Sci. 99, 109–117. https://doi.org/ 10.1016/0021-9797(84)90090-0
Kaur, G., Singh, N., Rajor, A., Kushwaha, J.P., 2021. Deep eutectic solvent functionalized rice husk ash for effective adsorption of ofloxacin from aqueous environment. J. Contam. Hydrol. 242, 103847. https://doi.org/10.1016/j.jconhyd.2021.103847
Bangari, R.S., Sinha, N., 2019. Adsorption of tetracycline, ofloxacin and cephalexin antibiotics on boron nitride nanosheets from aqueous solution. J. Mol. Liq. 293, 111376. https://doi.org/ 10.1016/j.molliq.2019.111376
Thakur, M., Sharma, A., Ahlawat, V., Bhattacharya, M., Goswami, S., 2020b. Process optimization for the production of cellulose nanocrystals from rice straw derived α-cellulose. Mater. Sci. Energy Technol. 3, 328–334. https://doi.org/10.1016/j.mset. 2019.12.005
Zhu, C., Lang, Y., Liu, B., Zhao, H., 2019. Ofloxacin adsorption on chitosan/biochar composite: kinetics, isotherms, and effects of solution chemistry. Polycycl. Aromat. Compd. 39, 287–297. https://doi.org/10.1080/10406638.2018.1464039
Hu, Z.H., Wang, Y.F., Omer, A.M., Ouyang, X.K., 2018. Fabrication of ofloxacin imprinted polymer on the surface of magnetic carboxylated cellulose nanocrystals for highly selective adsorption of fluoroquinolones from water. Int. J. Biol. Macromol. 107, 453–462. https://doi.org/10.1016/j.ijbiomac. 2017.09.009
Gao, B., Li, P., Yang, R., Li, A., Yang, H., 2019. Investigation of multiple adsorption mechanisms for efficient removal of ofloxacin from water using lignin-based adsorbents. Sci. Rep. 9, 1–13. https://doi.org/10.1038/s41598-018-37206-1
Zhang, C.L., Zhao, F., Wang, Y., 2012. Thermodynamic and kinetic parameters of ofloxacin adsorption from aqueous solution onto modified coal fly ash. Russ. J. Phys. Chem. A. 86, 653–657. https://doi.org/10.1134/S0036024412040346
Ma, J., Yan, N., Zhang, M., Liu, J., Bai, X., Wang, Y., 2020. Mechanical characteristics of soda residue soil incorporating different admixture: Reuse of soda residue. Sustain 12. https:// doi.org/10.3390/su12145852
Georgin, J., Franco, D.S.P., Drumm, F.C., Grassi, P., Schadeck Netto, M., Allasia, D., Dotto, G.L., 2020. Paddle cactus ( Tacinga palmadora) as potential low-cost adsorbent to treat textile effluents containing crystal violet. Chem. Eng. Commun. 207, 1368–1379. https://doi.org/10.1080/00986445. 2019.1650033
Franco, D.S.P., Georgin, J., Drumm, F.C., Netto, M.S., Allasia, D., Oliveira, M.L.S., Dotto, G.L., 2020b. Araticum (Annona crassiflora) seed powder (ASP) for the treatment of colored effluents by biosorption. Environ. Sci. Pollut. Res. 27, 11184–11194. https://doi.org/10.1007/s11356-019-07490-z
Lima, É.C., Dehghani, M.H., Guleria, A., Sher, F., Karri, R.R., Dotto, G.L., Tran, H.N., 2021a. Adsorption: Fundamental aspects and applications of adsorption for effluent treatment. In: Hadi Dehghani, M., Karri, R., Lima, E. (Eds.), Green Technol. Defluoridation Water. Elsevier, pp. 41–88. https://doi.org/10. 1016/b978-0-323-85768-0.00004-x
Foo, K.Y., Hameed, B.H., 2012. Potential of jackfruit peel as a precursor for activated carbon prepared by microwave-induced NaOH activation. Bioresour. Technol. 112, 143–150. https://doi.org/10.1016/j.biortech.2012.01.178
Awad, A.M., Shaikh, S.M.R., Jalab, R., Gulied, M.H., Nasser, M.S., Benamor, A., Adham, S., 2019. Adsorption of organic pollutants by natural and modified clays: A comprehensive review. Sep. Purif. Technol. 228, 115719. https://doi.org/10.1016/j. seppur.2019.115719
Bello, O.S., Adegoke, K.A., Sarumi, O.O., Lameed, O.S., 2019. Functionalized locust bean pod (Parkia biglobosa) activated carbon for Rhodamine B dye removal. Heliyon 5, e02323. https://doi.org/10.1016/j.heliyon.2019.e02323
Mckay, G., 1996. Use of Adsorbents for the Removal of Pollutants from Wastewaters, 1st ed..,. CRC Press,. Redlich, O., Peterson, D.L., 1959. A useful adsorption isotherm. J. Phys. Chem. 63, 1024. https://doi.org/10.1021/j150576a611
Lima, E.C., Gomes, A.A., Tran, H.N., 2020. Comparison of the nonlinear and linear forms of the van’t Hoff equation for calculation of adsorption thermodynamic parameters (∆S° and ∆H°. ), J. Mol. Liq. 311, 113315. https://doi.org/10.1016/j. molliq.2020.113315
Phares, A.J., Wunderlich, F.J., 2012. Effect of adsorbate-adsorbate interactions on low-temperature surface adsorption patterns. Int. J. Mod. Phys. B. 15, 3323–3330. https://doi.org/10.1142/ S0217979201007701
Lima, D.R., Lima, E.C., Thue, P.S., Dias, S.L.P., Machado, F.M., Seliem, M.K., Sher, F., dos Reis, G.S., Saeb, M.R., Rinklebe, J., 2021a. Comparison of acidic leaching using a conventional and ultrasound-assisted method for preparation of magneticactivated biochar. J. Environ. Chem. Eng. 9, 105865. https://doi. org/10.1016/j.jece.2021.105865
Aniagor, C.O., Menkiti, M.C., 2018. Kinetics and mechanistic description of adsorptive uptake of crystal violet dye by lignified elephant grass complexed isolate. J. Environ. Chem. Eng. 6, 2105–2118. https://doi.org/10.1016/j.jece.2018.01.070
Aniagor, C.O., Igwegbe, C.A., Ighalo, J.O., Oba, S.N., 2021. Adsorption of doxycycline from aqueous media: A review. J. Mol. Liq. 334, 116124. https://doi.org/10.1016/J.MOLLIQ.2021. 116124
Lima, E.C., Sher, F., Guleria, A., Saeb, M.R., Anastopoulos, I., Tran, H.N., Hosseini-Bandegharaei, A., 2021b. Is one performing the treatment data of adsorption kinetics correctly. ?, J. Environ. Chem. Eng. 9, 104813. https://doi.org/10.1016/j.jece.2020. 104813
Sircar, S., 2018. Adsorbate mass transfer into porous adsorbents – A practical viewpoint. Sep. Purif. Technol. 192, 383–400. https://doi.org/10.1016/J.SEPPUR.2017.10.014
Georgin, J., de, Y.L., Salomón, O., Franco, D.S.P.P., Netto, M.S., Piccilli, D.G.A., Perondi, D., Silva, L.F.O.O., Foletto, E.L., Dotto, G.L., Daniel, G., Georgin, J., Salom, Y.L.D.O., Piccilli, A., Perondi, D., Silva, L.F.O.O., Foletto, E.L., Dotto, G.L., de, Y.L., Salomón, O., Franco, D.S.P.P., Netto, M.S., Piccilli, D.G.A., Perondi, D., Silva, L.F.O.O., Foletto, E.L., Dotto, G.L., 2021. Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen. J. Environ. Chem. Eng. 9, 105676. https://doi.org/10. 1016/j.jece.2021.105676
Ighalo, J.O., Ajala, O.J., Umenweke, G., Ogunniyi, S., Adeyanju, C.A., Igwegbe, C.A., Adeniyi, A.G., 2020b. Mitigation of clofibric acid pollution by adsorption: A review of recent developments. J. Environ. Chem. Eng. 8, 104264. https://doi.org/10. 1016/j.jece.2020.104264
Li, S., Han, K., Li, J., Li, M., Lu, C., 2017. Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous Mesoporous Mater. 243, 291–300. https://doi.org/10.1016/j.micromeso.2017.02.052
Vieira, Y., Ceretta, M.B., Foletto, E.L., Wolski, E.A., Silvestri, S., 2020. Application of a novel rGO-CuFeS2 composite catalyst conjugated to microwave irradiation for ultra-fast real textile wastewater treatment. J. Water Process Eng. 36, 101397. https://doi.org/10.1016/J.JWPE.2020.101397
Ceretta, M.B., Vieira, Y., Wolski, E.A., Foletto, E.L., Silvestri, S., 2020. Biological degradation coupled to photocatalysis by ZnO/polypyrrole composite for the treatment of real textile wastewater. J. Water Process Eng. 35, 101230. https://doi.org/ 10.1016/j.jwpe.2020.101230
Gupta, G., Kansal, S.K., Umar, A., Akbar, S., 2023. Visible-light driven excellent photocatalytic degradation of ofloxacin antibiotic using BiFeO3 nanoparticles. Chemosphere 314, 137611. https://doi.org/10.1016/j.chemosphere.2022.137611
Su, Q., Li, J., Yuan, H., Wang, B., Wang, Y., Li, Y., Xing, Y., 2022. Visible-light-driven photocatalytic degradation of ofloxacin by g-C3N4/NH2-MIL-88B(Fe) heterostructure: Mechanisms, DFT calculation, degradation pathway, and toxicity evolution.
