Theoretical study of structural stability, elastic, electronic and thermodynamic properties of ScxGa1−x P compounds by ab initio calculations

We carried out a theoretical study on the structural stability, elastic, electronic and thermodynamic properties of the ScxGa1 x P compound (x ¼ 0, 0.25, 0.50, 0.75 and 1) in the ZnS and NaCl crystallographic phases. For this purpose, we performed ab initio calculations using the DFT within LDA and...

Full description

Autores:
Celin Mancera, William Enrique
López Pérez, William
González García, Alvaro
Ramírez Montes, Luz
González Hernández, Rafael J.
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/4209
Acceso en línea:
https://hdl.handle.net/11323/4209
https://repositorio.cuc.edu.co/
Palabra clave:
DFT
Electronic structure
GaP
Structural and elastic stability
Thermodynamic properties
Estructura electronica
Brecha
Estabilidad estructural y elástica
Propiedades termodinamicas
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_db29363600235e77ed5ef377110c8962
oai_identifier_str oai:repositorio.cuc.edu.co:11323/4209
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Theoretical study of structural stability, elastic, electronic and thermodynamic properties of ScxGa1−x P compounds by ab initio calculations
dc.title.translated.spa.fl_str_mv Estudio teórico de la estabilidad estructural, propiedades elásticas, electrónicas y termodinámicas de los compuestos ScxGa1 − x P por cálculos ab initio
title Theoretical study of structural stability, elastic, electronic and thermodynamic properties of ScxGa1−x P compounds by ab initio calculations
spellingShingle Theoretical study of structural stability, elastic, electronic and thermodynamic properties of ScxGa1−x P compounds by ab initio calculations
DFT
Electronic structure
GaP
Structural and elastic stability
Thermodynamic properties
Estructura electronica
Brecha
Estabilidad estructural y elástica
Propiedades termodinamicas
title_short Theoretical study of structural stability, elastic, electronic and thermodynamic properties of ScxGa1−x P compounds by ab initio calculations
title_full Theoretical study of structural stability, elastic, electronic and thermodynamic properties of ScxGa1−x P compounds by ab initio calculations
title_fullStr Theoretical study of structural stability, elastic, electronic and thermodynamic properties of ScxGa1−x P compounds by ab initio calculations
title_full_unstemmed Theoretical study of structural stability, elastic, electronic and thermodynamic properties of ScxGa1−x P compounds by ab initio calculations
title_sort Theoretical study of structural stability, elastic, electronic and thermodynamic properties of ScxGa1−x P compounds by ab initio calculations
dc.creator.fl_str_mv Celin Mancera, William Enrique
López Pérez, William
González García, Alvaro
Ramírez Montes, Luz
González Hernández, Rafael J.
dc.contributor.author.spa.fl_str_mv Celin Mancera, William Enrique
López Pérez, William
González García, Alvaro
Ramírez Montes, Luz
González Hernández, Rafael J.
dc.subject.spa.fl_str_mv DFT
Electronic structure
GaP
Structural and elastic stability
Thermodynamic properties
Estructura electronica
Brecha
Estabilidad estructural y elástica
Propiedades termodinamicas
topic DFT
Electronic structure
GaP
Structural and elastic stability
Thermodynamic properties
Estructura electronica
Brecha
Estabilidad estructural y elástica
Propiedades termodinamicas
