One step acid modification of the residual bark from Campomanesia guazumifolia using H2SO4 and application in the removal of 2,4-dichlorophenoxyacetic from aqueous solution
The residual bark of the tree species Campomanesia guazumifolia was successfully modified with H2SO4 and applied to remove the toxic herbicide 2.4-dichlorophenoxyacetic (2.4-D) from aqueous solutions. The characterization techniques made it possible to observe that the material maintained its amorph...
- Autores:
-
Bevilacqua, Raíssa C.
Preigschadt, Isadora A.
georgin, jordana
Franco, Dison
Mallmann, Evandro S.
Silva Oliveira, Luis Felipe
Pinto, Diana
Foletto, Edson
Dotto, Guilherme Luiz
Netto, Matias
Netto, Matias
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9358
- Acceso en línea:
- https://hdl.handle.net/11323/9358
https://repositorio.cuc.edu.co/
- Palabra clave:
- Camponesia guazymifolia
Herbicide
2,4-D
Adsorption
Isotherm
- Rights
- embargoedAccess
- License
- © 2021 Taylor & Francis Group, LLC
id |
RCUC2_dbed6f4e1ff72bdaeb135db103df73f5 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9358 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
One step acid modification of the residual bark from Campomanesia guazumifolia using H2SO4 and application in the removal of 2,4-dichlorophenoxyacetic from aqueous solution |
title |
One step acid modification of the residual bark from Campomanesia guazumifolia using H2SO4 and application in the removal of 2,4-dichlorophenoxyacetic from aqueous solution |
spellingShingle |
One step acid modification of the residual bark from Campomanesia guazumifolia using H2SO4 and application in the removal of 2,4-dichlorophenoxyacetic from aqueous solution Camponesia guazymifolia Herbicide 2,4-D Adsorption Isotherm |
title_short |
One step acid modification of the residual bark from Campomanesia guazumifolia using H2SO4 and application in the removal of 2,4-dichlorophenoxyacetic from aqueous solution |
title_full |
One step acid modification of the residual bark from Campomanesia guazumifolia using H2SO4 and application in the removal of 2,4-dichlorophenoxyacetic from aqueous solution |
title_fullStr |
One step acid modification of the residual bark from Campomanesia guazumifolia using H2SO4 and application in the removal of 2,4-dichlorophenoxyacetic from aqueous solution |
title_full_unstemmed |
One step acid modification of the residual bark from Campomanesia guazumifolia using H2SO4 and application in the removal of 2,4-dichlorophenoxyacetic from aqueous solution |
title_sort |
One step acid modification of the residual bark from Campomanesia guazumifolia using H2SO4 and application in the removal of 2,4-dichlorophenoxyacetic from aqueous solution |
dc.creator.fl_str_mv |
Bevilacqua, Raíssa C. Preigschadt, Isadora A. georgin, jordana Franco, Dison Mallmann, Evandro S. Silva Oliveira, Luis Felipe Pinto, Diana Foletto, Edson Dotto, Guilherme Luiz Netto, Matias Netto, Matias |
dc.contributor.author.spa.fl_str_mv |
Bevilacqua, Raíssa C. Preigschadt, Isadora A. georgin, jordana Franco, Dison Mallmann, Evandro S. Silva Oliveira, Luis Felipe Pinto, Diana Foletto, Edson Dotto, Guilherme Luiz |
dc.contributor.author.none.fl_str_mv |
Netto, Matias Netto, Matias |
dc.subject.proposal.eng.fl_str_mv |
Camponesia guazymifolia Herbicide 2,4-D Adsorption Isotherm |
topic |
Camponesia guazymifolia Herbicide 2,4-D Adsorption Isotherm |
description |
The residual bark of the tree species Campomanesia guazumifolia was successfully modified with H2SO4 and applied to remove the toxic herbicide 2.4-dichlorophenoxyacetic (2.4-D) from aqueous solutions. The characterization techniques made it possible to observe that the material maintained its amorphous structure; however, a new FTIR band emerged, indicating the interaction of the lignocellulosic matrix with sulfuric acid. Micrographs showed that the material maintained its irregular shape; however, new spaces and cavities appeared after the acidic modification. Regardless of the herbicide concentration, the system tended to equilibrium after 120 min. Using the best statistical coefficients, the Elovich model was the one that best fitted the kinetic data. The temperature increase in the system negatively influenced the adsorption of 2.4-D, reaching a maximum capacity of 312.81 mg g−1 at 298 K. The equilibrium curves showed a better fit to the Tóth model. Thermodynamic parameters confirmed the exothermic nature of the system (ΔH0 = −59.86 kJ mol−1). As a residue obtained from urban pruning, the bark of Campomanesia guazumifolia treated with sulfuric acid is a promising and highly efficient alternative for removing the widely used and toxic 2.4-D herbicide from aqueous solutions. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-07-11T16:38:06Z |
dc.date.available.none.fl_str_mv |
2022 2022-07-11T16:38:06Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
: Raíssa C. Bevilacqua, Isadora A. Preigschadt, Matias S. Netto, Jordana Georgin, Dison S. P. Franco, Evandro S. Mallmann, Luis F. O. Silva, Diana Pinto, Edson L. Foletto & Guilherme L. Dotto (2021) One step acid modification of the residual bark from Campomanesia guazumifolia using H2SO4 and application in the removal of 2,4-dichlorophenoxyacetic from aqueous solution, Journal of Environmental Science and Health, Part B, 56:12, 995-1006, DOI: 10.1080/03601234.2021.1997283 |
dc.identifier.issn.spa.fl_str_mv |
0360-1234 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9358 |
dc.identifier.doi.spa.fl_str_mv |
10.1080/03601234.2021.1997283 |
dc.identifier.eissn.spa.fl_str_mv |
1532-4109 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
: Raíssa C. Bevilacqua, Isadora A. Preigschadt, Matias S. Netto, Jordana Georgin, Dison S. P. Franco, Evandro S. Mallmann, Luis F. O. Silva, Diana Pinto, Edson L. Foletto & Guilherme L. Dotto (2021) One step acid modification of the residual bark from Campomanesia guazumifolia using H2SO4 and application in the removal of 2,4-dichlorophenoxyacetic from aqueous solution, Journal of Environmental Science and Health, Part B, 56:12, 995-1006, DOI: 10.1080/03601234.2021.1997283 0360-1234 10.1080/03601234.2021.1997283 1532-4109 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9358 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes |
dc.relation.references.spa.fl_str_mv |