Chem. Eng. J. 427. https://doi.org/10.1016/j.cej.2021.131594 Mandal, S., Adhikari, S., Choi, S., Lee, Y., Kim, D.H., 2022. Fabrication of a novel Z-scheme Bi2MoO6/GQDs/MoS2 hierarchical nanocomposite for the photo-oxidation of ofloxacin and photoreduction of Cr(VI) as aqueous pollutants. Chem. Eng. J. 444, 136609. https://doi.org/10.1016/j.cej.2022.136609
Xu, P., Zheng, D., He, Q., Yu, J., 2020b. The feasibility of ofloxacin degradation and electricity generation in photo-assisted microbial fuel cells with LiNbO3/CF photocatalytic cathode. Sep. Purif. Technol. 250, 117106. https://doi.org/10.1016/j.seppur. 2020.117106
Du, Z., Li, K., Zhou, S., Liu, X., Yu, Y., Zhang, Y., He, Y., Zhang, Y., 2020. Degradation of ofloxacin with heterogeneous photoFenton catalyzed by biogenic Fe-Mn oxides. Chem. Eng. J. 380, 122427. https://doi.org/10.1016/j.cej.2019.122427
Taherizadeh, M., Jahani, S., Moradalizadeh, M., Foroughi, M.M., 2023. Synthesis of a dual-functional terbium doped copper oxide nanoflowers for high-efficiently electrochemical sensing of ofloxacin, pefloxacin and gatifloxacin. Talanta 255, 124216. https://doi.org/10.1016/j.talanta.2022.124216
Chen, H., Wang, J., 2021. Degradation and mineralization of ofloxacin by ozonation and peroxone (O3/H2O2) process. Chemosphere 269, 128775. https://doi.org/10.1016/j. chemosphere.2020.128775
Mojiri, A., Vakili, M., Farraji, H., Aziz, S.Q., 2019. Combined ozone oxidation process and adsorption methods for the removal of acetaminophen and amoxicillin from aqueous solution; kinetic and optimisation. Environ. Technol. Innov. 15, 100404. https://doi.org/10.1016/j.eti.2019.100404
Shadmehr, J., Mirsoleimani-Azizi, S.M., Zeinali, S., Setoodeh, P., 2019. Electrocoagulation process for propiconazole elimination from wastewater: experimental design for correlative modeling and optimization. Int. J. Environ. Sci. Technol. 16, 5409–5420. https://doi.org/10.1007/s13762-018-1891-8
Thakur, C., Srivastava, V.C., Mall, I.D., 2009. Electrochemical treatment of distillery wastewater: Parametric and residue disposal study. Chem. Eng. J. 148, 496–505. https://doi.org/10. 1016/j.cej.2008.09.043
Moussa, D.T., El-Naas, M.H., Nasser, M., Al-Marri, M.J., 2017. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. J. Environ. Manag. 186, 24–41. https://doi.org/10.1016/j.jenvman.2016.10.032
Maldonado, I., Moreno Terrazas, E.G., Vilca, F.Z., 2022. Application of duckweed (Lemna sp.) and water fern (Azolla sp.) in the removal of pharmaceutical residues in water: State of the art focus on antibiotics. Sci. Total Environ. 838, 156565. https://doi.org/10.1016/j.scitotenv.2022.156565
Akerman-Sanchez, G., Rojas-Jimenez, K., 2021. Fungi for the bioremediation of pharmaceutical-derived pollutants: A bioengineering approach to water treatment. Environ. Adv. 4, 100071. https://doi.org/10.1016/j.envadv.2021.100071
Martínez-Ruiz, M., Molina-Vázquez, A., Santiesteban-Romero, B., Reyes-Pardo, H., Villaseñor-Zepeda, K.R., Meléndez-Sánchez, E.R., Araújo, R.G., Sosa-Hernández, J.E., Bilal, M., Iqbal, H.M.N., Parra-Saldivar, R., 2022. Micro-algae assisted green bioremediation of water pollutants rich leachate and source products recovery. Environ. Pollut. 306. https://doi.org/10.1016/j. envpol.2022.119422
Georgin, J., Franco, D.S.P., Netto, M.S., Gama, B.M.V., Fernandes, D.P., Sepúlveda, P., Silva, L.F.O., Meili, L., 2022b. Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis. Colloids Surf. A Physicochem. Eng. Asp. 654, 129900. https://doi.org/10.1016/j.colsurfa.2022. 129900
dc.relation.citationendpage.spa.fl_str_mv 120
dc.relation.citationstartpage.spa.fl_str_mv 99
dc.relation.citationvolume.spa.fl_str_mv 193
dc.rights.eng.fl_str_mv © 2023 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2023 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 22 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Institution of Chemical Engineers
dc.publisher.place.spa.fl_str_mv United Kingdom
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0263876223001715
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/5655fd1b-0530-4890-bbd3-00918e62afb0/download
https://repositorio.cuc.edu.co/bitstreams/ddc2cb7b-7563-4b23-be8c-069a11d31d84/download
https://repositorio.cuc.edu.co/bitstreams/205d6fcd-558e-4638-86af-e42a97e48f5d/download
https://repositorio.cuc.edu.co/bitstreams/03bd4c5a-6731-462f-9be2-d88ee5aa1618/download
bitstream.checksum.fl_str_mv 1b2f43617deec90cdeebad39f207c0ca
2f9959eaf5b71fae44bbf9ec84150c7a
23351efdf4d35ec02ccd5a097dec2642
7c54308141fabe734d2521dbabecaca7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760777832431616
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2023 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfgeorgin, jordanaDison S.P., FrancoGindri Ramos, ClaudeteAllasia Piccilli, Daniel GustavoLima, Eder C.Sher, Farooq2023-08-31T22:07:58Z20252023-08-31T22:07:58Z2023Jordana Georgin, Dison Stracke Pfingsten Franco, Claudete Gindri Ramos, Daniel G.A. Piccilli, Eder C. Lima, Farooq Sher, A review of the antibiotic ofloxacin: Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology, Chemical Engineering Research and Design, Volume 193, 2023, Pages 99-120, ISSN 0263-8762, https://doi.org/10.1016/j.cherd.2023.03.0250263-8762https://hdl.handle.net/11323/1043310.1016/j.cherd.2023.03.0251744-3563Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/It is estimated that the growth of the population, the augmented expectancy of life, and the emergence of new pandemics will significantly increase the consumption of pharmaceutical drugs in the coming years. Due to its high efficiency, the group of fluoroquinolones, where the antibiotic ofloxacin hydrochloride (OFL) is found, is widely used to combat bacterial infections in humans and animals. The big problem is concentrated in the effluents generated by industries and hospitals. Additionally, most of the drug is not absorbed by the body and is released directly into domestic effluents. On the other hand, treatment stations have removal limitations for small concentrations. This review analyzed all adsorbents developed and used in OFL removal, listing the main parameters influencing the process. In the end, the other existing technologies in the literature and the gaps and future prospects were described. OFL adsorption in most studies occurs under basic conditions (pH between 6.5 and 8). The increase in concentration provides an increase in adsorption capacity. The adsorbents analyzed showed moderate kinetics, reaching equilibrium before 250 min for most studies. The pseudo-second-order model showed the best statistical fit. In most of the studies, the increase in temperature (313, 315, and 328 K) favored the adsorption of OFL. The Langmuir monolayer model represented most of the isothermal studies. The adsorption capacity varied from 3702 to 0.3986 mg g−1. In this aspect, factors such as OFL concentration and textural characteristics of the adsorbent exerted great influence. The thermodynamic parameters were compatible with the isothermal data, where the endothermic nature of the studies was confirmed. Physical interactions (π-π stacking, H bonding, hydrophobic and electrostatic interactions) governed the main adsorption mechanism. Although some studies stated that chemosorption occurred, thermodynamic parameters cannot validate the same. Coexisting ions in the solution can positively and negatively influence OFL