On a convex topological order and neutrosophic continuous sets
In this paper, we employ the classical topological preorder to introduce the concept of topologically bounded sets, in order to relate it to the Collatz conjecture problem. In addition, this preorder allows us to derive some results about topologically convex sets, showing that these form a convex s...
- Autores:
-
Aponte, Elvis
Vielma, Jorge
Sanabria, José
Rosas, Ennis
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2025
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/14173
- Acceso en línea:
- https://hdl.handle.net/11323/14173
https://repositorio.cuc.edu.co/
- Palabra clave:
- Collatz conjeture
Topological convex set
Topological preorder
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
Summary: | In this paper, we employ the classical topological preorder to introduce the concept of topologically bounded sets, in order to relate it to the Collatz conjecture problem. In addition, this preorder allows us to derive some results about topologically convex sets, showing that these form a convex structure. Finally, using this topological preorder, we define the neutrosophic continuous sets and establish the necessary conditions to identify the points that are connected to these sets, which form a topological convex set. |
---|