[1] Pavlovic, I.; Barriga, C.; Hermos ın, M. C.; Cornejo, J.; Ulibarri, M. A. Adsorption of Acidic Pesticides 2,4-D, Clopyralid and Picloram on Calcined Hydrotalcite. Appl. Clay Sci. 2005, 30, 125–133. DOI: 10.1016/j.clay.2005.04.004. [2] Nejati, K.; Davary, S.; Saati, M. Study of 2,4- Dichlorophenoxyacetic Acid (2,4-D) Removal by Cu-Fe-Layered Double Hydroxide from Aqueous Solution. Appl. Surf. Sci. 2013, 280, 67–73. DOI: 10.1016/j.apsusc.2013.04.086. [3] Hameed, B. H.; Salman, J. M.; Ahmad, A. L. Adsorption Isotherm and Kinetic Modeling of 2,4-D Pesticide on Activated Carbon Derived from Date Stones. J. Hazard. Mater. 2009, 163, 121–126. [4] Chaparadza, A.; Hossenlopp, J. M. Removal of 2,4- Dichlorophenoxyacetic Acid by Calcined Zn-Al-Zr Layered Double Hydroxide. J. Colloid Interface Sci. 2011, 363, 92–97. [5] Xi, Y.; Mallavarapu, M.; Naidu, R. Adsorption of the Herbicide 2,4-D on Organo-Palygorskite. Appl. Clay Sci. 2010, 49, 255–261. DOI: 10.1016/j.clay.2010.05.015. [6] Shankar, M. V.; Anandan, S.; Venkatachalam, N.; Arabindoo, B.; Murugesan, V. Fine Route for an Efficient Removal of 2,4- Dichlorophenoxyacetic Acid (2,4-D) by Zeolite-Supported TiO2. Chemosphere. 2006, 63, 1014–1021. DOI: 10.1016/j.chemosphere.2005.08.041. [7] Li, Q.; Sun, J.; Ren, T.; Guo, L.; Yang, Z.; Yang, Q.; Chen, H. Adsorption Mechanism of 2,4-Dichlorophenoxyacetic Acid onto Nitric-Acid-Modified Activated Carbon Fiber. Environ. Technol. 2018, 39, 895–906. DOI: 10.1080/09593330.2017.1316318. [8] Garabrant, D. H.; Philbert, M. A. Epidemiology and Toxicology. Metab. Clin. Exp. 2002, 32, 233–257. [9] Derylo-Marczewska, A.; Blachnio, M.; Marczewski, A. W.; Swiatkowski, A.; Tarasiuk, B. Adsorption of Selected Herbicides from Aqueous Solutions on Activated Carbon. J. Therm. Anal. Calorim. 2010, 101, 785–794. DOI: 10.1007/s10973-010-0840-7. [10] Jung, B. K.; Hasan, Z.; Jhung, S. H. Adsorptive Removal of 2,4- Dichlorophenoxyacetic Acid (2,4-D) from Water with a MetalOrganic Framework. Chem. Eng. J. 2013, 234, 99–105. DOI: 10.1016/j.cej.2013.08.110. [11] Trivedi, N. S.; Mandavgane, S. A. Fundamentals of 2, 4 Dichlorophenoxyacetic Acid Removal from Aqueous Solutions. Sep. Purif. Rev. 2018, 47, 337–354. DOI: 10.1080/15422119. 2018.1450765. [12] Tang, Y.; Luo, S.; Teng, Y.; Liu, C.; Xu, X.; Zhang, X.; Chen, L. Efficient Removal f Herbicide 2,4-Dichlorophenoxyacetic Acid from Water Using Ag/Reduced Graphene Oxide Co-decorated TiO2 Nanotube Arrays. J. Hazard. Mater. 2012, 241–242, 323–330. DOI: 10.1016/j.jhazmat.2012.09.050. [13] Yang, L.; Sun, W.; Luo, S.; Luo, Y. White Fungus-like Mesoporous Bi2S3 Ball/TiO2 Heterojunction with High Photocatalytic Efficiency in Purifying 2,4-Dichlorophenoxyacetic Acid/Cr(VI) Contaminated Water. Appl. Catal. B Environ. 2014, 156–157, 25–34. [14] Ma, J. y.; Quan, X. c.; Yang, Z. f.; Li, A. j. Biodegradation of a Mixture of 2,4-Dichlorophenoxyacetic Acid and Multiple Chlorophenols by Aerobic Granules Cultivated through Plasmid pJP4 Mediated Bioaugmentation. Chem. Eng. J. 2012, 181–182, 144–151. [15] Souza, F. L.; Sa ez, C.; Lanza, M. R. V.; Canizares, P.; Rodrigo, ~M. A. Removal of Pesticide 2,4-D by Conductive-Diamond Photoelectrochemical Oxidation. Appl. Catal. B Environ. 2016, 180, 733–739. DOI: 10.1016/j.apcatb.2015.07.038. [16] Porras-Rodriguez, M.; Talens-Alesson, F. I. Removal of 2,4- Dichlorophenoxyacetic Acid from Water by Adsorptive Micellar Flocculation. Environ. Sci. Technol. 1999, 33, 3206–3209. DOI: 10.1021/es980821s. [17] Talens-Alesson, F. I. Binding of Pesticide 2,4-D to SDS and AOS Micellar Flocculates. Colloids Surf. A Physicochem. Eng. Asp. 2001, 180, 199–203. DOI: 10.1016/S0927-7757(00)00766-4. [18] Hajighasemkhan, A.; Taghavi, L.; Moniri, E.; Hassani, A. H.; Panahi, H. A. Adsorption Kinetics and Isotherms Study of 2,4- Dichlorophenoxyacetic Acid by 3dimensional/Graphene Oxide/ Magnetic from Aquatic Solutions. Int. J. Environ. Anal. Chem. 2020, 1–21. [19] Haddad, M.; Oie, C.; Vo Duy, S.; Sauv e, S.; Barbeau, B. Adsorption of Micropollutants Present in Surface Waters onto Polymeric Resins: Impact of Resin Type and Water Matrix on Performance. Sci. Total Environ. 2019, 660, 1449–1458. [20] Pereira, H. A.; Hernandes, P. R. T.; Netto, M. S.; Reske, G. D.; Vieceli, V.; Oliveira, L. F. S.; Dotto, G. L. Adsorbents for Glyphosate Removal in Contaminated Waters: A Review. Environ. Chem. Lett. 2021, 19, 1525–1543. 0123456789. [21] Khoei, A. J.; Joogh, N. J. G.; Darvishi, P.; Rezaei, K. Application of Physical and Biological Methods to Remove Heavy Metal, Arsenic and Pesticides, Malathion and Diazinon from Water. Turkish J. Fish. Aquat. Sci. 2019, 19, 21–28. [22] Ye, N.; Cimetiere, N.; Heim, V.; Fauchon, N.; Feliers, C.; Wolbert, D. Upscaling Fixed Bed Adsorption Behaviors towards Emerging Micropollutants in Treated Natural Waters with Aging Activated Carbon: Model Development and Validation. Water Res. 2019, 148, 30–40. [23] Calisto, J. S.; Pacheco, I. S.; Freitas, L. L.; Santana, L. K.; Fagundes, W. S.; Amaral, F. A.; Canobre, S. C. Adsorption Kinetic and Thermodynamic Studies of the 2, 4- Dichlorophenoxyacetate (2,4-D) by the [Co-Al-Cl] Layered Double Hydroxide. Heliyon. 2019, 5, e02553. DOI: 10.1016/j. heliyon.2019.e02553. [24] Hoijang, S.; Nonkumwong, J.; Singhana, B.; Wangkarn, S.; Ananta, S.; Srisombat, L. Adsorption of 2,4- Dichlorophenoxyacetic Acid by Magnesium Ferrite Magnetic Nanoparticles Modified with Amine Functional Groups. Chiang Mai J. Sci. 2020, 47, 137–146. [25] Salman, J. M.; Njoku, V. O.; Hameed, B. H. Batch and FixedBed Adsorption of 2,4-Dichlorophenoxyacetic Acid onto Oil Palm Frond Activated Carbon. Chem. Eng. J. 2011, 174, 33–40. DOI: 10.1016/j.cej.2011.08.024. [26] Njoku, V. O.; Hameed, B. H. Preparation and Characterization of Activated Carbon from Corncob by Chemical Activation with H3PO4 for 2,4-Dichlorophenoxyacetic Acid Adsorption. Chem. Eng. J. 2011, 173, 391–399. DOI: 10.1016/j.cej.2011.07.075. [27] Salman, J. M.; Hameed, B. H. Adsorption of 2,4- Dichlorophenoxyacetic Acid and Carbofuran Pesticides onto Granular Activated Carbon. Desalination. 2010, 256, 129–135. DOI: 10.1016/j.desal.2010.02.002. [28] Salleh, M. A. M.; Mahmoud, D. K.; Karim, W. A. W. A.; Idris, A. Cationic and Anionic Dye Adsorption by Agricultural Solid Wastes: A Comprehensive Review. Desalination. 2011, 280, 1–13. DOI: 10.1016/j.desal.2011.07.019. [29] Mohammad, S. G.; Ahmed, S. M.; Badawi, A. F. M. A Comparative Adsorption Study with Different Agricultural Waste Adsorbents for Removal of Oxamyl Pesticide. Desalin. Water Treat. 2015, 55, 2109–2120. DOI: 10.1080/19443994.2014.930797. [30] Pang, X.; Sellaoui, L.; Franco, D.; Netto, M. S. M. S.; Georgin, J.; Luiz Dotto, G.; Abu Shayeb, M. K. M. K.; Belmabrouk, H.; Bonilla-Petriciolet, A.; Li, Z. Preparation and Characterization of a Novel Mountain Soursop Seeds Powder Adsorbent and Its Application for the Removal of Crystal Violet and Methylene Blue from Aqueous Solutions. Chem. Eng. J. 2020, 391, 123617. DOI: 10.1016/j.cej.2019.123617. [31] Salom on, Y. L. de O.; Georgin, J.; Franco, D. S. P.; Netto, M. S.; Grassi, P.; Piccilli, D. G. A.; Oliveira, M. L. S.; Dotto, G. L. Powdered Biosorbent from Pecan Pericarp (Carya Illinoensis) as an Efficient Material to Uptake Methyl Violet 2B from Effluents in Batch and Column Operations. Adv. Powder Technol. 