adsorption. The listed studies are all applied to batch processes, where fixed bed studies should be better explored. From this review, it can be concluded that adsorption is a promising technique for OFL removal. However, it is extremely necessary to break the laboratory scale barrier and analyze possible conditions for applying these materials in treating real effluents together with combining technologies.22 páginasapplication/pdfengInstitution of Chemical EngineersUnited Kingdomhttps://www.sciencedirect.com/science/article/pii/S0263876223001715A review of the antibiotic ofloxacin: Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technologyArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Chemical Engineering Research and DesignGonçalves, L.R., Roberto, M.M., Braga, A.P.A., Barozzi, G.B., Canizela, G.S., de Souza Gigeck, L., de Souza, L.R., MarinMorales, M.A., 2022. Another casualty of the SARS-CoV-2 pandemic—the environmental impact. Environ. Sci. Pollut. Res. 29, 1696–1711. https://doi.org/10.1007/s11356-021-17098-xKlein, E.Y., Van Boeckel, T.P., Martinez, E.M., Pant, S., Gandra, S., Levin, S.A., Goossens, H., Laxminarayan, R., 2018. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. U. S. A. 115, E3463–E3470. https://doi.org/10.1073/pnas.1717295115Van Boeckel, T.P., Brower, C., Gilbert, M., Grenfell, B.T., Levin, S.A., Robinson, T.P., Teillant, A., Laxminarayan, R., 2015. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. U. S. A. 112, 5649–5654. https://doi.org/10.1073/pnas.1503141112Goyne, K.W., Chorover, J., Kubicki, J.D., Zimmerman, A.R., Brantley, S.L., 2005. Sorption of the antibiotic ofloxacin to mesoporous and nonporous alumina and silica. J. Colloid Interface Sci. 283, 160–170. https://doi.org/10.1016/j.jcis.2004. 08.150C.U. Chukwudi, Harvey_Ions&FS_ScanElectronMicrosc1972II, 409–419.1980.pdf, 60, 2016: 4433–4441. https://doi.org/10.1128/ AAC.00594–16.Address.Cliquet, P., Cox, E., Haasnoot, W., Schacht, E., Goddeeris, B.M., 2003. Generation of group-specific antibodies against sulfonamides. J. Agric. Food Chem. 51, 5835–5842. https://doi.org/ 10.1021/jf034316cDinos, G.P., 2017. The macrolide antibiotic renaissance. Br. J. Pharmacol. 174, 2967–2983. https://doi.org/10.1111/bph.13936Balsalobre, L., Blanco, A., Alarcón, T., 2019. Beta-lactams, Antibiot. Drug Resist 57–72. https://doi.org/10.1002/ 9781119282549.ch3Park, H.R., Kim, T.H., Bark, K.M., 2002. Physicochemical properties of quinolone antibiotics in various environments. Eur. J. Med. Chem. 37, 443–460. https://doi.org/10.1016/S0223-5234(02) 01361-2Zhang, D., Wang, Y., 2019. Functional protein-based bioinspired nanomaterials: From coupled proteins, synthetic approaches, nanostructures to applications. Int. J. Mol. Sci. 20. https://doi. org/10.3390/ijms20123054Kong, Q., He, X., Shu, L., Miao, M., 2017. Ofloxacin adsorption by activated carbon derived from luffa sponge: Kinetic, isotherm, and Process Saf. Environ. Prot. 112, 254–264. https://doi.org/ 10.1016/j.psep.2017.05.011De Andrade, J.R., Oliveira, M.F., Da Silva, M.G.C., Vieira, M.G.A., 2018. Adsorption of Pharmaceuticals from Water and Wastewater Using Nonconventional Low-Cost Materials: A Review. Ind. Eng. Chem. Res. 57, 3103–3127. https://doi.org/10. 1021/acs.iecr.7b05137Al-Omar, M.A., 2008. Ofloxacin. https://doi.org/10.1016/S1871- 5125(09)34006-6Deng, C., Pan, X., Zhang, D., 2015. Influence of ofloxacin on photosystems I and II activities of Microcystis aeruginosa and the potential role of cyclic electron flow. J. Biosci. Bioeng. 119, 159–164. https://doi.org/10.1016/j.jbiosc.2014.07.014de Ilurdoz, M.S., Sadhwani, J.J., Reboso, J.V., 2022. Antibiotic removal processes from water & wastewater for the protection of the aquatic environment - a review. J. Water Process Eng. 45, 102474. https://doi.org/10.1016/j.jwpe.2021.102474Tong, X., Wang, X., He, X., Xu, K., Mao, F., 2019. Effects of ofloxacin on nitrogen removal and microbial community structure in a constructed wetland. Sci. Total Environ. 656, 503–511. https://doi.org/10.1016/j.scitotenv.2018.11.358Feng, M., Wang, Z., Dionysiou, D.D., Sharma, V.K., 2018a. Metalmediated oxidation of fluoroquinolone antibiotics in water: A review on kinetics, transformation products, and toxicity assessment. J. Hazard. Mater. 344, 1136–1154. https://doi.org/10. 1016/j.jhazmat.2017.08.067Wen, X.J., Niu, C.G., Zhang, L., Liang, C., Zeng, G.M., 2018. A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: possible degradation pathways, mineralization activity, and an in-depth mechanism insight. Appl. Catal. B Environ. 221, 701–714. https://doi.org/10.1016/j. apcatb.2017.09.060Sodré, F.F., Montagner, C.C., Locatelli, M.A.F., Jardim, W.F., 2007. Ocorrência de Interferentes Endócrinos e Produtos Farmacêuticos em Águas Superficiais da Região de Campinas (SP, Brasil). J. Braz. Soc. Ecotoxicol. 2, 187–196. https://doi.org/ 10.5132/jbse.2007.02.012Golet, E.M., Xifra, I., Siegrist, H., Alder, A.C., Giger, W., 2003. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ. Sci. Technol. 37, 3243–3249. https://doi.org/10.1021/es0264448Wang, X., Zhao, Y., Sun, Y., Liu, D., 2022. Highly effective removal of ofloxacin from water with copper-doped ZIF-8. Molecules 27, 1–13. https://doi.org/10.3390/molecules27134312Babić, S., Periša, M., Škorić, I., 2013. Photolytic degradation of norfloxacin, enrofloxacin, and ciprofloxacin in various aqueous media. Chemosphere 91, 1635–1642. https://doi.org/10. 1016/j.chemosphere.2012.12.072Maged, A., Iqbal, J., Kharbish, S., Ismael, I.S., Bhatnagar, A., 2020. Tuning tetracycline removal from aqueous solution onto activated 2:1 layered clay mineral: Characterization, sorption and mechanistic studies. J. Hazard. Mater. 384, 121320. https:// doi.org/10.1016/j.jhazmat.2019.121320Yamaguchi, T., Okihashi, M., Harada, K., Konishi, Y., Uchida, K., Do, M.H.N., Bui, H.D.T., Nguyen, T.D., Do Nguyen, P., Van Chau, V., Van Dao, K.T., Nguyen, H.T.N., Kajimura, K., Kumeda, Y., Bui, C.T., Vien, M.Q., Le, N.H., Hirata, K., Yamamoto, Y., 2015. Antibiotic residue monitoring results for pork, chicken, and beef samples in Vietnam in 2012-2013. J. Agric. Food Chem. 63, 5141–5145. https://doi.org/10.1021/ jf505254yAhmed, M.B., Zhou, J.L., Ngo, H.H., Guo, W., 2015. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total Environ. 532, 112–126. https://doi.org/10. 1016/j.scitotenv.2015.05.130Kemper, N., 2008. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol. Indic. 8, 1–13. https://doi.org/10. 1016/j.ecolind.2007.06.002Feng, Z., Odelius, K., Rajarao, G.K., Hakkarainen, M., 2018b. Microwave carbonized cellulose for trace pharmaceutical adsorption. Chem. Eng. J. 346, 557–566. https://doi.org/10.1016/j. cej.2018.04.014Hamscher, G., Pawelzick, H.T., Sczesny, S., Nau, H., Hartung, J., 2003. Antibiotics in dust originating from a pig-fattening farm: A new source of health hazard for farmers. Environ. Health Perspect. 111, 1590–1594. https://doi.org/10.1289/ehp.6288Paul, R., Gerling, S., Berger, M., Blümlein, K., Jäckel, U., Schuchardt, S., 2019. Occupational Exposure to Antibiotics in Poultry Feeding Farms. Ann. Work Expo. Heal. 63, 821–827. https://doi.org/10.1093/annweh/wxz047Langdon, A., Crook, N., Dantas, G., 2016. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med 8. https://doi.org/10.1186/s13073-016-0294-zTian, X., Jin, H., Nie, Y., Zhou, Z., Yang, C., Li, Y., Wang, Y., 2017. Heterogeneous Fenton-like degradation of ofloxacin over a wide pH range of 3.6–10.0 over modified mesoporous iron oxide. Chem. Eng. J. 328, 397–405. https://doi.org/10.1016/j.cej. 2017.07.049Al-Musawi, T.J., Yilmaz, M., Ramírez-Coronel, A.A., Al-Awsi, G.R.L., Alwaily, E.R., Asghari, A., Balarak, D., 2023. Degradation of amoxicillin under a UV or visible light photocatalytic treatment process using Fe2O3/bentonite/TiO2: Performance, kinetic, degradation pathway, energy consumption, and toxicology studies. Opt. (Stuttg. ) 272. https://doi.org/10.1016/j. ijleo.2022.170230Kyzas, G.Z., Mengelizadeh, N., Khodadadi Saloot, M., Mohebi, S., Balarak, D., 2022. Sonochemical degradation of ciprofloxacin by hydrogen peroxide and persulfate activated by ultrasound and ferrous ions. Colloids Surf. A Physicochem. Eng. Asp. 642, 128627. https://doi.org/10.1016/j.colsurfa.2022.128627Wang, L., Li, Y., Ben, W., Hu, J., Cui, Z., Qu, K., Qiang, Z., 2019. Insitu sludge ozone-reduction process for effective removal of fluoroquinolone antibiotics in wastewater treatment plants. Sep. Purif. Technol. 213, 419–425. https://doi.org/10.1016/j. seppur.2018.12.062Chen, H.Y., Li, X.K., Meng, L., Liu, G., Ma, X., Piao, C., Wang, K., 2022. The fate and behavior mechanism of antibiotic resistance genes and microbial communities in anaerobic reactors treating oxytetracycline manufacturing wastewater. J. Hazard. Mater. 424, 127352. https://doi.org/10.1016/j.jhazmat. 2021.127352Choi, S., Shin, J., Chae, K.J., Kim, Y.M., 2020. Mitigation via physiochemically enhanced primary treatment of antibiotic resistance genes in influent from a municipal wastewater treatment plant. Sep. Purif. Technol. 247, 116946. https://doi. org/10.1016/j.seppur.2020.116946Liang, C., Wei, D., Zhang, S., Ren, Q., Shi, J., Liu, L., 2021. Removal of antibiotic resistance genes from swine wastewater by membrane filtration treatment. Ecotoxicol. Environ. Saf. 210, 111885. https://doi.org/10.1016/j.ecoenv.2020.111885Thakur, A., Sharma, N., Mann, A., 2020a. Removal of ofloxacin hydrochloride and paracetamol from aqueous solutions: Binary mixtures and competitive adsorption. Mater. Today Proc. 28, 1514–1519. https://doi.org/10.1016/j.matpr.2020.04.833Jawad, A.H., Kadhum, A.M., Ngoh, Y.S., 2018. Applicability of dragon fruit (Hylocereus polyrhizus) peels as low-cost biosorbent for adsorption of methylene blue from aqueous solution: Kinetics, equilibrium and thermodynamics studies. Desalin. Water Treat. 109, 231–240. https://doi.org/10.5004/ dwt.2018.21976Franco, D.S.P., Georgin, J., Lima, E.C., Silva, L.F.O., 2022a. Journal of Water Process Engineering Advances made in removing paraquat herbicide by adsorption technology: A review. J. Water Process Eng. 49, 102988. https://doi.org/10.1016/j.jwpe. 2022.102988Georgin, J., Franco, D.S.P., Da Boit Martinello, K., Lima, E.C., Silva, L.F.O., 2022a. A review of the toxicology presence and removal of ketoprofen through adsorption technology. J. Environ. Chem. Eng. 10, 107798. https://doi.org/10.1016/j.jece.2022. 107798Ghosal, P.S., Gupta, A.K., 2017. Determination of thermodynamic parameters from Langmuir isotherm constant-revisited. J. Mol. Liq. 225, 137–146. https://doi.org/10.1016/j.molliq.2016.11. 058Gupta, N., Poddar, K., Sarkar, D., Kumari, N., Padhan, B., Sarkar, A., 2019. Fruit waste management by pigment production and utilization of residual as bioadsorbent. J. Environ. Manag. 244, 138–143. https://doi.org/10.1016/j.jenvman.2019.05.055Foo, K.Y., Hameed, B.H., 2009. Utilization of rice husk ash as novel adsorbent: A judicious recycling of the colloidal agricultural waste. Adv. Colloid Interface Sci. 152, 39–47. https://doi.org/10. 1016/j.cis.2009.09.005Worch, E., 2008. Fixed-bed adsorption in drinking water treatment: A critical review on models and parameter estimation. J. Water Supply Res. Technol. 57, 171–183. https://doi.org/10. 2166/aqua.2008.100Ma, P., Liu, Q., Liu, P., Li, H., Han, X., Liu, L., Zou, W., 2021. Green synthesis of Fe/Cu oxides composite particles stabilized by pine needle extract and investigation of their adsorption activity for norfloxacin and ofloxacin. J. Dispers. Sci. Technol. 42, 1350–1367. https://doi.org/10.1080/01932691.2020.1764367Akhtar, L., Ahmad, M., Iqbal, S., Abdelhafez, A.A., Mehran, M.T., 2021. Biochars’ adsorption performance towards moxifloxacin and ofloxacin in aqueous solution: Role of pyrolysis temperature and biomass type. Environ. Technol. Innov. 24, 101912. https://doi.org/10.1016/j.eti.2021.101912Liu, Y., Yuan, Y., Wang, Z., Wen, Y., Liu, L., Wang, T., Xie, X., 2022. Removal of ofloxacin from water by natural ilmenite-biochar composite: A study on the synergistic adsorption mechanism of multiple effects. Bioresour. Technol. 363, 127938. https:// doi.org/10.1016/j.biortech.2022.127938Dhiman, N., 2022. Analysis of non-competitive and competitive adsorption behaviour of ciprofloxacin hydrochloride and ofloxacin hydrochloride from aqueous solution using Oryza sativa husk ash (single and binary adsorption of antibiotics). Clean Mater 5, 100108. https://doi.org/10.1016/j.clema.2022. 100108Rueangchai, N., Noisong, P., Sansuk, S., 2023. A facile synthesis of hydroxyapatite and hydroxyapatite/activated carbon composite for paracetamol and ofloxacin removal. Mater. Today Commun. 34, 105326. https://doi.org/10.1016/j.mtcomm.2023. 105326Sturini, M., Puscalau, C., Guerra, G., Maraschi, F., Bruni, G., Monteforte, F., Profumo, A., Capsoni, D., 2021. Combined layer-by-layer/hydrothermal synthesis of fe3o4@mil-100(Fe) for ofloxacin adsorption from environmental waters. Nanomaterials 11. https://doi.org/10.3390/nano11123275Yu, R., Wu, Z., 2022. The adsorption property of in-situ synthesis of MOF in alginate gel for ofloxacin in the wastewater. Environ. Technol. (U. Kingd. ). ( 1–12. https://doi.org/10.1080/ 09593330.2022.2029579He, S., Chen, Q., Chen, G., Shi, G., Ruan, C., Feng, M., Ma, Y., Jin, X., Liu, X., Du, C., He, C., Dai, H., Cao, C., 2022. N-doped activated carbon for high-efficiency ofloxacin adsorption. Microporous Mesoporous Mater. 335, 111848. https://doi.org/10.1016/j. micromeso.2022.111848Yu, R., Wu, Z., 2020. High adsorption for ofloxacin and reusability by the use of ZIF-8 for wastewater treatment. Microporous Mesoporous Mater. 308, 110494. https://doi.org/10.1016/j. micromeso.2020.110494Sulaiman, N.S., Mohamad Amini, M.H., Danish, M., Sulaiman, O., Hashim, R., Demirel, S., Demirel, G.K., 2022. Characterization and ofloxacin adsorption studies of chemically modified activated carbon from cassava stem. Mater. (Basel) 15. https:// doi.org/10.3390/ma15155117Antonelli, R., Martins, F.R., Malpass, G.R.P., da Silva, M.G.C., Vieira, M.G.A., 2020. Ofloxacin adsorption by calcined Verdelodo bentonite clay: Batch and fixed bed system evaluation. J. Mol. Liq. 315, 113718. https://doi.org/10.1016/j.molliq.2020. 113718Jaswal, A., Kaur, M., Singh, S., Kansal, S.K., Umar, A., Garoufalis, C.S., Baskoutas, S., 2021. Adsorptive removal of antibiotic ofloxacin in aqueous phase using rGO-MoS2 heterostructure. J. Hazard. Mater. 417, 125982. https://doi.org/10.1016/j. jhazmat.2021.125982Hao, J., Wu, L., Lu, X., Zeng, Y., Jia, B., Luo, T., He, S., Liang, L., 2022. A stable Fe/Co bimetallic modified biochar for ofloxacin removal from water: adsorption behavior and mechanisms. RSC Adv. 12, 31650–31662. https://doi.org/10.1039/d2ra05334aYe, M., Fang, Y., Xiang, H., Liu, H., Yan, H., Wang, B., Lin, X., Liang, J., Qian, W., 2022. Preparation and modification of bagasse biochar unveiling ofloxacin wastewater adsorption. Environ. Technol. (U. Kingd. ) 0, 1–12. https://doi.org/10.1080/09593330. 