On a convex topological order and neutrosophic continuous sets

In this paper, we employ the classical topological preorder to introduce the concept of topologically bounded sets, in order to relate it to the Collatz conjecture problem. In addition, this preorder allows us to derive some results about topologically convex sets, showing that these form a convex s...

Full description

Autores:
Aponte, Elvis
Vielma, Jorge
Sanabria, José
Rosas, Ennis
Tipo de recurso:
Article of investigation
Fecha de publicación:
2025
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/14173
Acceso en línea:
https://hdl.handle.net/11323/14173
https://repositorio.cuc.edu.co/
Palabra clave:
Collatz conjeture
Topological convex set
Topological preorder
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
Description
Summary:In this paper, we employ the classical topological preorder to introduce the concept of topologically bounded sets, in order to relate it to the Collatz conjecture problem. In addition, this preorder allows us to derive some results about topologically convex sets, showing that these form a convex structure. Finally, using this topological preorder, we define the neutrosophic continuous sets and establish the necessary conditions to identify the points that are connected to these sets, which form a topological convex set.