2020, 31, 2843–2852. DOI: 10.1016/j.apt.2020.05.004. [32] Franco, D. S. P.; Georgin, J.; Drumm, F. C.; Netto, M. S.; Allasia, D.; Oliveira, M. L. S.; Dotto, G. L. Araticum (Annona Crassiflora) Seed Powder (ASP) for the Treatment of Colored Effluents by Biosorption. Environ. Sci. Pollut. Res. Int. 2020, 27, 11184–11194. [33] Jawad, A. H.; Rashid, R. A.; Ishak, M. A. M.; Wilson, L. D. Adsorption of Methylene Blue onto Activated Carbon Developed from Biomass Waste by H2SO4 Activation: Kinetic, Equilibrium and Thermodynamic Studies. Desalin. Water Treat. 2016, 57, 25194–25206. DOI: 10.1080/19443994.2016.1144534. [34] Jawad, A. H.; Mamat, N. F. H.; Abdullah, M. F.; Ismail, K. Adsorption of Methylene Blue onto Acid-Treated Mango Peels: Kinetic, Equilibrium and Thermodynamic Study. DWT. 2017, 59, 210–219. DOI: 10.5004/dwt.2017.0097. [35] Jawad, A. H.; Rashid, R. A.; Ishak, M. A. M.; Ismail, K. Adsorptive Removal of Methylene Blue by Chemically Treated Cellulosic Waste Banana (Musa Sapientum) Peels. J. Taibah Univ. Sci. 2018, 12, 809–819. DOI: 10.1080/16583655.2018.1519893. [36] Low, L. W.; Teng, T. T.; Ahmad, A.; Morad, N.; Wong, Y. S. A Novel Pretreatment Method of Lignocellulosic Material as Adsorbent and Kinetic Study of Dye Waste Adsorption. Water. Air. Soil Pollut. 2011, 218, 293–306. DOI: 10.1007/s11270-010-0642-3. [37] Xu, Q.; Ge, K.; Zhang, S.; Tan, B. Understanding the Adsorption and Inhibitive Properties of Nitrogen-Doped Carbon Dots for Copper in 0.5M H2SO4 Solution. J. Taiwan Inst. Chem. Eng. 2021, 125, 23–34. DOI: 10.1016/j.jtice.2021.05.050. [38] Surip, S. N.; Abdulhameed, A. S.; Garba, Z. N.; Syed-Hassan, S. S. A.; Ismail, K.; Jawad, A. H. H2SO4-Treated Malaysian Low Rank Coal for Methylene Blue Dye Decolourization and Cod Reduction: Optimization of Adsorption and Mechanism Study. Surf. Interfaces. 2020, 21, 100641. DOI: 10.1016/j.surfin.2020.100641. [39] Souza, M. T.; Souza, M. T.; Panobianco, M. Morphological Characterization of Fruit, Seed and Seedling, and Seed Germination Test of Campomanesia Guazumifolia. J. Seed Sci. 2018, 40, 75–81. DOI: 10.1590/2317-1545v40n1186143. [40] Li, C.; Knierim, B.; Manisseri, C.; Arora, R.; Scheller, H. V.; Auer, M.; Vogel, K. P.; Simmons, B. A.; Singh, S. Comparison of Dilute Acid and Ionic Liquid Pretreatment of Switchgrass: Biomass Recalcitrance, Delignification and Enzymatic Saccharification. Bioresour. Technol. 2010, 101, 4900–4906. [41] Carrier, M.; Neomagus, H. W.; Gorgens, J.; Knoetze, J. H. € Influence of Chemical Pretreatment on the Internal Structure and Reactivity of Pyrolysis Chars Produced from Sugar Cane Bagasse. Energy Fuels. 2012, 26, 4497–4506. DOI: 10.1021/ef300500k. [42] Schadeck Netto, M.; Silva, N. F. d.; Mallmann, E. S.; Dotto, G. L.; Foletto, E. L. Effect of Salinity on the Adsorption Behavior of Methylene Blue onto Comminuted Raw Avocado Residue: CCD-RSM Design. Water. Air. Soil Pollut. 2019, 230, 187. [43] Lagergren, S. Y. Zur Theorie der sogenannten Adsorption. 1898. [44] Ho, Y. S.; McKay, G. Application of Kinetic Models to the Sorption of Copper (II) on to Peat. Adsorpt. Sci. Technol. 2002, 20, 797–815. DOI: 10.1260/026361702321104282. [45] Liu, Y.; Shen, L. A General Rate Law Equation for Biosorption. Biochem. 2008, 38, 390–394. DOI: 10.1016/j.bej.2007.08.003. [46] Elovich, S. Y.; Larionov, O. G. Theory of Adsorption from Nonelectrolyte Solutions on Solid Adsorbents. Russ. Chem. Bull. 1962, 11, 198–203. DOI: 10.1007/BF00908017. [47] Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. DOI: 10.1021/ja02242a004. [48] Freundlich, H. Uber Die Adsorption in L € osungen. € Zeitschrift Fur Phys. Chem. € 1907, 57U, 1907-5723. [49] Toth, J. Adsorption: Theory, Modeling, and Analysis; 2002; 878p, Marcel Dekker, New York. [50] Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. [Database] DOI: 10.1063/1.1746922. [51] Lima, E. C.; Hosseini-Bandegharaei, A.; Moreno-Piraj an, J. C.; Anastopoulos, I. Anastopoulos, I. A Critical Review of the Estimation of the Thermodynamic Parameters on Adsorption Equilibria. Wrong Use of Equilibrium Constant in the Van’t Hoof Equation for Calculation of Thermodynamic Parameters of Adsorption. J. Mol. Liq. 2019, 273, 425–434. DOI: 10.1016/j.molliq.2018.10.048. [52] Bruice, P. Y. Organic Chemistry; 2003, Pearson, United States Edition. [53] Li, Z.; Hanafy, H.; Zhang, L.; Sellaoui, L.; Schadeck Netto, M.; Oliveira, M. L. S.; Seliem, M. K.; Luiz Dotto, G.; BonillaPetriciolet, A.; Li, Q. Adsorption of Congo Red and Methylene Blue Dyes on an Ashitaba Waste and a Walnut Shell-Based Activated Carbon from Aqueous Solutions: Experiments, Characterization and Physical Interpretations. Chem. Eng. J. 2020, 388, 124263. DOI: 10.1016/j.cej.2020.124263. [54] Sathishkumar, P.; Arulkumar, M.; Palvannan, T. Utilization of Agro-Industrial Waste Jatropha Curcas Pods as an Activated Carbon for the Adsorption of Reactive Dye Remazol Brilliant Blue R (RBBR). J. Clean. Prod. 2012, 22, 67–75. DOI: 10.1016/j.jclepro.2011.09.017. [55] Georgin, J.; Drumm, F. C.; Grassi, P.; Franco, D.; Allasia, D.; Dotto, G. L. Potential of Araucaria Angustifolia Bark as Adsorbent to Remove Gentian Violet Dye from Aqueous Effluents. Water Sci. Technol. 2018, 78, 1693–1703. [56] Cesca, K.; Netto, M. S.; Ely, V. L.; Dotto, G. L.; Foletto, E. L.; Hotza, D. Synthesis of Spherical Bacterial Nanocellulose as a Potential Silver Adsorption Agent for Antimicrobial Purposes. Cellulose Chem. Technol. 2020, 54, 285–290. DOI: 10.35812/ CelluloseChemTechnol.2020.54.30. [57] Cruz, G.; Santiago, P. A.; Braz, C. E. M.; Seleghim, P.; Crnkovic, P. M. Investigation into the Physical–Chemical Properties of Chemically Pretreated Sugarcane Bagasse. J. Therm. Anal. Calorim. 2018, 132, 1039–1053. DOI: 10.1007/s10973-018-7041-1. [58] Georgin, J.; Franco, D. S. P. P.; Netto, M. S.; Allasia, D.; Oliveira, M. L. S. S.; Dotto, G. L. Evaluation of Ocotea Puberula Bark Powder (OPBP) as an Effective Adsorbent to Uptake Crystal Violet from Colored Effluents: Alternative Kinetic Approaches. Environ. Sci. Pollut. Res. Int. 2020, 27, 25727–25739. [59] Xu, F.; Yu, J.; Tesso, T.; Dowell, F.; Wang, D. Qualitative and Quantitative Analysis of Lignocellulosic Biomass Using Infrared Techniques: A Mini-Review. Appl. Energy. 2013, 104, 801–809. DOI: 10.1016/j.apenergy.2012.12.019. [60] Garside, P.; Wyeth, P. Identification of Cellulosic Fibres by FTIR Spectroscopy: Differentiation of Flax and Hemp by Polarized ATR FTIR. Stud. Conserv. 