2022.2152222Verma, P., Das, T., Kumar, P., Das, S., 2022. Surface-passivated rGO@CuO/6A5N2TU colloidal heterostructures for efficient removal of ofloxacin from contaminated water through dualmode complexation: insights into kinetics and adsorption isotherm model study. Appl. Nanosci. https://doi.org/10.1007/ s13204-022-02736-8Singh, V., Srivastava, V.C., 2022. Transformation of textile dyeing industrial sludge into economical biochar for sorption of ofloxacin: equilibrium, kinetic, and cost analysis. Biomass-.-. Convers. Biorefinery. https://doi.org/10.1007/s13399-022-02554-6Awasthi, P., Bangari, R.S., Sinha, N., BNNSs, P.V.D.F., 2023. nanocomposite membrane for simultaneous removal of Tetracycline and Ofloxacin. Water, J. Mol. Liq. 370, 120970. https://doi.org/10.1016/j.molliq.2022.120970Gao, B., Chang, Q., Yang, H., 2021. Selective adsorption of ofloxacin and ciprofloxacin from a binary system using ligninbased adsorbents: Quantitative analysis, adsorption mechanisms, and structure-activity relationship. Sci. Total Environ. 765, 144427. https://doi.org/10.1016/j.scitotenv.2020. 144427Yang, Y., Zhong, Z., Li, J., Du, H., Li, Z., 2022. Efficient with lowcost removal and adsorption mechanisms of norfloxacin, ciprofloxacin, and ofloxacin on modified thermal kaolin: experimental and theoretical studies. J. Hazard. Mater. 430, 128500. https://doi.org/10.1016/j.jhazmat.2022.128500Qin, X., Zhong, X., Wang, B., Wang, G., Liu, F., Weng, L., 2023. Fractionation of levofloxacin and ofloxacin during their transport in NOM-goethite: Batch and column studies. Environ. Pollut. 316, 120542. https://doi.org/10.1016/j.envpol. 2022.120542Le-Minh, N., Khan, S.J., Drewes, J.E., Stuetz, R.M., 2010. Fate of antibiotics during municipal water recycling treatment processes. Water Res 44, 4295–4323. https://doi.org/10.1016/j. watres.2010.06.020Cheng, D., Liu, X., Zhao, S., Cui, B., Bai, J., Li, Z., 2017. Influence of the natural colloids on the multi-phase distributions of antibiotics in the surface water from the largest lake in North China. Sci. Total Environ. 578, 649–659. https://doi.org/10.1016/ j.scitotenv.2016.11.012Carbajo, J.B., Petre, A.L., Rosal, R., Herrera, S., Letón, P., GarcíaCalvo, E., Fernández-Alba, A.R., Perdigón-Melón, J.A., 2015. Continuous ozonation treatment of ofloxacin: Transformation products, water matrix effect and aquatic toxicity. J. Hazard. Mater. 292, 34–43. https://doi.org/10.1016/j.jhazmat.2015.02. 075Ashfaq, M., Khan, K.N., Rasool, S., Mustafa, G., Saif-Ur-Rehman, M., Nazar, M.F., Sun, Q., Yu, C.P., 2016. Occurrence and ecological risk assessment of fluoroquinolone antibiotics in hospital waste of Lahore, Pakistan. Environ. Toxicol. Pharmacol. 42, 16–22. https://doi.org/10.1016/j.etap.2015.12.015Chen, P., Blaney, L., Cagnetta, G., Huang, J., Wang, B., Wang, Y., Deng, S., Yu, G., 2019. Degradation of Ofloxacin by Perylene Diimide Supramolecular Nanofiber Sunlight-Driven Photocatalysis. Environ. Sci. Technol. 53, 1564–1575. https:// doi.org/10.1021/acs.est.8b05827Cherukuri, P.K., Songkiatisak, P., Ding, F., Jault, J.M., Xu, X.H.N., 2020. Antibiotic Drug Nanocarriers for Probing of Multidrug ABC Membrane Transporter of Bacillus subtilis. ACS Omega 5, 1625–1633. https://doi.org/10.1021/acsomega.9b03698Sharma, P., Kumar, N., Chauhan, R., Singh, V., Srivastava, V.C., Bhatnagar, R., 2020. Growth of hierarchical ZnO nano flower on large functionalized rGO sheet for superior photocatalytic mineralization of antibiotic. Chem. Eng. J. 392, 123746. https:// doi.org/10.1016/j.cej.2019.123746Chang, X., Meyer, M.T., Liu, X., Zhao, Q., Chen, H., an Chen, J., Qiu, Z., Yang, L., Cao, J., Shu, W., 2010. Determination of antibiotics in sewage from hospitals, nursery, and slaughterhouse, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China. Environ. Pollut. 158, 1444–1450. https://doi.org/10.1016/j.envpol.2009.12.034Kovalakova, P., Cizmas, L., McDonald, T.J., Marsalek, B., Feng, M., Sharma, V.K., 2020. Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere 251, 126351. https://doi.org/10.1016/j.chemosphere.2020.126351Fernandes, M.J., Paíga, P., Silva, A., Llaguno, C.P., Carvalho, M., Vázquez, F.M., Delerue-Matos, C., 2020. Antibiotics and antidepressants occurrence in surface waters and sediments collected in the north of Portugal. Chemosphere 239. https:// doi.org/10.1016/j.chemosphere.2019.124729Andreozzi, R., Marotta, R., Paxéus, N., 2003. Pharmaceuticals in STP effluents and their solar photodegradation in the aquatic environment. Chemosphere 50, 1319–1330. https://doi.org/10. 1016/S0045-6535(02)00769-5Nakata, H., Kannan, K., Jones, P.D., Giesy, J.P., 2005. Determination of fluoroquinolone antibiotics in wastewater effluents by liquid chromatography-mass spectrometry and fluorescence detection. Chemosphere 58, 759–766. https://doi. org/10.1016/j.chemosphere.2004.08.097Larsson, D.G.J., de Pedro, C., Paxeus, N., 2007. Effluent from drug manufacturers contains extremely high levels of pharmaceuticals. J. Hazard. Mater. 148, 751–755. https://doi.org/10. 1016/j.jhazmat.2007.07.008Quoc Tuc, D., Elodie, M.G., Pierre, L., Fabrice, A., Marie-Jeanne, T., Martine, B., Joelle, E., Marc, C., 2017. Fate of antibiotics from the hospital and domestic sources in a sewage network. Sci. Total Environ. 575, 758–766. https://doi.org/10.1016/j.scitotenv. 2016.09.118Yang, X., Flowers, R.C., Weinberg, H.S., Singer, P.C., 2011. Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water Res 45, 5218–5228. https://doi.org/10.1016/j. watres.2011.07.026Chen, H., Jing, L., Teng, Y., Wang, J., 2018. Characterization of antibiotics in a large-scale river system of China: Occurrence pattern, spatiotemporal distribution, and environmental risks. Sci. Total Environ. 618, 409–418. https://doi.org/10.1016/j. scitotenv.2017.11.054Camotti Bastos, M., Rheinheimer dos Santos, D., Aubertheau, É., de Castro Lima, J.A.M., Le Guet, T., Caner, L., Mondamert, L., Labanowski, J., 2018. Antibiotics and microbial resistance in Brazilian soils under manure application. L. Degrad. Dev. 29, 2472–2484. https://doi.org/10.1002/ldr.2964Zhou, L.J., Ying, G.G., Zhao, J.L., Yang, J.F., Wang, L., Yang, B., Liu, S., 2011. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environ. Pollut. 159, 1877–1885. https://doi.org/10.1016/j.envpol.2011.03.034Wu, M.H., Que, C.J., Xu, G., Sun, Y.F., Ma, J., Xu, H., Sun, R., Tang, L., 2016. Occurrence, fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water. Ecotoxicol. Environ. Saf. 132, 132–139. https://doi.org/ 10.1016/j.ecoenv.2016.06.006Zhang, B., Han, X., Gu, P., Fang, S., Bai, J., 2017. Response surface methodology approach for optimization of ciprofloxacin adsorption using activated carbon derived from the residue of desilicated rice husk. J. Mol. Liq. 238, 316–325. https://doi.org/ 10.1016/j.molliq.2017.04.022Samaraweera, D.N.D., Liu, X., Zhong, G., Priyadarshana, T., Naseem Malik, R., Zhang, G., Khorram, M.S., Zhu, Z., Peng, X., 2019. Antibiotics in two municipal sewage treatment plants in Sri Lanka: Occurrence, consumption and removal efficiency. Emerg. Contam. 5, 272–278. https://doi.org/10.1016/j.emcon. 