description We carried out a theoretical study on the structural stability, elastic, electronic and thermodynamic properties of the ScxGa1 x P compound (x ¼ 0, 0.25, 0.50, 0.75 and 1) in the ZnS and NaCl crystallographic phases. For this purpose, we performed ab initio calculations using the DFT within LDA and GGA approximations. To solve the Kohn-Sham equations, we implemented the accurate full-potential linearized augmented plane wave method. From the results obtained, it can be noted that for the 0x0.30 range, the most stable structure of ScxGa1 x P is the ZnS phase, and for the 0.30
publishDate 2016
dc.date.issued.none.fl_str_mv 2016-07-11
dc.date.accessioned.none.fl_str_mv 2019-05-17T15:11:59Z
dc.date.available.none.fl_str_mv 2019-05-17T15:11:59Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 23522143
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/4209
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 23522143
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/4209
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] M.M. Ferhat, A. Zaoui, M. Certier, H. Aourag, Phys. B 252 (1998) 229. [2] R. Ahmed, F. Aleem, S.J. Hashemifarb, H. Akbarzadehb, Phys. B 403 (2008) 1876. [3] R.W.G. Wyckoff, Crystal Structures, second ed., Krieger, Malabar, 1986. [4] R.J. Nelmes, M.I. McMahon, S.A. Belmonte, Phys. Rev. Lett. 79 (1997) 3668. [5] O. Arbouche, B. Belgoumene, B. Soudini, Y. Azzaz, H. Bendaoud, K. Amara, Comput. Mater. Sci. 47 (2010) 685. [6] L. Lin, G.T. Woods, T. Callcott, Phys. Rev. B 63 (2001) 235107. [7] R.Z. Bachrach, W.B. Joyce, R.W. Dixon, J. Appl. Phys. 44 (1973) 5458. [8] J. Chamings, S. Ahmed, S.J. Sweeney, V.A. Odnoblyudov, C.W. Tu, Appl. Phys. Lett. 92 (2008) 021101. [9] C. Hazell, Acta Cryst. 16 (1963) 71 [10] W.M. Yim, E.J. Stofko, R.T. Smith, J. Appl. Phys. 43 (1972) 254. [11] A. Maachou, B. Amranib, M. Driz, Phys. B 388 (2007) 384. [12] A. Tebboune, D. Rached, A. Benzair, N. Sekkal, A.H. Belbachir, Phys. Status Solidi (b) 243 (2006) 2788. [13] N.W. Ashcroft, N.D. Mermin, Solid State Physics, Thomson Learning, Inc., 1976. [14] A.E. Henkes, Y. Vasquez, R.E. Schaak, J. Am. Chem. Soc. 129 (2007) 1896. [15] D.N. Talwar, Phys. E 20 (2004) 321. [16] M. Othman, E. Kasap, N. Korozlu, J. Alloys Compd. 496 (2010) 226. [17] G. Guisbiers, M. Wautelet, L. Buchaillot, Phys. Rev. B 79 (2009) 155426. [18] F. Annane, H. Meradji, S. Ghemid, F. El Haj-Hassan, Comput. Mater. Sci. 50 (2010) 274. [19] A.R. Degheidy, S.A.A. Elwakil, E.B. Elkenany, J. Alloys Compd. 574 (2013) 580. [20] W. Lopez-Perez, P. castro-Diago, L. Ramirez-Montes, A. Gonzalez-Garcia, R. Gonzalez-Hernandez, Pilosophical Mag. 96 (2016) 498. [21] A. Gonzalez-Garcia, W. Lopez-Perez, R. Palacio-Mozo, R. Gonzalez-Hernandez, Comput. Mater. Sci. 91 (2014) 279. [22] W. Lopez-P erez, Nicol as Simon-Olivera, J. Molina-Coronell, A. Gonz alez-García, R. Gonzalez-Hern andez, J. Alloy Compd. 574 (2013) 124 . [23] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) 864. W. Kohn and L. J. Sham. Phys. Rev. 140 (1965) 1133. [24] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k an Augmented Plane WaveþLocal Orbitals Program for Calculating Crystal Properties, Techn.UniversitatViena, Austria, 2001. [25] J.P. Perdew, Y. Wang, Phys. Rev. B 45 (1992) 13244. [26] J.P. Perdew, K. Burke, M. Erzerhot, Phys. Rev. Lett. 77 (1996) 3865. [27] Z. Wu, R.E. Cohen, Phys. Rev. B 73 (2006) 235116. [28] E. Engel, S.H. Vosko, Phys. Rev. B 