2006, 51, 205–211. DOI: 10.1179/sic.2006.51.3.205. [61] Liu, W.; Yang, Q.; Yang, Z.; Wang, W. Adsorption of 2,4-D on Magnetic Graphene and Mechanism Study. Colloids Surfaces a Physicochem. Eng. Asp. 2016, 509, 367–375. DOI: 10.1016/j.colsurfa.2016.09.039. [62] Asadullah, M.; Asaduzzaman, M.; Kabir, M. S.; Mostofa, M. G.; Miyazawa, T. Chemical and Structural Evaluation of Activated Carbon Prepared from Jute Sticks for Brilliant Green Dye Removal from Aqueous Solution. J. Hazard. Mater. 2010, 174, 437–443. [63] Pinto, B. P.; Santa Maria, L. C. d.; Sena, M. E. Sulfonated Poly(Ether Imide): A Versatile Route to Prepare Functionalized Polymers by Homogenous Sulfonation. Mater. Lett. 2007, 61, 2540–2543. DOI: 10.1016/j.matlet.2006.09.060. [64] Georgin, J.; Franco, D. S. P.; Drumm, F. C.; Grassi, P.; Schadeck Netto, M.; Allasia, D.; Dotto, G. L. Paddle Cactus (Tacinga Palmadora) as Potential Low-Cost Adsorbent to Treat Textile Effluents Containing Crystal Violet. Chem. Eng. Commun. 2020, 207, 1368-1379. [65] Atieh, M. A.; Bakather, O. Y.; Al-Tawbini, B.; Bukhari, A. A.; Abuilaiwi, F. A.; Fettouhi, M. B. Effect of Carboxylic Functional Group Functionalized on Carbon Nanotubes Surface on the Removal of Lead from Water. Bioinorg. Chem. Appl. 2010, 2010, 1–9. DOI: 10.1155/2010/603978. [66] Men endez, J. A. Electrical Charge Distribution on Carbon Surfaces as a Function of the pH and Point of Zero Charge. An Approximate Solution. Res. Dev. Mater. Sci. 2018, 8, 8–11. [67] Bekbolet, M.; Yenig € un, O.; Y € ucel, I. Sorption Studies of 2,4-D € on Selected Soils. Water. Air. Soil Pollut. 1999, 111, 75–88. DOI: 10.1023/A:1005089612111. [68] Celis, R.; Hermos ın, M. C.; Cox, L.; Cornejo, J. Sorption of 2,4- Dichlorophenoxyacetic Acid by Model Particles Simulating Naturally Occurring Soil Colloids. Environ. Sci. Technol. 1999, 33, 1200–1206. DOI: 10.1021/es980659t. [69] Cai, J.; Xu, D.; Dong, Z.; Yu, X.; Yang, Y.; Banks, S. W.; Bridgwater, A. V. Processing Thermogravimetric Analysis Data for Isoconversional Kinetic Analysis of Lignocellulosic Biomass Pyrolysis: Case Study of Corn Stalk. Renew. Sustain. Energy Rev. 2018, 82, 2705–2715. DOI: 10.1016/j.rser.2017.09.113. [70] Mamleev, V.; Bourbigot, S.; Yvon, J. Kinetic Analysis of the Thermal Decomposition of Cellulose: The Change of the Rate Limitation. J. Anal. Appl. Pyrolysis. 2007, 80, 141–150. DOI: 10. 1016/j.jaap.2007.01.012. [71] Sanchez-Silva, L.; Lopez-Gonz alez, D.; Villasenor, J.; S ~ anchez, P.; Valverde, J. L. Thermogravimetric-Mass Spectrometric Analysis of Lignocellulosic and Marine Biomass Pyrolysis. Bioresour. Technol. 2012, 109, 163–172. [72] Kırbıyık, C¸.; Put € un, A. E.; P € ut € un, E. Equilibrium, Kinetic, and € Thermodynamic Studies of the Adsorption of Fe(III) Metal Ions and 2,4-Dichlorophenoxyacetic Acid onto Biomass-Based Activated Carbon by ZnCl2 Activation. Surf. Interfaces. 2017, 8, 182–192. DOI: 10.1016/j.surfin.2017.03.011. [73] Binh, Q. A.; Nguyen, H. H. Investigation the Isotherm and Kinetics of Adsorption Mechanism of Herbicide 2,4-Dichlorophenoxyacetic Acid (2,4-D) on Corn Cob Biochar. Bioresour. Technol. Rep. 2020, 11, 100520. DOI: 10.1016/j.biteb.2020.100520. [74] Bonilla-Petriciolet, A.; Mendoza-Castillo, D. I.; Reynel-Avila, H. E. Adsorption Processes for Water Treatment and Purification; Springer International Publishing: Cham, 2017; 266p. [75] Khasri, A.; Ahmad, M. A. Adsorption of Basic and Reactive Dyes from Aqueous Solution onto Intsia Bijuga Sawdust-Based Activated Carbon: Batch and Column Study. Environ. Sci. Pollut. Res. Int. 2018, 25, 31508–31519. [76] Kilic, M.; Apaydin-Varol, E.; Put € un, A. E. Adsorptive Removal € of Phenol from Aqueous Solutions on Activated Carbon Prepared from Tobacco Residues: Equilibrium, Kinetics and Thermodynamics. J. Hazard. Mater. 2011, 189, 397–403. [77] Bakhtiary, S.; Shirvani, M.; Shariatmadari, H. AdsorptionDesorption Behavior of 2,4-D on NCP-Modified Bentonite and Zeolite: Implications for Slow-Release Herbicide Formulations. Chemosphere. 2013, 90, 699–705. DOI: 10.1016/j.chemosphere. 2012.09.052. [78] Wu, F. C.; Tseng, R. L.; Juang, R. S. Characteristics of Elovich Equation Used for the Analysis of Adsorption Kinetics in DyeChitosan Systems. Chem. Eng. J. 2009, 150, 366–373. DOI: 10.1016/j.cej.2009.01.014. [79] Juang, R. S.; Chen, M. L. Application of the Elovich Equation to the Kinetics of Metal Sorption with Solvent-Impregnated Resins. Ind. Eng. Chem. Res. 1997, 36, 813–820. DOI: 10.1021/ie960351f. [80] Dong, J.; Du, Y.; Duyu, R.; Shang, Y.; Zhang, S.; Han, R. Adsorption of Copper Ion from Solution by Polyethylenimine Modified Wheat Straw. Bioresour. Technol. Rep. 2019, 6, 96–102. DOI: 10.1016/j.biteb.2019.02.011. [81] Yamil, Y. L.; Georgin, J.; Franco, D. S. P.; Netto, M. S.; Foletto, E. L.; Piccilli, D. G. A.; Sellaoui, L.; Dotto, G. L. Transforming Pods of the Species Capparis Flexuosa into Effective Biosorbent to Remove Blue Methylene and Bright Blue in Discontinuous and Continuous Systems. Environ. Sci. Pollut. Res. 2021, 28, 8036–8049. [82] Foo, K. Y.; Hameed, B. H. Insights into the Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156, 2–10. DOI: 10.1016/j.cej.2009.09.013. [83] Georgin, J.; Franco, D. S. P.; Schadeck Netto, M.; Allasia, D.; Foletto, E. L.; Oliveira, L. F. S.; Dotto, G. L. Transforming Shrub Waste into a High-Efficiency Adsorbent: Application of Physalis Peruvian Chalice Treated with Strong Acid to Remove the 2,4-Dichlorophenoxyacetic Acid Herbicide. J. Environ. Chem. Eng. 2021, 9, 104574. DOI: 10.1016/j.jece.2020.104574. [84] Tang, L.; Zhang, S.; Zeng, G. M.; Zhang, Y.; Yang, G.; De; Chen, J.; Wang, J. J.; Wang, J. J.; Zhou, Y. Y.; Deng, Y. C. Rapid Adsorption of 2,4-Dichlorophenoxyacetic Acid by Iron Oxide Nanoparticles-Doped Carboxylic Ordered Mesoporous Carbon. J. Colloid Interface Sci. 2015, 445, 1–8. [85] Terzyk, A. P.; Chatłas, J.; Gauden, P. A.; Rychlicki, G.; Kowalczyk, P. Developing the Solution Analogue of the Toth Adsorption Isotherm Equation. J. Colloid Interface Sci. 2003, 266, 473–476. [86] Harmoudi, H.; El; Gaini, L.; El; Daoudi, E.; Rhazi, M.; Boughaleb, Y.; Mhammedi, M. A.; El; Migalska-Zalas, A.; Bakasse, M. Removal of 2,4-D from Aqueous Solutions by Adsorption Processes Using Two Biopolymers: Chitin and Chitosan and Their Optical Properties. Opt. Mater. 2014, 36, 1471–1477. DOI: 10.1016/j.optmat.2014.03.040. [87] Abigail M, E. A.; Samuel, S. M.; Chidambaram, R. Application of Rice Husk Nanosorbents Containing 2,4- Dichlorophenoxyacetic Acid Herbicide to Control Weeds and Reduce Leaching from Soil. J. Taiwan Inst. Chem. Eng. 2016, 63, 318–326. DOI: 10.1016/j.jtice.2016.03.024. [88] Sathishkumar, M.; Binupriya, A. R.; Kavitha, D.; Yun, S. E. Kinetic and Isothermal Studies on Liquid-Phase Adsorption of 2,4-Dichlorophenol by Palm Pith Carbon. Bioresour. Technol. 2007, 98, 866–873. [89] Deng, S.; Ma, R.; Yu, Q.; Huang, J.; Yu, G. Enhanced Removal of Pentachlorophenol and 2,4-D from Aqueous Solution by an Aminated Biosorbent. J. Hazard. Mater. 2009, 165, 408–414. [90] Khan, T. A.; Khan, E. A. Shahjahan. Removal of Basic Dyes from Aqueous Solution by Adsorption onto Binary IronManganese Oxide Coated Kaolinite: Non-Linear Isotherm and Kinetics Modeling. Appl. Clay Sci. 2015, 107, 70–77. [91] Ruthven, D. M. Principles of Adsorption and Adsorption Processes; John Wiley & Sons, New York, 1984; 62p |