2019.08.001Aydin, S., Aydin, M.E., Ulvi, A., Kilic, H., 2019. Antibiotics in hospital effluents: occurrence, contribution to urban wastewater, removal in a wastewater treatment plant, and environmental risk assessment. Environ. Sci. Pollut. Res. 26, 544–558. https:// doi.org/10.1007/s11356-018-3563-0Bu, Q., Wang, B., Huang, J., Deng, S., Yu, G., 2013. Pharmaceuticals and personal care products in the aquatic environment in China: A review. J. Hazard. Mater. 262, 189–211. https://doi.org/ 10.1016/j.jhazmat.2013.08.040Riaz, L., Mahmood, T., Khalid, A., Rashid, A., Ahmed Siddique, M.B., Kamal, A., Coyne, M.S., 2018. Fluoroquinolones (FQs) in the environment: A review on their abundance, sorption, and toxicity in soil. Chemosphere 191, 704–720. https://doi.org/10. 1016/j.chemosphere.2017.10.092Lin, A.Y.C., Yu, T.H., Lin, C.F., 2008. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere 74, 131–141. https://doi.org/10.1016/j.chemosphere.2008.08.027Tran, N.H., Hoang, L., Nghiem, L.D., Nguyen, N.M.H., Ngo, H.H., Guo, W., Trinh, Q.T., Mai, N.H., Chen, H., Nguyen, D.D., Ta, T.T., Gin, K.Y.H., 2019. Occurrence and risk assessment of multiple classes of antibiotics in urban canals and lakes in Hanoi, Vietnam. Sci. Total Environ. 692, 157–174. https://doi. org/10.1016/j.scitotenv.2019.07.092Guerra, P., Kim, M., Shah, A., Alaee, M., Smyth, S.A., 2014. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes. Sci. Total Environ. 473-474, 235–243. https://doi.org/10.1016/j.scitotenv.2013.12.008Minh, T.B., Leung, H.W., Loi, I.H., Chan, W.H., So, M.K., Mao, J.Q., Choi, D., Lam, J.C.W., Zheng, G., Martin, M., Lee, J.H.W., Lam, P.K.S., Richardson, B.J., 2009. Antibiotics in the Hong Kong metropolitan area: Ubiquitous distribution and fate in VictoriaHarbour. Mar. Pollut. Bull. 58, 1052–1062. https://doi.org/10. 1016/j.marpolbul.2009.02.004Kim, H., Hwang, Y.S., Sharma, V.K., 2014. Adsorption of antibiotics and iopromide onto single-walled and multi-walled carbon nanotubes. Chem. Eng. J. 255, 23–27. https://doi.org/10. 1016/j.cej.2014.06.035Hartmann, A., Alder, A.C., Koller, T., Widmer, R.M., 1998. Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital wastewater. Environ. Toxicol. Chem. 17, 377–382. https://doi.org/10.1897/ 1551-5028(1998)017<0377:IOFAAT>2.3.CO;2Gattey, D.M., 2007. Toxicology, Garner Klintworth’s Pathobiol. Ocul. Dis. Part B, Third Ed. 1079–1090. https://doi.org/10.5005/ jp/books/14224_17Rusch, M., Spielmeyer, A., Zorn, H., Hamscher, G., 2019. Degradation and transformation of fluoroquinolones by microorganisms with special emphasis on ciprofloxacin. Appl. Microbiol. Biotechnol. 103, 6933–6948. https://doi.org/10.1007/ s00253-019-10017-8Xiao, K.Q., Li, B., Ma, L., Bao, P., Zhou, X., Zhang, T., Zhu, Y.G., 2016. Metagenomic profiles of antibiotic resistance genes in paddy soils from South China. FEMS Microbiol. Ecol. 92. https://doi.org/10.1093/femsec/fiw023Gao, H., Zhao, F., Li, R., Jin, S., Zhang, H., Zhang, K., Li, S., Shu, Q., Na, G., 2022. Occurrence and distribution of antibiotics and antibiotic resistance genes in the water of Liaohe River Basin, China. J. Environ. Chem. Eng. 10, 108297. https://doi.org/10. 1016/j.jece.2022.108297Nguyen, T.D., Itayama, T., Ramaraj, R., Iwami, N., Shimizu, K., Dao, T.S., Pham, T.L., Maseda, H., 2021. Chronic ecotoxicology and statistical investigation of ciprofloxacin and ofloxacin to Daphnia magna under extendedly long-term exposure. Environ. Pollut. 291, 118095. https://doi.org/10.1016/j.envpol. 2021.118095Nguyen, T.D., Itayama, T., Ramaraj, R., Iwami, N., Shimizu, K., Dao, T.S., Pham, T.L., Maseda, H., 2022. Physiological response of Simocephalus vetulus to five antibiotics and their mixture under 48-h acute exposure. Sci. Total Environ. 829, 154585. https://doi.org/10.1016/j.scitotenv.2022.154585Xu, J., Liu, X., Lv, Y., Guo, X., Lu, S., 2020a. Response of Cyperus involucratus to sulfamethoxazole and ofloxacin-contaminated environments: Growth physiology, transportation, and microbial community. Ecotoxicol. Environ. Saf. 206, 111332. https://doi.org/10.1016/j.ecoenv.2020.111332Singh, V., Pandey, B., Suthar, S., 2019. Phytotoxicity and degradation of antibiotic ofloxacin in duckweed (Spirodela polyrhiza) system. Ecotoxicol. Environ. Saf. 179, 88–95. https:// doi.org/10.1016/j.ecoenv.2019.04.018Vasquez, M.I., Garcia-Käufer, M., Hapeshi, E., Menz, J., Kostarelos, K., Fatta-Kassinos, D., Kümmerer, K., 2013. Chronic ecotoxic effects to Pseudomonas putida and Vibrio fischeri, and cytostatic and genotoxic effects to the hepatoma cell line (HepG2) of ofloxacin photo(cata)lytically treated solutions. Sci. Total Environ. 450-451, 356–365. https://doi.org/10.1016/j.scitotenv. 2012.05.096Kato, M., Onodera, T., 1988. Morphological investigation of cavity formation in articular cartilage induced by oiloxacin in rats. Toxicol. Sci. 11, 110–119. https://doi.org/10.1093/toxsci/11.1. 110Burkhardt, J.E., Hill, M.A., Carlton, W.W., 1992. Morphologic and biochemical changes in articular cartilages of immature beagle dogs dosed with difloxacin. Toxicol. Pathol. 20, 246–252. https://doi.org/10.1177/019262339202000211Machida, M., Kusajima, H., Aijima, H., Maeda, A., Ishida, R., Uchida, H., 1990. Toxicokinetic study of norfloxacin-induced arthropathy in juvenile animals. Toxicol. Appl. Pharmacol. 105, 403–412. https://doi.org/10.1016/0041-008X(90)90144-JA.W. Gough, R.E. Sigler, Quinolone Arthropathy & mdash; Acute Toxicity to Immature Articular Cartilage *, (n.d.) 436–449. Corrao, G., Zambon, A., Bertù, L., Mauri, A., Paleari, V., Rossi, C., Venegoni, M., 2006. Evidence of tendinitis provoked by fluoroquinolone treatment a case-control study. Drug Saf. 29, 889–896. https://doi.org/10.2165/00002018-200629100-00006Yang, L., Etminan, M., Mikelberg, F.S., 2014. Oral fluoroquinolones and risk of glaucoma. J. Glaucoma 23, 464–466. https://doi.org/ 10.1097/IJG.0b013e31829463c1Droste, J.H.J., Wieringa, M.H., Weyler, J.J., Nelen, V.J., Vermeire, P.A., Bever, H.P.Van, 2000. Does the use of antibiotics in early childhood increase the risk of asthma and allergic disease? Clin. Exp. Allergy 30, 1548–1553. https://doi.org/10.1046/j.1365- 2222.2000.00939.xMikkelsen, K.H., Allin, K.H., Knop, F.K., 2016. Effect of antibiotics on gut microbiota, glucose metabolism, and body weight regulation: A review of the literature. Diabetes, Obes. Metab. 18, 444–453. https://doi.org/10.1111/dom.12637Cohen, J.S., 2001. Peripheral neuropathy associated with fluoroquinolones. Ann. Pharmacother. 35, 1540–1547. https://doi. org/10.1345/aph.1Z429Cani, P.D., Bibiloni, R., Knauf, C., Neyrinck, A.M., Delzenne, N.M., 2008. Changes in gut microbiota control metabolic diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481. https://doi.org/10.2337/db07-1403.AdditionalShao, S., Pan, W., Wang, B., Liu, Y., Gan, H., Li, M., Liao, T., Yang, X., Yang, Q., Huang, C., Geng, M., Pan, G., Liu, K., Zhu, P., Tao, F., 2023. Association between antibiotic exposure and the risk of infertility in women of childbearing age: A case-control study. Ecotoxicol. Environ. Saf. 249, 114414. https://doi.org/10. 1016/j.ecoenv.2022.114414Zhang, J., Liu, Z., Song, S., Fang, J., Wang, L., Zhao, L., Li, C., Li, W., Byun, H.M., Guo, L., Li, P., 2022. The exposure levels and health risk assessment of antibiotics in urine and its association with platelet mitochondrial DNA methylation in adults from Tianjin, China: A preliminary study. Ecotoxicol. Environ. Saf. 231, 113204. https://doi.org/10.1016/j.ecoenv.2022.113204Sheng, Z.G., Huang, W., Liu, Y.X., Yuan, Y., Zhu, B.Z., 2013. Ofloxacin induces apoptosis via β1 integrin-EGFR-Rac1-Nox2 pathway in microencapsulated chondrocytes. Toxicol. Appl. Pharmacol. 