47 (1993) 13164. [29] F.D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30 (1994) 244. [30] A. Zunger, S.H. Wei, L.G. Ferreira, J.E. Bernard, Phys. Rev. Lett. 65 (1990) 353. [31] H. Wang, A. Chroneos, C. Jiang, U. Schwingenschlogl, Special quasirandom structures for gadolinia-doped ceria and related materials, Phys. Chem. Chem. Phys. 14 (2012) 11737. [32] A. Chroneos, C. Jiang, R.W. Grimes, U. Schwingenschlogl, H. Bracht, E centers in ternary Si1-x-yGexSny random alloys, Appl. Phys. Lett. 95 (2009) 112101. [33] Jeremy W. Nicklasa, John W. Wilkins, Accurate ab initio predictions of III-V direct-indirect band gap crossovers, Appl. Phys. Lett. 97 (2010) 091902. [34] M. Causa, R. Dovesi, C. Roetti, Phys. Rev. B 43 (1991) 11937. [35] M. Baublitz, A.L. Ruoff, J. Appl. Phys. 53 (1982) 6179. [36] L. Li, W. Jian-Jun, W. Xue-Min, L. Hui-Na, W. Wei-Dong, Chin. Phys. B 20 (2011) 06201. [37] L. Vegard, Z. Phys. 5 (1921) 17. [38] A.H. Reshak, M. Jamal, J. Alloys Compd. 543 (2012) 147. [39] B.B. Karki, G.J. Ackland, J. Crain, J. Phys. Condens. Matter 9 (1997) 8579. [40] S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors, Wiley, Chichester, 2009. [41] D.C. Wallace, Thermodynamics of Crystals, Wiley, New York, 1972. [42] R.A. Swalin, Thermodynamics of Solids, Wiley, New York, 1961. [43] A. Zukauskaite, C. Tholander, J. Palisaitis, P.O.A. Persson, V. Darakchieva, N.B. Sedrine, F. Tasnadi, B. Alling, J. Birch, L. Hultman, J. Phys. D. Appl. Phys. 45 (2012) 422001. [44] C. Hoglund, J. Birch, B. Alling, J. Bareno, Z. Czigany, P.O.A. Persson, G. Wingqvist, A. Zukauskaite, L. Hultman, J. Appl. Phys. 107 (2010) 123515. [45] C. Hoglund, J. Bareno, J. Birch, B. Alling, Z. Czigany, L. Hultman, J. Appl. Phys. 105 (2009) 113517. [46] L.N. Komissarova, A.A. Menkov, L.M. Vasileva, Inorg. Mater 1 (1965) 1361.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Computational Condensed Matter
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/55632f72-9c1d-4435-a59d-2efa45c63f43/download
https://repositorio.cuc.edu.co/bitstreams/70505e75-20e5-4570-bebd-00bd5f66deee/download
https://repositorio.cuc.edu.co/bitstreams/56cdf204-55ea-4364-9b47-e10027d5e0f1/download
https://repositorio.cuc.edu.co/bitstreams/40d3ba8d-d6cf-4cc6-ba44-fcc14d4d3a54/download
https://repositorio.cuc.edu.co/bitstreams/ed107a4b-4ab0-482c-ad3e-9d2dd7656f81/download
bitstream.checksum.fl_str_mv de0481c7182c14cd956f4e78bc933bf6
934f4ca17e109e0a05eaeaba504d7ce4
8a4605be74aa9ea9d79846c1fba20a33
62ffe8dbf13637fb6ea900465f40f1b3
df3a04fb1e2e443d6b76b4823a5036ee
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760724197769216
spelling Celin Mancera, William EnriqueLópez Pérez, WilliamGonzález García, AlvaroRamírez Montes, LuzGonzález Hernández, Rafael J.2019-05-17T15:11:59Z2019-05-17T15:11:59Z2016-07-1123522143https://hdl.handle.net/11323/4209Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/We carried out a theoretical study on the structural stability, elastic, electronic and thermodynamic properties of the ScxGa1 x P compound (x ¼ 0, 0.25, 0.50, 0.75 and 1) in the ZnS and NaCl crystallographic phases. For this purpose, we performed ab initio calculations using the DFT within LDA and GGA approximations. To solve the Kohn-Sham equations, we implemented the accurate full-potential linearized augmented plane wave method. From the results obtained, it can be noted that for the 0x0.30 range, the most stable structure of