dc.relation.citationendpage.spa.fl_str_mv |
1006 |
dc.relation.citationstartpage.spa.fl_str_mv |
995 |
dc.relation.citationissue.spa.fl_str_mv |
12 |
dc.relation.citationvolume.spa.fl_str_mv |
56 |
dc.rights.spa.fl_str_mv |
© 2021 Taylor & Francis Group, LLC Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
© 2021 Taylor & Francis Group, LLC Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
12 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Taylor and Francis Ltd. |
dc.publisher.place.spa.fl_str_mv |
United States |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.tandfonline.com/doi/full/10.1080/03601234.2021.1997283 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/085b5105-1136-409e-8a76-958c8fce07fe/download https://repositorio.cuc.edu.co/bitstreams/58c9815f-899e-474f-94fd-c72840bfbeb4/download https://repositorio.cuc.edu.co/bitstreams/22726d90-a88a-4a6e-82b9-7208250261a5/download https://repositorio.cuc.edu.co/bitstreams/48e0d023-61f6-4db4-b94c-9bd2458089eb/download |
bitstream.checksum.fl_str_mv |
ccfb87af6b4bc68e334f0fd1a2115da6 e30e9215131d99561d40d6b0abbe9bad b88143234228b0221a2c2d193e68c207 85103b1fbe499d1bc3e50d772fa883d3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760843399888896 |
spelling |
Bevilacqua, Raíssa C.Preigschadt, Isadora A.georgin, jordanaFranco, DisonMallmann, Evandro S.Silva Oliveira, Luis FelipePinto, DianaFoletto, EdsonDotto, Guilherme LuizNetto, MatiasNetto, Matias2022-07-11T16:38:06Z20222022-07-11T16:38:06Z2021: Raíssa C. Bevilacqua, Isadora A. Preigschadt, Matias S. Netto, Jordana Georgin, Dison S. P. Franco, Evandro S. Mallmann, Luis F. O. Silva, Diana Pinto, Edson L. Foletto & Guilherme L. Dotto (2021) One step acid modification of the residual bark from Campomanesia guazumifolia using H2SO4 and application in the removal of 2,4-dichlorophenoxyacetic from aqueous solution, Journal of Environmental Science and Health, Part B, 56:12, 995-1006, DOI: 10.1080/03601234.2021.19972830360-1234https://hdl.handle.net/11323/935810.1080/03601234.2021.19972831532-4109Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The residual bark of the tree species Campomanesia guazumifolia was successfully modified with H2SO4 and applied to remove the toxic herbicide 2.4-dichlorophenoxyacetic (2.4-D) from aqueous solutions. The characterization techniques made it possible to observe that the material maintained its amorphous structure; however, a new FTIR band emerged, indicating the interaction of the lignocellulosic matrix with sulfuric acid. Micrographs showed that the material maintained its irregular shape; however, new spaces and cavities appeared after the acidic modification. Regardless of the herbicide concentration, the system tended to equilibrium after 120 min. Using the best statistical coefficients, the Elovich model was the one that best fitted the kinetic data. The temperature increase in the system negatively influenced the adsorption of 2.4-D, reaching a maximum capacity of 312.81 mg g−1 at 298 K. The equilibrium curves showed a better fit to the Tóth model. Thermodynamic parameters confirmed the exothermic nature of the system (ΔH0 = −59.86 kJ mol−1). As a residue obtained from urban pruning, the bark of Campomanesia guazumifolia treated with sulfuric acid is a promising and highly efficient alternative for removing the widely used and toxic 2.4-D herbicide from aqueous solutions.12 páginasapplication/pdfengTaylor and Francis Ltd.United States© 2021 Taylor & Francis Group, LLCAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfOne step acid modification of the residual bark from Campomanesia guazumifolia using H2SO4 and application in the removal of 2,4-dichlorophenoxyacetic from aqueous solutionArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.tandfonline.com/doi/full/10.1080/03601234.2021.1997283Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes[1] Pavlovic, I.; Barriga, C.; Hermos ın, M. C.; Cornejo, J.; Ulibarri, M. A. Adsorption of Acidic Pesticides 2,4-D, Clopyralid and Picloram on Calcined Hydrotalcite. Appl. Clay Sci. 2005, 30, 125–133. DOI: 10.1016/j.clay.2005.04.004.[2] Nejati, K.; Davary, S.; Saati, M. Study of 2,4- Dichlorophenoxyacetic Acid (2,4-D) Removal by Cu-Fe-Layered Double Hydroxide from Aqueous Solution. Appl. Surf. Sci. 2013, 280, 67–73. DOI: 10.1016/j.apsusc.2013.04.086.[3] Hameed, B. H.; Salman, J. M.; Ahmad, A. L. Adsorption Isotherm and Kinetic Modeling of 2,4-D Pesticide on Activated Carbon Derived from Date Stones. J. Hazard. Mater. 2009, 163, 121–126.[4] Chaparadza, A.; Hossenlopp, J. M. Removal of 2,4- Dichlorophenoxyacetic Acid by Calcined Zn-Al-Zr Layered Double Hydroxide. J. Colloid Interface Sci. 2011, 363, 92–97.[5] Xi, Y.; Mallavarapu, M.; Naidu, R. Adsorption of the Herbicide 2,4-D on Organo-Palygorskite. Appl. Clay Sci. 2010, 49, 255–261. DOI: 10.1016/j.clay.2010.05.015.[6] Shankar, M. V.; Anandan, S.; Venkatachalam, N.; Arabindoo, B.; Murugesan, V. Fine Route for an Efficient Removal of 2,4- Dichlorophenoxyacetic Acid (2,4-D) by Zeolite-Supported TiO2. Chemosphere. 2006, 63, 1014–1021. DOI: 10.1016/j.chemosphere.2005.08.041.[7] Li, Q.; Sun, J.; Ren, T.; Guo, L.; Yang, Z.; Yang, Q.; Chen, H. Adsorption Mechanism of 2,4-Dichlorophenoxyacetic Acid onto Nitric-Acid-Modified Activated Carbon Fiber. Environ. Technol. 2018, 39, 895–906. DOI: 10.1080/09593330.2017.1316318.[8] Garabrant, D. H.; Philbert, M. A. Epidemiology and Toxicology. Metab. Clin. Exp. 2002, 32, 233–257.[9] Derylo-Marczewska, A.; Blachnio, M.; Marczewski, A. W.; Swiatkowski, A.; Tarasiuk, B. Adsorption of Selected Herbicides from Aqueous Solutions on Activated Carbon. J. Therm. Anal. Calorim. 2010, 101, 785–794. DOI: 10.1007/s10973-010-0840-7.[10] Jung, B. K.; Hasan, Z.; Jhung, S. H. Adsorptive Removal of 2,4- Dichlorophenoxyacetic Acid (2,4-D) from Water with a MetalOrganic Framework. Chem. Eng. J. 2013, 234, 99–105. DOI: 10.1016/j.cej.2013.08.110.[11] Trivedi, N. S.; Mandavgane, S. A. Fundamentals of 2, 4 Dichlorophenoxyacetic Acid Removal from Aqueous Solutions. Sep. Purif. Rev. 2018, 47, 337–354. DOI: 10.1080/15422119. 