267, 74–87. https://doi.org/10.1016/j.taap.2012.12. 015Franco, D.S.P., Fagundes, J.L.S., Georgin, J., Salau, N.P.G., Dotto, G.L., 2020a. A mass transfer study considering intraparticle diffusion and axial dispersion for fixed-bed adsorption of crystal violet on pecan pericarp (Carya illinoensis). Chem. Eng. J. 397, 125423. https://doi.org/10.1016/j.cej.2020.125423Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Dotto, G.L., DuranValle, C.J., Aguascalientes, I.T.De, 2019. Adsorption in Water Treatment. Elsevier Inc,https://doi.org/10.1016/B978-0-12- 409547-2.14390-2Langmuir, I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403. https://doi.org/10.1021/ja02242a004Freundlich, H.M.F., 1906. Over the adsorption in solution. J. Phys. Chem. 57, 358–471. Marczewski, A.W., 2010. Analysis of kinetic langmuir model. Part I: Integrated kinetic langmuir equation (IKL): A new complete analytical solution of the langmuir rate equation. Langmuir 26, 15229–15238. https://doi.org/10.1021/la1010049Kerkhoff, C.M., da Boit Martinello, K., Franco, D.S.P., Netto, M.S., Georgin, J., Foletto, E.L., Piccilli, D.G.A., Silva, L.F.O., Dotto, G.L., 2021. Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp. J. Mol. Liq. 339, 117184. https:// doi.org/10.1016/j.molliq.2021.117184Georgin, J., Franco, D.S.P., Netto, M.S., Manzar, M.S., Zubair, M., Meili, L., Piccilli, D.G.A., Silva, L.F.O., 2019. Adsorption of the First-Line Covid Treatment Analgesic onto Activated Carbon from Residual Pods of Erythrina Speciosa. Environ. Manag. (2022)). https://doi.org/10.1007/s00267-022-01716-6Franco, D.S.P., Georgin, J., Netto, M.S., da Boit Martinello, K., Silva, L.F.O., 2022b. Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): Analytical interpretation via statistical physical model. J. Mol. Liq. 356, 119021. https://doi.org/10.1016/j.molliq.2022.119021Ighalo, J.O., Igwegbe, C.A., Adeniyi, A.G., Adeyanju, C.A., Ogunniyi, S., 2020a. Mitigation of Metronidazole (Flagyl) pollution in aqueous media by adsorption: a review. Environ. Technol. Rev. 9, 137–148. https://doi.org/10.1080/21622515. 2020.1849409Iftekhar, S., Ramasamy, D.L., Srivastava, V., Asif, M.B., Sillanpää, M., 2018. Understanding the factors affecting the adsorption of Lanthanum using different adsorbents: A critical review. Chemosphere 204, 413–430. https://doi.org/10.1016/J. CHEMOSPHERE.2018.04.053Lyklema, J., 1984. Points of zero charge in the presence of specific adsorption. J. Colloid Interface Sci. 99, 109–117. https://doi.org/ 10.1016/0021-9797(84)90090-0Kaur, G., Singh, N., Rajor, A., Kushwaha, J.P., 2021. Deep eutectic solvent functionalized rice husk ash for effective adsorption of ofloxacin from aqueous environment. J. Contam. Hydrol. 242, 103847. https://doi.org/10.1016/j.jconhyd.2021.103847Bangari, R.S., Sinha, N., 2019. Adsorption of tetracycline, ofloxacin and cephalexin antibiotics on boron nitride nanosheets from aqueous solution. J. Mol. Liq. 293, 111376. https://doi.org/ 10.1016/j.molliq.2019.111376Thakur, M., Sharma, A., Ahlawat, V., Bhattacharya, M., Goswami, S., 2020b. Process optimization for the production of cellulose nanocrystals from rice straw derived α-cellulose. Mater. Sci. Energy Technol. 3, 328–334. https://doi.org/10.1016/j.mset. 2019.12.005Zhu, C., Lang, Y., Liu, B., Zhao, H., 2019. Ofloxacin adsorption on chitosan/biochar composite: kinetics, isotherms, and effects of solution chemistry. Polycycl. Aromat. Compd. 39, 287–297. https://doi.org/10.1080/10406638.2018.1464039Hu, Z.H., Wang, Y.F., Omer, A.M., Ouyang, X.K., 2018. Fabrication of ofloxacin imprinted polymer on the surface of magnetic carboxylated cellulose nanocrystals for highly selective adsorption of fluoroquinolones from water. Int. J. Biol. Macromol. 107, 453–462. https://doi.org/10.1016/j.ijbiomac. 2017.09.009Gao, B., Li, P., Yang, R., Li, A., Yang, H., 2019. Investigation of multiple adsorption mechanisms for efficient removal of ofloxacin from water using lignin-based adsorbents. Sci. Rep. 9, 1–13. https://doi.org/10.1038/s41598-018-37206-1Zhang, C.L., Zhao, F., Wang, Y., 2012. Thermodynamic and kinetic parameters of ofloxacin adsorption from aqueous solution onto modified coal fly ash. Russ. J. Phys. Chem. A. 86, 653–657. https://doi.org/10.1134/S0036024412040346Ma, J., Yan, N., Zhang, M., Liu, J., Bai, X., Wang, Y., 2020. Mechanical characteristics of soda residue soil incorporating different admixture: Reuse of soda residue. Sustain 12. https:// doi.org/10.3390/su12145852Georgin, J., Franco, D.S.P., Drumm, F.C., Grassi, P., Schadeck Netto, M., Allasia, D., Dotto, G.L., 2020. Paddle cactus ( Tacinga palmadora) as potential low-cost adsorbent to treat textile effluents containing crystal violet. Chem. Eng. Commun. 207, 1368–1379. https://doi.org/10.1080/00986445. 2019.1650033Franco, D.S.P., Georgin, J., Drumm, F.C., Netto, M.S., Allasia, D., Oliveira, M.L.S., Dotto, G.L., 2020b. Araticum (Annona crassiflora) seed powder (ASP) for the treatment of colored effluents by biosorption. Environ. Sci. Pollut. Res. 27, 11184–11194. https://doi.org/10.1007/s11356-019-07490-zLima, É.C., Dehghani, M.H., Guleria, A., Sher, F., Karri, R.R., Dotto, G.L., Tran, H.N., 2021a. Adsorption: Fundamental aspects and applications of adsorption for effluent treatment. In: Hadi Dehghani, M., Karri, R., Lima, E. (Eds.), Green Technol. Defluoridation Water. Elsevier, pp. 41–88. https://doi.org/10. 1016/b978-0-323-85768-0.00004-xFoo, K.Y., Hameed, B.H., 2012. Potential of jackfruit peel as a precursor for activated carbon prepared by microwave-induced NaOH activation. Bioresour. Technol. 112, 143–150. https://doi.org/10.1016/j.biortech.2012.01.178Awad, A.M., Shaikh, S.M.R., Jalab, R., Gulied, M.H., Nasser, M.S., Benamor, A., Adham, S., 2019. Adsorption of organic pollutants by natural and modified clays: A comprehensive review. Sep. Purif. Technol. 228, 115719. https://doi.org/10.1016/j. seppur.2019.115719Bello, O.S., Adegoke, K.A., Sarumi, O.O., Lameed, O.S., 2019. Functionalized locust bean pod (Parkia biglobosa) activated carbon for Rhodamine B dye removal. Heliyon 5, e02323. https://doi.org/10.1016/j.heliyon.2019.e02323Mckay, G., 1996. Use of Adsorbents for the Removal of Pollutants from Wastewaters, 1st ed..,. CRC Press,. Redlich, O., Peterson, D.L., 1959. A useful adsorption isotherm. J. Phys. Chem. 63, 1024. https://doi.org/10.1021/j150576a611Lima, E.C., Gomes, A.A., Tran, H.N., 2020. Comparison of the nonlinear and linear forms of the van’t Hoff equation for calculation of adsorption thermodynamic parameters (∆S° and ∆H°. ), J. Mol. Liq. 311, 113315. https://doi.org/10.1016/j. molliq.2020.113315Phares, A.J., Wunderlich, F.J., 2012. Effect of adsorbate-adsorbate interactions on low-temperature surface adsorption patterns. Int. J. Mod. Phys. B. 15, 3323–3330. https://doi.org/10.1142/ S0217979201007701Lima, D.R., Lima, E.C., Thue, P.S., Dias, S.L.P., Machado, F.M., Seliem, M.K., Sher, F., dos Reis, G.S., Saeb, M.R., Rinklebe, J., 2021a. Comparison of acidic leaching using a conventional and ultrasound-assisted method for preparation of magneticactivated biochar. J. Environ. Chem. Eng. 9, 105865. https://doi. org/10.1016/j.jece.2021.105865Aniagor, C.O., Menkiti, M.C., 2018. Kinetics and mechanistic description of adsorptive uptake of crystal violet dye by lignified elephant grass complexed isolate. J. Environ. Chem. Eng. 6, 2105–2118. https://doi.org/10.1016/j.jece.2018.01.070Aniagor, C.O., Igwegbe, C.A., Ighalo, J.O., Oba, S.N., 2021. Adsorption of doxycycline from aqueous media: A review. J. Mol. Liq. 334, 116124. https://doi.org/10.1016/J.MOLLIQ.2021. 