ScxGa1 x P is the ZnS phase, and for the 0.30Se realizó un estudio teórico sobre las propiedades de estabilidad estructural, elástica, electrónica y termodinámica del compuesto ScxGa1 x P (x ¼ 0, 0.25, 0.50, 0.75 y 1) en las fases cristalográficas de ZnS y NaCl. Para este propósito, realizamos cálculos ab initio usando la DFT dentro de las aproximaciones de LDA y GGA. Para resolver las ecuaciones de Kohn-Sham, implementamos el método de onda plana aumentada linealizado de potencial completo preciso. De los resultados obtenidos, se puede observar que para el rango 0x0.30, la estructura más estable de ScxGa1 x P es la fase ZnS, y para los 0.30Celin Mancera, William Enrique-fa97ef49-a5b0-4bfb-8ea4-8824476d08fa-0López Pérez, William-4357fa0d-5aec-4610-a554-3231f7337f5b-0González García, Alvaro-577111cf-cbe5-4fa5-8fd1-503c4bbf040e-0Ramírez Montes, Luz-31cd75ec-8892-4788-8790-81bc7631a317-0González Hernández, Rafael J.-47836a79-8a31-4ba4-b27a-d1e0ef4dbcf2-0engComputational Condensed MatterAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2DFTElectronic structureGaPStructural and elastic stabilityThermodynamic propertiesEstructura electronicaBrechaEstabilidad estructural y elásticaPropiedades termodinamicasTheoretical study of structural stability, elastic, electronic and thermodynamic properties of ScxGa1−x P compounds by ab initio calculationsEstudio teórico de la estabilidad estructural, propiedades elásticas, electrónicas y termodinámicas de los compuestos ScxGa1 − x P por cálculos ab initioArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] M.M. Ferhat, A. Zaoui, M. Certier, H. Aourag, Phys. B 252 (1998) 229. [2] R. Ahmed, F. Aleem, S.J. Hashemifarb, H. Akbarzadehb, Phys. B 403 (2008) 1876. [3] R.W.G. Wyckoff, Crystal Structures, second ed., Krieger, Malabar, 1986. [4] R.J. Nelmes, M.I. McMahon, S.A. Belmonte, Phys. Rev. Lett. 79 (1997) 3668. [5] O. Arbouche, B. Belgoumene, B. Soudini, Y. Azzaz, H. Bendaoud, K. Amara, Comput. Mater. Sci. 47 (2010) 685. [6] L. Lin, G.T. Woods, T. Callcott, Phys. Rev. B 63 (2001) 235107. [7] R.Z. Bachrach, W.B. Joyce, R.W. Dixon, J. Appl. Phys. 44 (1973) 5458. [8] J. Chamings, S. Ahmed, S.J. Sweeney, V.A. Odnoblyudov, C.W. Tu, Appl. Phys. Lett. 92 (2008) 021101. [9] C. Hazell, Acta Cryst. 16 (1963) 71 [10] W.M. Yim, E.J. Stofko, R.T. Smith, J. Appl. Phys. 43 (1972) 254. [11] A. Maachou, B. Amranib, M. Driz, Phys. B 388 (2007) 384. [12] A. Tebboune, D. Rached, A. Benzair, N. Sekkal, A.H. Belbachir, Phys. Status Solidi (b) 243 (2006) 2788. [13] N.W. Ashcroft, N.D. Mermin, Solid State Physics, Thomson Learning, Inc., 1976. [14] A.E. Henkes, Y. Vasquez, R.E. Schaak, J. Am. Chem. Soc. 129 (2007) 1896. [15] D.N. Talwar, Phys. E 20 (2004) 321. [16] M. Othman, E. Kasap, N. Korozlu, J. Alloys Compd. 496 (2010) 226. [17] G. Guisbiers, M. Wautelet, L. Buchaillot, Phys. Rev. B 79 (2009) 155426. [18] F. Annane, H. Meradji, S. Ghemid, F. El Haj-Hassan, Comput. Mater. Sci. 50 (2010) 274. [19] A.R. Degheidy, S.A.A. Elwakil, E.B. Elkenany, J. Alloys Compd. 574 (2013) 580. [20] W. Lopez-Perez, P. castro-Diago, L. Ramirez-Montes, A. Gonzalez-Garcia, R. Gonzalez-Hernandez, Pilosophical Mag. 96 (2016) 498. [21] A. Gonzalez-Garcia, W. Lopez-Perez, R. Palacio-Mozo, R. Gonzalez-Hernandez, Comput. Mater. Sci. 91 (2014) 279. [22] W. Lopez-P erez, Nicol as Simon-Olivera, J. Molina-Coronell, A. Gonz alez-García, R. Gonzalez-Hern andez, J. Alloy Compd. 