2018.1450765.[12] Tang, Y.; Luo, S.; Teng, Y.; Liu, C.; Xu, X.; Zhang, X.; Chen, L. Efficient Removal f Herbicide 2,4-Dichlorophenoxyacetic Acid from Water Using Ag/Reduced Graphene Oxide Co-decorated TiO2 Nanotube Arrays. J. Hazard. Mater. 2012, 241–242, 323–330. DOI: 10.1016/j.jhazmat.2012.09.050.[13] Yang, L.; Sun, W.; Luo, S.; Luo, Y. White Fungus-like Mesoporous Bi2S3 Ball/TiO2 Heterojunction with High Photocatalytic Efficiency in Purifying 2,4-Dichlorophenoxyacetic Acid/Cr(VI) Contaminated Water. Appl. Catal. B Environ. 2014, 156–157, 25–34.[14] Ma, J. y.; Quan, X. c.; Yang, Z. f.; Li, A. j. Biodegradation of a Mixture of 2,4-Dichlorophenoxyacetic Acid and Multiple Chlorophenols by Aerobic Granules Cultivated through Plasmid pJP4 Mediated Bioaugmentation. Chem. Eng. J. 2012, 181–182, 144–151.[15] Souza, F. L.; Sa ez, C.; Lanza, M. R. V.; Canizares, P.; Rodrigo, ~M. A. Removal of Pesticide 2,4-D by Conductive-Diamond Photoelectrochemical Oxidation. Appl. Catal. B Environ. 2016, 180, 733–739. DOI: 10.1016/j.apcatb.2015.07.038.[16] Porras-Rodriguez, M.; Talens-Alesson, F. I. Removal of 2,4- Dichlorophenoxyacetic Acid from Water by Adsorptive Micellar Flocculation. Environ. Sci. Technol. 1999, 33, 3206–3209. DOI: 10.1021/es980821s.[17] Talens-Alesson, F. I. Binding of Pesticide 2,4-D to SDS and AOS Micellar Flocculates. Colloids Surf. A Physicochem. Eng. Asp. 2001, 180, 199–203. DOI: 10.1016/S0927-7757(00)00766-4.[18] Hajighasemkhan, A.; Taghavi, L.; Moniri, E.; Hassani, A. H.; Panahi, H. A. Adsorption Kinetics and Isotherms Study of 2,4- Dichlorophenoxyacetic Acid by 3dimensional/Graphene Oxide/ Magnetic from Aquatic Solutions. Int. J. Environ. Anal. Chem. 2020, 1–21.[19] Haddad, M.; Oie, C.; Vo Duy, S.; Sauv e, S.; Barbeau, B. Adsorption of Micropollutants Present in Surface Waters onto Polymeric Resins: Impact of Resin Type and Water Matrix on Performance. Sci. Total Environ. 2019, 660, 1449–1458.[20] Pereira, H. A.; Hernandes, P. R. T.; Netto, M. S.; Reske, G. D.; Vieceli, V.; Oliveira, L. F. S.; Dotto, G. L. Adsorbents for Glyphosate Removal in Contaminated Waters: A Review. Environ. Chem. Lett. 2021, 19, 1525–1543. 0123456789.[21] Khoei, A. J.; Joogh, N. J. G.; Darvishi, P.; Rezaei, K. Application of Physical and Biological Methods to Remove Heavy Metal, Arsenic and Pesticides, Malathion and Diazinon from Water. Turkish J. Fish. Aquat. Sci. 2019, 19, 21–28.[22] Ye, N.; Cimetiere, N.; Heim, V.; Fauchon, N.; Feliers, C.; Wolbert, D. Upscaling Fixed Bed Adsorption Behaviors towards Emerging Micropollutants in Treated Natural Waters with Aging Activated Carbon: Model Development and Validation. Water Res. 2019, 148, 30–40.[23] Calisto, J. S.; Pacheco, I. S.; Freitas, L. L.; Santana, L. K.; Fagundes, W. S.; Amaral, F. A.; Canobre, S. C. Adsorption Kinetic and Thermodynamic Studies of the 2, 4- Dichlorophenoxyacetate (2,4-D) by the [Co-Al-Cl] Layered Double Hydroxide. Heliyon. 2019, 5, e02553. DOI: 10.1016/j. heliyon.2019.e02553.[24] Hoijang, S.; Nonkumwong, J.; Singhana, B.; Wangkarn, S.; Ananta, S.; Srisombat, L. Adsorption of 2,4- Dichlorophenoxyacetic Acid by Magnesium Ferrite Magnetic Nanoparticles Modified with Amine Functional Groups. Chiang Mai J. Sci. 2020, 47, 137–146.[25] Salman, J. M.; Njoku, V. O.; Hameed, B. H. Batch and FixedBed Adsorption of 2,4-Dichlorophenoxyacetic Acid onto Oil Palm Frond Activated Carbon. Chem. Eng. J. 2011, 174, 33–40. DOI: 10.1016/j.cej.2011.08.024.[26] Njoku, V. O.; Hameed, B. H. Preparation and Characterization of Activated Carbon from Corncob by Chemical Activation with H3PO4 for 2,4-Dichlorophenoxyacetic Acid Adsorption. Chem. Eng. J. 2011, 173, 391–399. DOI: 10.1016/j.cej.2011.07.075.[27] Salman, J. M.; Hameed, B. H. Adsorption of 2,4- Dichlorophenoxyacetic Acid and Carbofuran Pesticides onto Granular Activated Carbon. Desalination. 2010, 256, 129–135. DOI: 10.1016/j.desal.2010.02.002.[28] Salleh, M. A. M.; Mahmoud, D. K.; Karim, W. A. W. A.; Idris, A. Cationic and Anionic Dye Adsorption by Agricultural Solid Wastes: A Comprehensive Review. Desalination. 2011, 280, 1–13. DOI: 10.1016/j.desal.2011.07.019.[29] Mohammad, S. G.; Ahmed, S. M.; Badawi, A. F. M. A Comparative Adsorption Study with Different Agricultural Waste Adsorbents for Removal of Oxamyl Pesticide. Desalin. Water Treat. 2015, 55, 2109–2120. DOI: 10.1080/19443994.2014.930797.[30] Pang, X.; Sellaoui, L.; Franco, D.; Netto, M. S. M. S.; Georgin, J.; Luiz Dotto, G.; Abu Shayeb, M. K. M. K.; Belmabrouk, H.; Bonilla-Petriciolet, A.; Li, Z. Preparation and Characterization of a Novel Mountain Soursop Seeds Powder Adsorbent and Its Application for the Removal of Crystal Violet and Methylene Blue from Aqueous Solutions. Chem. Eng. J. 2020, 391, 123617. DOI: 10.1016/j.cej.2019.123617.[31] Salom on, Y. L. de O.; Georgin, J.; Franco, D. S. P.; Netto, M. S.; Grassi, P.; Piccilli, D. G. A.; Oliveira, M. L. S.; Dotto, G. L. Powdered Biosorbent from Pecan Pericarp (Carya Illinoensis) as an Efficient Material to Uptake Methyl Violet 2B from Effluents in Batch and Column Operations. Adv. Powder Technol. 2020, 31, 2843–2852. DOI: 10.1016/j.apt.2020.05.004.[32] Franco, D. S. P.; Georgin, J.; Drumm, F. C.; Netto, M. S.; Allasia, D.; Oliveira, M. L. S.; Dotto, G. L. Araticum (Annona Crassiflora) Seed Powder (ASP) for the Treatment of Colored Effluents by Biosorption. Environ. Sci. Pollut. Res. Int. 2020, 27, 11184–11194.[33] Jawad, A. H.; Rashid, R. A.; Ishak, M. A. M.; Wilson, L. D. Adsorption of Methylene Blue onto Activated Carbon Developed from Biomass Waste by H2SO4 Activation: Kinetic, Equilibrium and Thermodynamic Studies. Desalin. Water Treat. 2016, 57, 25194–25206. DOI: 10.1080/19443994.2016.1144534.[34] Jawad, A. H.; Mamat, N. F. H.; Abdullah, M. F.; Ismail, K. Adsorption of Methylene Blue onto Acid-Treated Mango Peels: Kinetic, Equilibrium and Thermodynamic Study. DWT. 2017, 59, 210–219. DOI: 10.5004/dwt.2017.0097.[35] Jawad, A. H.; Rashid, R. A.; Ishak, M. A. M.; Ismail, K. Adsorptive Removal of Methylene Blue by Chemically Treated Cellulosic Waste Banana (Musa Sapientum) Peels. J. Taibah Univ. Sci. 2018, 12, 809–819. DOI: 10.1080/16583655.2018.1519893.[36] Low, L. W.; Teng, T. T.; Ahmad, A.; Morad, N.; Wong, Y. S. A Novel Pretreatment Method of Lignocellulosic Material as Adsorbent and Kinetic Study of Dye Waste Adsorption. Water. Air. Soil Pollut. 2011, 218, 293–306. DOI: 10.1007/s11270-010-0642-3.[37] Xu, Q.; Ge, K.; Zhang, S.; Tan, B. Understanding the Adsorption and Inhibitive Properties of Nitrogen-Doped Carbon Dots for Copper in 0.5M H2SO4 Solution. J. Taiwan Inst. Chem. Eng. 2021, 125, 23–34. DOI: 10.1016/j.jtice.2021.05.050.