116124Lima, E.C., Sher, F., Guleria, A., Saeb, M.R., Anastopoulos, I., Tran, H.N., Hosseini-Bandegharaei, A., 2021b. Is one performing the treatment data of adsorption kinetics correctly. ?, J. Environ. Chem. Eng. 9, 104813. https://doi.org/10.1016/j.jece.2020. 104813Sircar, S., 2018. Adsorbate mass transfer into porous adsorbents – A practical viewpoint. Sep. Purif. Technol. 192, 383–400. https://doi.org/10.1016/J.SEPPUR.2017.10.014Georgin, J., de, Y.L., Salomón, O., Franco, D.S.P.P., Netto, M.S., Piccilli, D.G.A., Perondi, D., Silva, L.F.O.O., Foletto, E.L., Dotto, G.L., Daniel, G., Georgin, J., Salom, Y.L.D.O., Piccilli, A., Perondi, D., Silva, L.F.O.O., Foletto, E.L., Dotto, G.L., de, Y.L., Salomón, O., Franco, D.S.P.P., Netto, M.S., Piccilli, D.G.A., Perondi, D., Silva, L.F.O.O., Foletto, E.L., Dotto, G.L., 2021. Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen. J. Environ. Chem. Eng. 9, 105676. https://doi.org/10. 1016/j.jece.2021.105676Ighalo, J.O., Ajala, O.J., Umenweke, G., Ogunniyi, S., Adeyanju, C.A., Igwegbe, C.A., Adeniyi, A.G., 2020b. Mitigation of clofibric acid pollution by adsorption: A review of recent developments. J. Environ. Chem. Eng. 8, 104264. https://doi.org/10. 1016/j.jece.2020.104264Li, S., Han, K., Li, J., Li, M., Lu, C., 2017. Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous Mesoporous Mater. 243, 291–300. https://doi.org/10.1016/j.micromeso.2017.02.052Vieira, Y., Ceretta, M.B., Foletto, E.L., Wolski, E.A., Silvestri, S., 2020. Application of a novel rGO-CuFeS2 composite catalyst conjugated to microwave irradiation for ultra-fast real textile wastewater treatment. J. Water Process Eng. 36, 101397. https://doi.org/10.1016/J.JWPE.2020.101397Ceretta, M.B., Vieira, Y., Wolski, E.A., Foletto, E.L., Silvestri, S., 2020. Biological degradation coupled to photocatalysis by ZnO/polypyrrole composite for the treatment of real textile wastewater. J. Water Process Eng. 35, 101230. https://doi.org/ 10.1016/j.jwpe.2020.101230Gupta, G., Kansal, S.K., Umar, A., Akbar, S., 2023. Visible-light driven excellent photocatalytic degradation of ofloxacin antibiotic using BiFeO3 nanoparticles. Chemosphere 314, 137611. https://doi.org/10.1016/j.chemosphere.2022.137611Su, Q., Li, J., Yuan, H., Wang, B., Wang, Y., Li, Y., Xing, Y., 2022. Visible-light-driven photocatalytic degradation of ofloxacin by g-C3N4/NH2-MIL-88B(Fe) heterostructure: Mechanisms, DFT calculation, degradation pathway, and toxicity evolution.Chem. Eng. J. 427. https://doi.org/10.1016/j.cej.2021.131594 Mandal, S., Adhikari, S., Choi, S., Lee, Y., Kim, D.H., 2022. Fabrication of a novel Z-scheme Bi2MoO6/GQDs/MoS2 hierarchical nanocomposite for the photo-oxidation of ofloxacin and photoreduction of Cr(VI) as aqueous pollutants. Chem. Eng. J. 444, 136609. https://doi.org/10.1016/j.cej.2022.136609Xu, P., Zheng, D., He, Q., Yu, J., 2020b. The feasibility of ofloxacin degradation and electricity generation in photo-assisted microbial fuel cells with LiNbO3/CF photocatalytic cathode. Sep. Purif. Technol. 250, 117106. https://doi.org/10.1016/j.seppur. 2020.117106Du, Z., Li, K., Zhou, S., Liu, X., Yu, Y., Zhang, Y., He, Y., Zhang, Y., 2020. Degradation of ofloxacin with heterogeneous photoFenton catalyzed by biogenic Fe-Mn oxides. Chem. Eng. J. 380, 122427. https://doi.org/10.1016/j.cej.2019.122427Taherizadeh, M., Jahani, S., Moradalizadeh, M., Foroughi, M.M., 2023. Synthesis of a dual-functional terbium doped copper oxide nanoflowers for high-efficiently electrochemical sensing of ofloxacin, pefloxacin and gatifloxacin. Talanta 255, 124216. https://doi.org/10.1016/j.talanta.2022.124216Chen, H., Wang, J., 2021. Degradation and mineralization of ofloxacin by ozonation and peroxone (O3/H2O2) process. Chemosphere 269, 128775. https://doi.org/10.1016/j. chemosphere.2020.128775Mojiri, A., Vakili, M., Farraji, H., Aziz, S.Q., 2019. Combined ozone oxidation process and adsorption methods for the removal of acetaminophen and amoxicillin from aqueous solution; kinetic and optimisation. Environ. Technol. Innov. 15, 100404. https://doi.org/10.1016/j.eti.2019.100404Shadmehr, J., Mirsoleimani-Azizi, S.M., Zeinali, S., Setoodeh, P., 2019. Electrocoagulation process for propiconazole elimination from wastewater: experimental design for correlative modeling and optimization. Int. J. Environ. Sci. Technol. 16, 5409–5420. https://doi.org/10.1007/s13762-018-1891-8Thakur, C., Srivastava, V.C., Mall, I.D., 2009. Electrochemical treatment of distillery wastewater: Parametric and residue disposal study. Chem. Eng. J. 148, 496–505. https://doi.org/10. 1016/j.cej.2008.09.043Moussa, D.T., El-Naas, M.H., Nasser, M., Al-Marri, M.J., 2017. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. J. Environ. Manag. 186, 24–41. https://doi.org/10.1016/j.jenvman.2016.10.032Maldonado, I., Moreno Terrazas, E.G., Vilca, F.Z., 2022. Application of duckweed (Lemna sp.) and water fern (Azolla sp.) in the removal of pharmaceutical residues in water: State of the art focus on antibiotics. Sci. Total Environ. 838, 156565. https://doi.org/10.1016/j.scitotenv.2022.156565Akerman-Sanchez, G., Rojas-Jimenez, K., 2021. Fungi for the bioremediation of pharmaceutical-derived pollutants: A bioengineering approach to water treatment. Environ. Adv. 4, 100071. https://doi.org/10.1016/j.envadv.2021.100071Martínez-Ruiz, M., Molina-Vázquez, A., Santiesteban-Romero, B., Reyes-Pardo, H., Villaseñor-Zepeda, K.R., Meléndez-Sánchez, E.R., Araújo, R.G., Sosa-Hernández, J.E., Bilal, M., Iqbal, H.M.N., Parra-Saldivar, R., 2022. Micro-algae assisted green bioremediation of water pollutants rich leachate and source products recovery. Environ. Pollut. 306. https://doi.org/10.1016/j. envpol.2022.119422Georgin, J., Franco, D.S.P., Netto, M.S., Gama, B.M.V., Fernandes, D.P., Sepúlveda, P., Silva, L.F.O., Meili, L., 2022b. Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis. Colloids Surf. A Physicochem. Eng. Asp. 654, 129900. https://doi.org/10.1016/j.colsurfa.2022. 12990012099193AdsorptionOfloxacin hydrochlorideEcotoxicologyAquatic environmentPublicationORIGINALA review of the antibiotic ofloxacin.pdfA review of the antibiotic ofloxacin.pdfArtículoapplication/pdf3772526https://repositorio.cuc.edu.co/bitstreams/5655fd1b-0530-4890-bbd3-00918e62afb0/download1b2f43617deec90cdeebad39f207c0caMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/ddc2cb7b-7563-4b23-be8c-069a11d31d84/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTA review of the antibiotic ofloxacin.pdf.txtA review of the antibiotic ofloxacin.pdf.txtExtracted texttext/plain128663https://repositorio.cuc.edu.co/bitstreams/205d6fcd-558e-4638-86af-e42a97e48f5d/download23351efdf4d35ec02ccd5a097dec2642MD53THUMBNAILA review of the antibiotic ofloxacin.pdf.jpgA review of the antibiotic ofloxacin.pdf.jpgGenerated Thumbnailimage/jpeg13940https://repositorio.cuc.edu.co/bitstreams/03bd4c5a-6731-462f-9be2-d88ee5aa1618/download7c54308141fabe734d2521dbabecaca7MD5411323/10433oai:repositorio.cuc.edu.co:11323/104332024-09-17 11:06:27.136https://creativecommons.org/licenses/by-nc-nd/4.0/© 2023 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=