574 (2013) 124 . [23] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) 864. W. Kohn and L. J. Sham. Phys. Rev. 140 (1965) 1133. [24] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k an Augmented Plane WaveþLocal Orbitals Program for Calculating Crystal Properties, Techn.UniversitatViena, Austria, 2001. [25] J.P. Perdew, Y. Wang, Phys. Rev. B 45 (1992) 13244. [26] J.P. Perdew, K. Burke, M. Erzerhot, Phys. Rev. Lett. 77 (1996) 3865. [27] Z. Wu, R.E. Cohen, Phys. Rev. B 73 (2006) 235116. [28] E. Engel, S.H. Vosko, Phys. Rev. B 47 (1993) 13164. [29] F.D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30 (1994) 244. [30] A. Zunger, S.H. Wei, L.G. Ferreira, J.E. Bernard, Phys. Rev. Lett. 65 (1990) 353. [31] H. Wang, A. Chroneos, C. Jiang, U. Schwingenschlogl, Special quasirandom structures for gadolinia-doped ceria and related materials, Phys. Chem. Chem. Phys. 14 (2012) 11737. [32] A. Chroneos, C. Jiang, R.W. Grimes, U. Schwingenschlogl, H. Bracht, E centers in ternary Si1-x-yGexSny random alloys, Appl. Phys. Lett. 95 (2009) 112101. [33] Jeremy W. Nicklasa, John W. Wilkins, Accurate ab initio predictions of III-V direct-indirect band gap crossovers, Appl. Phys. Lett. 97 (2010) 091902. [34] M. Causa, R. Dovesi, C. Roetti, Phys. Rev. B 43 (1991) 11937. [35] M. Baublitz, A.L. Ruoff, J. Appl. Phys. 53 (1982) 6179. [36] L. Li, W. Jian-Jun, W. Xue-Min, L. Hui-Na, W. Wei-Dong, Chin. Phys. B 20 (2011) 06201. [37] L. Vegard, Z. Phys. 5 (1921) 17. [38] A.H. Reshak, M. Jamal, J. Alloys Compd. 543 (2012) 147. [39] B.B. Karki, G.J. Ackland, J. Crain, J. Phys. Condens. Matter 9 (1997) 8579. [40] S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors, Wiley, Chichester, 2009. [41] D.C. Wallace, Thermodynamics of Crystals, Wiley, New York, 1972. [42] R.A. Swalin, Thermodynamics of Solids, Wiley, New York, 1961. [43] A. Zukauskaite, C. Tholander, J. Palisaitis, P.O.A. Persson, V. Darakchieva, N.B. Sedrine, F. Tasnadi, B. Alling, J. Birch, L. Hultman, J. Phys. D. Appl. Phys. 45 (2012) 422001. [44] C. Hoglund, J. Birch, B. Alling, J. Bareno, Z. Czigany, P.O.A. Persson, G. Wingqvist, A. Zukauskaite, L. Hultman, J. Appl. Phys. 107 (2010) 123515. [45] C. Hoglund, J. Bareno, J. Birch, B. Alling, Z. Czigany, L. Hultman, J. Appl. Phys. 105 (2009) 113517. [46] L.N. Komissarova, A.A. Menkov, L.M. Vasileva, Inorg. Mater 1 (1965) 1361.PublicationORIGINALTheoretical study of structural stability.pdfTheoretical study of structural stability.pdfapplication/pdf929685https://repositorio.cuc.edu.co/bitstreams/55632f72-9c1d-4435-a59d-2efa45c63f43/downloadde0481c7182c14cd956f4e78bc933bf6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/70505e75-20e5-4570-bebd-00bd5f66deee/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/56cdf204-55ea-4364-9b47-e10027d5e0f1/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILTheoretical study of structural stability.pdf.jpgTheoretical study of structural stability.pdf.jpgimage/jpeg70895https://repositorio.cuc.edu.co/bitstreams/40d3ba8d-d6cf-4cc6-ba44-fcc14d4d3a54/download62ffe8dbf13637fb6ea900465f40f1b3MD55TEXTTheoretical study of structural stability.pdf.txtTheoretical study of structural stability.pdf.txttext/plain38888https://repositorio.cuc.edu.co/bitstreams/ed107a4b-4ab0-482c-ad3e-9d2dd7656f81/downloaddf3a04fb1e2e443d6b76b4823a5036eeMD5611323/4209oai:repositorio.cuc.edu.co:11323/42092024-09-17 10:49:00.39http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=