[38] Surip, S. N.; Abdulhameed, A. S.; Garba, Z. N.; Syed-Hassan, S. S. A.; Ismail, K.; Jawad, A. H. H2SO4-Treated Malaysian Low Rank Coal for Methylene Blue Dye Decolourization and Cod Reduction: Optimization of Adsorption and Mechanism Study. Surf. Interfaces. 2020, 21, 100641. DOI: 10.1016/j.surfin.2020.100641.[39] Souza, M. T.; Souza, M. T.; Panobianco, M. Morphological Characterization of Fruit, Seed and Seedling, and Seed Germination Test of Campomanesia Guazumifolia. J. Seed Sci. 2018, 40, 75–81. DOI: 10.1590/2317-1545v40n1186143.[40] Li, C.; Knierim, B.; Manisseri, C.; Arora, R.; Scheller, H. V.; Auer, M.; Vogel, K. P.; Simmons, B. A.; Singh, S. Comparison of Dilute Acid and Ionic Liquid Pretreatment of Switchgrass: Biomass Recalcitrance, Delignification and Enzymatic Saccharification. Bioresour. Technol. 2010, 101, 4900–4906.[41] Carrier, M.; Neomagus, H. W.; Gorgens, J.; Knoetze, J. H. € Influence of Chemical Pretreatment on the Internal Structure and Reactivity of Pyrolysis Chars Produced from Sugar Cane Bagasse. Energy Fuels. 2012, 26, 4497–4506. DOI: 10.1021/ef300500k.[42] Schadeck Netto, M.; Silva, N. F. d.; Mallmann, E. S.; Dotto, G. L.; Foletto, E. L. Effect of Salinity on the Adsorption Behavior of Methylene Blue onto Comminuted Raw Avocado Residue: CCD-RSM Design. Water. Air. Soil Pollut. 2019, 230, 187.[43] Lagergren, S. Y. Zur Theorie der sogenannten Adsorption. 1898.[44] Ho, Y. S.; McKay, G. Application of Kinetic Models to the Sorption of Copper (II) on to Peat. Adsorpt. Sci. Technol. 2002, 20, 797–815. DOI: 10.1260/026361702321104282.[45] Liu, Y.; Shen, L. A General Rate Law Equation for Biosorption. Biochem. 2008, 38, 390–394. DOI: 10.1016/j.bej.2007.08.003.[46] Elovich, S. Y.; Larionov, O. G. Theory of Adsorption from Nonelectrolyte Solutions on Solid Adsorbents. Russ. Chem. Bull. 1962, 11, 198–203. DOI: 10.1007/BF00908017.[47] Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. DOI: 10.1021/ja02242a004.[48] Freundlich, H. Uber Die Adsorption in L € osungen. € Zeitschrift Fur Phys. Chem. € 1907, 57U, 1907-5723.[49] Toth, J. Adsorption: Theory, Modeling, and Analysis; 2002; 878p, Marcel Dekker, New York.[50] Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. [Database] DOI: 10.1063/1.1746922.[51] Lima, E. C.; Hosseini-Bandegharaei, A.; Moreno-Piraj an, J. C.; Anastopoulos, I. Anastopoulos, I. A Critical Review of the Estimation of the Thermodynamic Parameters on Adsorption Equilibria. Wrong Use of Equilibrium Constant in the Van’t Hoof Equation for Calculation of Thermodynamic Parameters of Adsorption. J. Mol. Liq. 2019, 273, 425–434. DOI: 10.1016/j.molliq.2018.10.048.[52] Bruice, P. Y. Organic Chemistry; 2003, Pearson, United States Edition.[53] Li, Z.; Hanafy, H.; Zhang, L.; Sellaoui, L.; Schadeck Netto, M.; Oliveira, M. L. S.; Seliem, M. K.; Luiz Dotto, G.; BonillaPetriciolet, A.; Li, Q. Adsorption of Congo Red and Methylene Blue Dyes on an Ashitaba Waste and a Walnut Shell-Based Activated Carbon from Aqueous Solutions: Experiments, Characterization and Physical Interpretations. Chem. Eng. J. 2020, 388, 124263. DOI: 10.1016/j.cej.2020.124263.[54] Sathishkumar, P.; Arulkumar, M.; Palvannan, T. Utilization of Agro-Industrial Waste Jatropha Curcas Pods as an Activated Carbon for the Adsorption of Reactive Dye Remazol Brilliant Blue R (RBBR). J. Clean. Prod. 2012, 22, 67–75. DOI: 10.1016/j.jclepro.2011.09.017.[55] Georgin, J.; Drumm, F. C.; Grassi, P.; Franco, D.; Allasia, D.; Dotto, G. L. Potential of Araucaria Angustifolia Bark as Adsorbent to Remove Gentian Violet Dye from Aqueous Effluents. Water Sci. Technol. 2018, 78, 1693–1703.[56] Cesca, K.; Netto, M. S.; Ely, V. L.; Dotto, G. L.; Foletto, E. L.; Hotza, D. Synthesis of Spherical Bacterial Nanocellulose as a Potential Silver Adsorption Agent for Antimicrobial Purposes. Cellulose Chem. Technol. 2020, 54, 285–290. DOI: 10.35812/ CelluloseChemTechnol.2020.54.30.[57] Cruz, G.; Santiago, P. A.; Braz, C. E. M.; Seleghim, P.; Crnkovic, P. M. Investigation into the Physical–Chemical Properties of Chemically Pretreated Sugarcane Bagasse. J. Therm. Anal. Calorim. 2018, 132, 1039–1053. DOI: 10.1007/s10973-018-7041-1.[58] Georgin, J.; Franco, D. S. P. P.; Netto, M. S.; Allasia, D.; Oliveira, M. L. S. S.; Dotto, G. L. Evaluation of Ocotea Puberula Bark Powder (OPBP) as an Effective Adsorbent to Uptake Crystal Violet from Colored Effluents: Alternative Kinetic Approaches. Environ. Sci. Pollut. Res. Int. 2020, 27, 25727–25739.[59] Xu, F.; Yu, J.; Tesso, T.; Dowell, F.; Wang, D. Qualitative and Quantitative Analysis of Lignocellulosic Biomass Using Infrared Techniques: A Mini-Review. Appl. Energy. 2013, 104, 801–809. DOI: 10.1016/j.apenergy.2012.12.019.[60] Garside, P.; Wyeth, P. Identification of Cellulosic Fibres by FTIR Spectroscopy: Differentiation of Flax and Hemp by Polarized ATR FTIR. Stud. Conserv. 2006, 51, 205–211. DOI: 10.1179/sic.2006.51.3.205.[61] Liu, W.; Yang, Q.; Yang, Z.; Wang, W. Adsorption of 2,4-D on Magnetic Graphene and Mechanism Study. Colloids Surfaces a Physicochem. Eng. Asp. 2016, 509, 367–375. DOI: 10.1016/j.colsurfa.2016.09.039.[62] Asadullah, M.; Asaduzzaman, M.; Kabir, M. S.; Mostofa, M. G.; Miyazawa, T. Chemical and Structural Evaluation of Activated Carbon Prepared from Jute Sticks for Brilliant Green Dye Removal from Aqueous Solution. J. Hazard. Mater. 2010, 174, 437–443.[63] Pinto, B. P.; Santa Maria, L. C. d.; Sena, M. E. Sulfonated Poly(Ether Imide): A Versatile Route to Prepare Functionalized Polymers by Homogenous Sulfonation. Mater. Lett. 2007, 61, 2540–2543. DOI: 10.1016/j.matlet.2006.09.060.[64] Georgin, J.; Franco, D. S. P.; Drumm, F. C.; Grassi, P.; Schadeck Netto, M.; Allasia, D.; Dotto, G. L. Paddle Cactus (Tacinga Palmadora) as Potential Low-Cost Adsorbent to Treat Textile Effluents Containing Crystal Violet. Chem. Eng. Commun. 2020, 207, 1368-1379.[65] Atieh, M. A.; Bakather, O. Y.; Al-Tawbini, B.; Bukhari, A. A.; Abuilaiwi, F. A.; Fettouhi, M. B. Effect of Carboxylic Functional Group Functionalized on Carbon Nanotubes Surface on the Removal of Lead from Water. Bioinorg. Chem. Appl. 2010, 2010, 1–9. DOI: 10.1155/2010/603978.[66] Men endez, J. A. Electrical Charge Distribution on Carbon Surfaces as a Function of the pH and Point of Zero Charge. An Approximate Solution. Res. Dev. Mater. Sci. 2018, 8, 8–11.[67] Bekbolet, M.; Yenig € un, O.; Y € ucel, I. Sorption Studies of 2,4-D € on Selected Soils. Water. Air. Soil Pollut. 1999, 111, 75–88. DOI: 10.1023/A:1005089612111.[68] Celis, R.; Hermos ın, M. C.; Cox, L.; Cornejo, J. Sorption of 2,4- Dichlorophenoxyacetic Acid by Model Particles Simulating Naturally Occurring Soil Colloids. Environ. Sci. Technol. 1999, 33, 1200–1206. DOI: 10.1021/es980659t.[69] Cai, J.; Xu, D.; Dong, Z.; Yu, X.; Yang, Y.; Banks, S. W.; Bridgwater, A. V. Processing Thermogravimetric Analysis Data for Isoconversional Kinetic Analysis of Lignocellulosic Biomass Pyrolysis: Case Study of Corn Stalk. Renew. Sustain. Energy Rev. 2018, 82, 2705–2715. DOI: 10.1016/j.rser.2017.09.113.[70] Mamleev, V.; Bourbigot, S.; Yvon, J. Kinetic Analysis of the Thermal Decomposition of Cellulose: The Change of the Rate Limitation. J. Anal. Appl. Pyrolysis. 2007, 80, 141–150. DOI: 10. 1016/j.jaap.2007.01.012.[71] Sanchez-Silva, L.; Lopez-Gonz alez, D.; Villasenor, J.; S ~ anchez, P.; Valverde, J. L. Thermogravimetric-Mass Spectrometric Analysis of Lignocellulosic and Marine Biomass Pyrolysis. Bioresour. Technol. 2012, 109, 163–172.[72] Kırbıyık, C¸.; Put € un, A. E.; P € ut € un, E. Equilibrium, Kinetic, and € Thermodynamic Studies of the Adsorption of Fe(III) Metal Ions and 2,4-Dichlorophenoxyacetic Acid onto Biomass-Based Activated Carbon by ZnCl2 Activation. Surf. Interfaces. 2017, 8, 182–192. DOI: 10.1016/j.surfin.2017.03.011.[73] Binh, Q. A.; Nguyen, H. H. Investigation the Isotherm and Kinetics of Adsorption Mechanism of Herbicide 2,4-Dichlorophenoxyacetic Acid (2,4-D) on Corn Cob Biochar. Bioresour. Technol. Rep. 2020, 11, 100520. DOI: 10.1016/j.biteb.2020.100520.[74] Bonilla-Petriciolet, A.; Mendoza-Castillo, D. I.; Reynel-Avila, H. E. Adsorption Processes for Water Treatment and Purification; Springer International Publishing: Cham, 2017; 266p.[75] Khasri, A.; Ahmad, M. A. Adsorption of Basic and Reactive Dyes from Aqueous Solution onto Intsia Bijuga Sawdust-Based Activated Carbon: Batch and Column Study. Environ. Sci. Pollut. Res. Int. 2018, 25, 31508–31519.[76] Kilic, M.; Apaydin-Varol, E.; Put € un, A. E. Adsorptive Removal € of Phenol from Aqueous Solutions on Activated Carbon Prepared from Tobacco Residues: Equilibrium, Kinetics and Thermodynamics. J. Hazard. Mater. 2011, 189, 397–403.[77] Bakhtiary, S.; Shirvani, M.; Shariatmadari, H. AdsorptionDesorption Behavior of 2,4-D on NCP-Modified Bentonite and Zeolite: Implications for Slow-Release Herbicide Formulations. Chemosphere. 2013, 90, 699–705. DOI: 10.1016/j.chemosphere. 2012.09.052.[78] Wu, F. C.; Tseng, R. L.; Juang, R. S. Characteristics of Elovich Equation Used for the Analysis of Adsorption Kinetics in DyeChitosan Systems. Chem. Eng. J. 2009, 150, 366–373. DOI: 10.1016/j.cej.2009.01.014.[79] Juang, R. S.; Chen, M. L. Application of the Elovich Equation to the Kinetics of Metal Sorption with Solvent-Impregnated Resins. Ind. Eng. Chem. Res. 1997, 36, 813–820. DOI: 10.1021/ie960351f.[80] Dong, J.; Du, Y.; Duyu, R.; Shang, Y.; Zhang, S.; Han, R. Adsorption of Copper Ion from Solution by Polyethylenimine Modified Wheat Straw. Bioresour. Technol. Rep. 2019, 6, 96–102. DOI: 10.1016/j.biteb.2019.02.011.[81] Yamil, Y. L.; Georgin, J.; Franco, D. S. P.; Netto, M. S.; Foletto, E. L.; Piccilli, D. G. A.; Sellaoui, L.; Dotto, G. L. Transforming Pods of the Species Capparis Flexuosa into Effective Biosorbent to Remove Blue Methylene and Bright Blue in Discontinuous and Continuous Systems. Environ. Sci. Pollut. Res. 2021, 28, 8036–8049.[82] Foo, K. Y.; Hameed, B. H. Insights into the Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156, 2–10. DOI: 10.1016/j.cej.2009.09.013.[83] Georgin, J.; Franco, D. S. P.; Schadeck Netto, M.; Allasia, D.; Foletto, E. L.; Oliveira, L. F. S.; Dotto, G. L. Transforming Shrub Waste into a High-Efficiency Adsorbent: Application of Physalis Peruvian Chalice Treated with Strong Acid to Remove the 2,4-Dichlorophenoxyacetic Acid Herbicide. J. Environ. Chem. Eng. 2021, 9, 104574. DOI: 10.1016/j.jece.2020.104574.[84] Tang, L.; Zhang, S.; Zeng, G. M.; Zhang, Y.; Yang, G.; De; Chen, J.; Wang, J. J.; Wang, J. J.; Zhou, Y. Y.; Deng, Y. C. Rapid Adsorption of 2,4-Dichlorophenoxyacetic Acid by Iron Oxide Nanoparticles-Doped Carboxylic Ordered Mesoporous Carbon. J. Colloid Interface Sci. 2015, 445, 1–8.[85] Terzyk, A. P.; Chatłas, J.; Gauden, P. A.; Rychlicki, G.; Kowalczyk, P. Developing the Solution Analogue of the Toth Adsorption Isotherm Equation. J. Colloid Interface Sci. 2003, 266, 473–476.[86] Harmoudi, H.; El; Gaini, L.; El; Daoudi, E.; Rhazi, M.; Boughaleb, Y.; Mhammedi, M. A.; El; Migalska-Zalas, A.; Bakasse, M. Removal of 2,4-D from Aqueous Solutions by Adsorption Processes Using Two Biopolymers: Chitin and Chitosan and Their Optical Properties. Opt. Mater. 2014, 36, 1471–1477. DOI: 10.1016/j.optmat.2014.03.040.[87] Abigail M, E. A.; Samuel, S. M.; Chidambaram, R. Application of Rice Husk Nanosorbents Containing 2,4- Dichlorophenoxyacetic Acid Herbicide to Control Weeds and Reduce Leaching from Soil. J. Taiwan Inst. Chem. Eng. 2016, 63, 318–326. DOI: 10.1016/j.jtice.2016.03.024.[88] Sathishkumar, M.; Binupriya, A. R.; Kavitha, D.; Yun, S. E. Kinetic and Isothermal Studies on Liquid-Phase Adsorption of 2,4-Dichlorophenol by Palm Pith Carbon. Bioresour. Technol. 2007, 98, 866–873.[89] Deng, S.; Ma, R.; Yu, Q.; Huang, J.; Yu, G. Enhanced Removal of Pentachlorophenol and 2,4-D from Aqueous Solution by an Aminated Biosorbent. J. Hazard. Mater. 2009, 165, 408–414.[90] Khan, T. A.; Khan, E. A. Shahjahan. Removal of Basic Dyes from Aqueous Solution by Adsorption onto Binary IronManganese Oxide Coated Kaolinite: Non-Linear Isotherm and Kinetics Modeling. Appl. Clay Sci. 2015, 107, 70–77.[91] Ruthven, D. M. Principles of Adsorption and Adsorption Processes; John Wiley & Sons, New York, 1984; 62p10069951256Camponesia guazymifoliaHerbicide2,4-DAdsorptionIsothermPublicationORIGINALOne step acid modification of the residual bark from Campomanesia.pdfOne step acid modification of the residual bark from Campomanesia.pdfapplication/pdf2211822https://repositorio.cuc.edu.co/bitstreams/085b5105-1136-409e-8a76-958c8fce07fe/downloadccfb87af6b4bc68e334f0fd1a2115da6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/58c9815f-899e-474f-94fd-c72840bfbeb4/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTOne step acid modification of the residual bark from Campomanesia.pdf.txtOne step acid modification of the residual bark from Campomanesia.pdf.txttext/plain60064https://repositorio.cuc.edu.co/bitstreams/22726d90-a88a-4a6e-82b9-7208250261a5/downloadb88143234228b0221a2c2d193e68c207MD53THUMBNAILOne step acid modification of the residual bark from Campomanesia.pdf.jpgOne step acid modification of the residual bark from Campomanesia.pdf.jpgimage/jpeg11770https://repositorio.cuc.edu.co/bitstreams/48e0d023-61f6-4db4-b94c-9bd2458089eb/download85103b1fbe499d1bc3e50d772fa883d3MD5411323/9358oai:repositorio.cuc.edu.co:11323/93582024-09-17 14:09:30.081https://creativecommons.org/licenses/by-nc/4.0/© 2021 Taylor & Francis Group, LLCopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |