Optimizing renewable energy systems for water security: a comparative study of reanalysis models

The current global scenario of unequal access to water and electricity motivates the search for solutions based on available resources, such as renewable energies and desalination. Additionally, adequate sizing of renewables requires extensive and reliable time series, which are usually unavailable....

Full description

Autores:
Vargas-Brochero, José
Hurtado-Castillo, Sebastián
Altamiranda, Jesús
M. de Menezes Filho, Frederico Carlos
Beluco, Alexandre
Canales, Fausto
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13078
Acceso en línea:
https://hdl.handle.net/11323/13078
https://repositorio.cuc.edu.co/
Palabra clave:
Reanalysis
Performance metrics
HOMER Energy
Desalting
Solar PV
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_db0e6683bfa385e1eb576623ee0c4b81
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13078
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Optimizing renewable energy systems for water security: a comparative study of reanalysis models
title Optimizing renewable energy systems for water security: a comparative study of reanalysis models
spellingShingle Optimizing renewable energy systems for water security: a comparative study of reanalysis models
Reanalysis
Performance metrics
HOMER Energy
Desalting
Solar PV
title_short Optimizing renewable energy systems for water security: a comparative study of reanalysis models
title_full Optimizing renewable energy systems for water security: a comparative study of reanalysis models
title_fullStr Optimizing renewable energy systems for water security: a comparative study of reanalysis models
title_full_unstemmed Optimizing renewable energy systems for water security: a comparative study of reanalysis models
title_sort Optimizing renewable energy systems for water security: a comparative study of reanalysis models
dc.creator.fl_str_mv Vargas-Brochero, José
Hurtado-Castillo, Sebastián
Altamiranda, Jesús
M. de Menezes Filho, Frederico Carlos
Beluco, Alexandre
Canales, Fausto
dc.contributor.author.none.fl_str_mv Vargas-Brochero, José
Hurtado-Castillo, Sebastián
Altamiranda, Jesús
M. de Menezes Filho, Frederico Carlos
Beluco, Alexandre
Canales, Fausto
dc.subject.proposal.eng.fl_str_mv Reanalysis
Performance metrics
HOMER Energy
Desalting
Solar PV
topic Reanalysis
Performance metrics
HOMER Energy
Desalting
Solar PV
description The current global scenario of unequal access to water and electricity motivates the search for solutions based on available resources, such as renewable energies and desalination. Additionally, adequate sizing of renewables requires extensive and reliable time series, which are usually unavailable. Reanalysis models are an option to consider, but only after evaluating their local accuracy, generally through performance metrics. This study evaluated the performance of the solar radiation, temperature, and wind speed products from MERRA2 and ERA5-Land in comparison to ground data, as well as their influence on the optimal initial configuration of a renewable energy system for desalination in La Guajira, Colombia. HOMER Pro was the software tool employed to establish the best arrangements for the resulting renewable power systems, and the study included a sensitivity analysis considering different annual capacity shortages, operating hours, and energy needs for desalting. ERA5-Land performed better than MERRA2 in matching the time series from the local station. The relative error of the cost of electricity of systems dimensioned from reanalysis was less than 3% compared to systems from ground measurements, with a renewable fraction above 98%. For the study area, ERA5-Land reanalysis represents a reliable alternative to address the scarcity of solar resource records, but both reanalyses failed to reproduce the wind speed regime.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-06-26T13:09:46Z
dc.date.available.none.fl_str_mv 2024-06-26T13:09:46Z
dc.date.issued.none.fl_str_mv 2024-06-06
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Vargas-Brochero, J.; Hurtado-Castillo, S.; Altamiranda, J.; de Menezes Filho, F.C.M.; Beluco, A.; Canales, F.A. Optimizing Renewable Energy Systems for Water Security: A Comparative Study of Reanalysis Models. Sustainability 2024, 16, 4862. https://doi.org/10.3390/su16114862
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13078
dc.identifier.doi.none.fl_str_mv 10.3390/su16114862
dc.identifier.eissn.spa.fl_str_mv 2071-1050
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Vargas-Brochero, J.; Hurtado-Castillo, S.; Altamiranda, J.; de Menezes Filho, F.C.M.; Beluco, A.; Canales, F.A. Optimizing Renewable Energy Systems for Water Security: A Comparative Study of Reanalysis Models. Sustainability 2024, 16, 4862. https://doi.org/10.3390/su16114862
10.3390/su16114862
2071-1050
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13078
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Sustainability
dc.relation.references.spa.fl_str_mv 1. Wang, S.; Tarroja, B.; Schell, L.S.; Shaffer, B.; Samuelsen, S. Prioritizing among the End Uses of Excess Renewable Energy for Cost-Effective Greenhouse Gas Emission Reductions. Appl. Energy 2019, 235, 284–298. [CrossRef]
2. Arribas, L.; Lechón, Y.; Perula, A.; Domínguez, J.; Ferres, M.; Navarro, J.; Zarzalejo, L.F.; Barquero, C.G.; Cruz, I. Review of Data and Data Sources for the Assessment of the Potential of Utility-Scale Hybrid Wind–Solar Pv Power Plants Deployment, under a Microgrid Scope. Energies 2021, 14, 7434. [CrossRef]
3. Mendoza-Fandiño, J.M.; Rhenals-Julio, J.D.; Ávila-Gómez, A.E.; Martínez-Guarín, A.R.; De la Vega González, T.D.; DurangoPadilla, E.R. Heat Absorption Cooling with Renewable Energies: A Case Study with Photovoltaic Solar Energy and Biogas in Cordoba, Colombia. Inge. Cuc. 2021, 17, 21–30.
4. Canales, F.A.; Jurasz, J.; Kies, A.; Beluco, A.; Arrieta-Castro, M.; Peralta-Cayón, A. Spatial Representation of Temporal Complementarity between Three Variable Energy Sources Using Correlation Coefficients and Compromise Programming. MethodsX 2020, 7, 100871. [CrossRef] [PubMed]
5. Wang, Y.-H.; Walter, R.K.; White, C.; Farr, H.; Ruttenberg, B.I. Assessment of Surface Wind Datasets for Estimating Offshore Wind Energy along the Central California Coast. Renew. Energy 2019, 133, 343–353. [CrossRef]
6. Polo, J.; Wilbert, S.; Ruiz-Arias, J.A.; Meyer, R.; Gueymard, C.; Súri, M.; Martín, L.; Mieslinger, T.; Blanc, P.; Grant, I.; et al. Preliminary Survey on Site-Adaptation Techniques for Satellite-Derived and Reanalysis Solar Radiation Datasets. Sol. Energy 2016, 132, 25–37. [CrossRef]
7. Gualtieri, G. Analysing the Uncertainties of Reanalysis Data Used for Wind Resource Assessment: A Critical Review National Centers for Environmental Prediction. Renew. Sustain. Energy Rev. 2022, 167, 112741. [CrossRef]
8. Chadee, X.T.; Clarke, R.M. Large-Scale Wind Energy Potential of the Caribbean Region Using near-Surface Reanalysis Data. Renew. Sustain. Energy Rev. 2014, 30, 45–58. [CrossRef]
9. Vega-Durán, J.; Escalante-Castro, B.; Canales, F.A.; Acuña, G.J.; Ka´zmierczak, B. Evaluation of Areal Monthly Average Precipitation Estimates from MERRA2 and ERA5 Reanalysis in a Colombian Caribbean Basin. Atmosphere 2021, 12, 1430. [CrossRef]
10. Boilley, A.; Wald, L. Comparison between Meteorological Re-Analyses from ERA-Interim and MERRA and Measurements of Daily Solar Irradiation at Surface. Renew. Energy 2015, 75, 135–143. [CrossRef]
11. Tahir, Z.R.; Asim, M.; Azhar, M.; Moeenuddin, G.; Farooq, M. Correcting Solar Radiation from Reanalysis and Analysis Datasets with Systematic and Seasonal Variations. Case Stud. Therm. Eng. 2021, 25, 100933. [CrossRef]
12. Pfenninger, S.; Staffell, I. Long-Term Patterns of European PV Output Using 30 Years of Validated Hourly Reanalysis and Satellite Data. Energy 2016, 114, 1251–1265. [CrossRef]
13. Piasecki, A.; Jurasz, J.; Kies, A. Measurements and Reanalysis Data on Wind Speed and Solar Irradiation from Energy Generation Perspectives at Several Locations in Poland. SN Appl. Sci. 2019, 1, 865. [CrossRef]
14. Doddy Clarke, E.; Griffin, S.; McDermott, F.; Monteiro Correia, J.; Sweeney, C. Which Reanalysis Dataset Should We Use for Renewable Energy Analysis in Ireland? Atmosphere 2021, 12, 624. [CrossRef]
15. Staffell, I.; Pfenninger, S. Using Bias-Corrected Reanalysis to Simulate Current and Future Wind Power Output. Energy 2016, 114, 1224–1239. [CrossRef]
16. Ahmad, M.; Zeeshan, M. Validation of Weather Reanalysis Datasets and Geospatial and Techno-Economic Viability and Potential Assessment of Concentrated Solar Power Plants. Energy Convers. Manag. 2022, 256, 115366. [CrossRef]
17. Aliana, A.; Chang, M.; Østergaard, P.A.; Victoria, M.; Andersen, A.N. Performance Assessment of Using Various Solar Radiation Data in Modelling Large-Scale Solar Thermal Systems Integrated in District Heating Networks. Renew. Energy 2022, 190, 699–712. [CrossRef]
18. Gruber, K.; Regner, P.; Wehrle, S.; Zeyringer, M.; Schmidt, J. Towards Global Validation of Wind Power Simulations: A MultiCountry Assessment of Wind Power Simulation from MERRA-2 and ERA-5 Reanalyses Bias-Corrected with the Global Wind Atlas. Energy 2022, 238, 121520. [CrossRef]
19. Olauson, J. ERA5: The New Champion of Wind Power Modelling? Renew. Energy 2018, 126, 322–331. [CrossRef]
20. Thomas, S.R.; Nicolau, S.; Martínez-Alvarado, O.; Drew, D.J.; Bloomfield, H.C. How Well Do Atmospheric Reanalyses Reproduce Observed Winds in Coastal Regions of Mexico? Meteorol. Appl. 2021, 28, e2023. [CrossRef]
21. Ramirez Camargo, L.; Schmidt, J. Simulation of Multi-Annual Time Series of Solar Photovoltaic Power: Is the ERA5-Land Reanalysis the next Big Step? Sustain. Energy Technol. Assess 2020, 42, 100829. [CrossRef]
22. Mora, S.; Tinjacá, F. Statistical Analysis of Wind Speed and Direction Based on the Rayleigh Distribution Model. LADEE 2021, 2, 32–39. [CrossRef]
23. Carvajal-Romo, G.; Valderrama-Mendoza, M.; Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Assessment of Solar and Wind Energy Potential in La Guajira, Colombia: Current Status, and Future Prospects. Sustain. Energy Technol. Assess. 2019, 36, 100531. [CrossRef]
24. Gil Ruiz, S.A.; Barriga, J.E.C.; Martínez, J.A. Wind Power Assessment in the Caribbean Region of Colombia, Using Ten-Minute Wind Observations and ERA5 Data. Renew. Energy 2021, 172, 158–176. [CrossRef]
25. Gil Ruiz, S.A.; Cañón Barriga, J.E.; Martínez, J.A. Assessment and Validation of Wind Power Potential at Convection-Permitting Resolution for the Caribbean Region of Colombia. Energy 2022, 244, 123127. [CrossRef]
26. Contreras, D. The Integrated Spatial Pattern of Child Mortality during the 2012-2016 Drought in La Guajira, Colombia. Sustainability 2019, 11, 7190. [CrossRef]
27. Daza-Daza, A.R.; Serna-Mendoza, C.A.; Carabalí-Angola, A. El Recurso Agua En Las Comunidades Indígenas Wayuu de La Guajira Colombiana. Parte 2: Estudio Cualitativo de Las Condiciones de Higiene, Aseo y Disponibilidad de Agua. Inf. Tecnol. 2018, 29, 25–32. [CrossRef]
28. HOMER Energy HOMER Pro—Microgrid Software for Designing Optimized Hybrid Microgrids. Available online: https: //www.homerenergy.com/products/pro/index.html (accessed on 11 July 2022).
29. Das, B.K. Optimal Sizing of Stand-Alone and Grid-Connected Solar PV Systems in Bangladesh. Int. J. Energy A Clean Environ. 2020, 21, 107–124. [CrossRef]
30. Podder, A.K.; Supti, S.A.; Islam, S.; Malvoni, M.; Jayakumar, A.; Deb, S.; Kumar, N.M. Feasibility Assessment of Hybrid Solar Photovoltaic-Biogas Generator Based Charging Station: A Case of Easy Bike and Auto Rickshaw Scenario in a Developing Nation. Sustainability 2021, 14, 166. [CrossRef]
31. Johannsen, R.M.; Østergaard, P.A.; Hanlin, R. Hybrid Photovoltaic and Wind Mini-Grids in Kenya: Techno-Economic Assessment and Barriers to Diffusion. Energy Sustain. Dev. 2020, 54, 111–126. [CrossRef]
32. Dawoud, S.M.; Lin, X.N.; Sun, J.W.; Okba, M.I.; Khalid, M.S.; Waqar, A. Feasibility Study of Isolated PV-Wind Hybrid System in Egypt. Adv. Mat. Res. 2015, 1092–1093, 145–151. [CrossRef]
33. Veilleux, G.; Potisat, T.; Pezim, D.; Ribback, C.; Ling, J.; Krysztofi´nski, A.; Ahmed, A.; Papenheim, J.; Pineda, A.M.; Sembian, S.; et al. Techno-Economic Analysis of Microgrid Projects for Rural Electrification: A Systematic Approach to the Redesign of Koh Jik off-Grid Case Study. Energy Sustain. Dev. 2020, 54, 1–13. [CrossRef]
34. Kamesh, M.R.; Girish Kumar, G.S.; Kiran, C. Sustainable Energy Solutions for Community Housing. IOP Conf. Ser. Earth Environ. Sci. 2020, 573, 012035. [CrossRef]
35. Elmaadawy, K.; Kotb, K.M.; Elkadeem, M.R.; Sharshir, S.W.; Dán, A.; Moawad, A.; Liu, B. Optimal Sizing and Techno-EnviroEconomic Feasibility Assessment of Large-Scale Reverse Osmosis Desalination Powered with Hybrid Renewable Energy Sources. Energy Convers. Manag. 2020, 224, 113377. [CrossRef]
36. Maisanam, A.K.S.; Podder, B.; Biswas, A.; Sharma, K.K. Site-Specific Tailoring of an Optimal Design of Renewable Energy System for Remote Water Supply Station in Silchar, India. Sustain. Energy Technol. Assess. 2019, 36, 100558. [CrossRef]
37. Kotb, K.M.; Elkadeem, M.R.; Khalil, A.; Imam, S.M.; Hamada, M.A.; Sharshir, S.W.; Dán, A. A Fuzzy Decision-Making Model for Optimal Design of Solar, Wind, Diesel-Based RO Desalination Integrating Flow-Battery and Pumped-Hydro Storage: Case Study in Baltim, Egypt. Energy Convers. Manag. 2021, 235, 113962. [CrossRef]
38. Orfila, A.; Urbano-Latorre, C.P.; Sayol, J.M.; Gonzalez-Montes, S.; Caceres-Euse, A.; Hernández-Carrasco, I.; Muñoz, Á.G. On the Impact of the Caribbean Counter Current in the Guajira Upwelling System. Front. Mar. Sci. 2021, 8, 128. [CrossRef]
39. Duarte, L.; Revollo, J.; Betancur, D.; Lopez, G.; Isaac, I.; Cardona, H.; Ortega, S. Placement of Weather Stations in Colombia for Future Applications in Solar and Wind Energy Forecasting Models. In Proceedings of the 2019 FISE-IEEE/CIGRE Conference— Living the energy Transition (FISE/CIGRE), Medellin, Colombia, 4–6 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6.
40. Gilbert, J.E.; Gilbertson, T.; Jakobsen, L. Incommensurability and Corporate Social Technologies: A Critique of Corporate Compensations in Colombia’s Coal Mining Region of La Guajira. J. Polit. Ecol. 2021, 28, 434–452. [CrossRef]
41. Acosta Cubides, L.D.; Herrera Quintero, S. Metodología Para El Uso de Captadores de Rocío. Una Aproximación a Una Solución Sostenible para el Recurso Hídrico en Maicao, La Guajira. 2021. Available online: https://hdl.handle.net/20.500.11839/8594 (accessed on 11 November 2022).
42. Cámara de Comercio de La Guajira. Informe Socioeconómico de La Guajira 2021; Cámara de Comercio de La Guajira: Riohacha, Colombia, 2021.
43. La Realidad Del Hambre: Cada Seis Días Ha Muerto Un Niño En La Guajira En 2022. La Opinión, 22 May 2022.
44. Mejía Ospino, E. Habitantes de Barrancas Denuncian Que Llevan Más de Un Mes Sin Agua. El Tiempo, 28 December 2021.
45. Guerrero, S. El Agua de Camarones No Es Apta Para El Consumo Humano. El Heraldo, 15 October 2021.
46. Barrios Florez, E.A. Indígenas Wayú Realizan Bloqueos En La Guajira, En Protesta Por La Falta de Agua. RCN Radio, 28 June 2022.
47. La Guajira Hoy. En La Guajira, Comunidad Indígena Se Beneficia Con Planta Desalinizadora de Agua. La Guajira Hoy, 1 April 2022.
48. La Guajira Hoy. En Extremo Norte de La Guajira No Hay Agua Para Consumo Humano. La Guajira Hoy, 3 May 2022.
49. IDEAM Consulta y Descarga de Datos Hidrometeorológicos. Available online: http://dhime.ideam.gov.co/atencionciudadano/ (accessed on 10 October 2020).
50. Quagraine, K.A.; Nkrumah, F.; Klein, C.; Klutse, N.A.B.; Quagraine, K.T. West African Summer Monsoon Precipitation Variability as Represented by Reanalysis Datasets. Climate 2020, 8, 111. [CrossRef]
51. Pedreira, A.L.; Biudes, M.S.; Machado, N.G.; Vourlitis, G.L.; Geli, H.M.E.; Dos Santos, L.O.F.; Querino, C.A.S.; Ivo, I.O.; Neto, N.L. Assessment of Remote Sensing and Reanalysis Estimates of Regional Precipitation over Mato Grosso, Brazil. Water 2021, 13, 333. [CrossRef]
52. Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [CrossRef] [PubMed]
53. Global Modeling and Assimilation Office (GMAO). MERRA-2 Tavg1_2d_slv_Nx: 2d,1-Hourly, Time-Averaged, Single-Level, Assimilation, Single-Level Diagnostics V5.12.4. Available online: https://www.soda-pro.com/web-services/meteo-data/merra (accessed on 12 December 2021).
54. Zou, J.; Lu, N.; Jiang, H.; Qin, J.; Yao, L.; Xin, Y.; Su, F. Performance of Air Temperature from ERA5-Land Reanalysis in Coastal Urban Agglomeration of Southeast China. Sci. Total Environ. 2022, 828, 154459. [CrossRef] [PubMed]
55. Muñoz Sabater, J.; ERA5-Land Hourly Data from 1981 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land (accessed on 10 October 2021).
56. Minvivienda. Republic of Colombia: Minvivienda. Resolución 0330 de 2017. 2017. Available online: https://www.minvivienda. gov.co/sites/default/files/documentos/0330-2017.pdf (accessed on 11 April 2022).
57. Veolia Sabana, S.A.E.S.P. Veolia Colombia. Available online: https://www.veolia.com.co/sabana/ (accessed on 2 February 2022).
58. Hagen, I.; Huggel, C.; Ramajo, L.; Chacón, N.; Ometto, J.P.; Postigo, J.C.; Castellanos, E.J. Climate Change-Related Risks and Adaptation Potential in Central and South America during the 21st Century. Environ. Res. Lett. 2022, 17, 033002. [CrossRef]
59. Feria-Díaz, J.J.; Correa-Mahecha, F.; López-Méndez, M.C.; Rodríguez-Miranda, J.P.; Barrera-Rojas, J. Recent Desalination Technologies by Hybridization and Integration with Reverse Osmosis: A Review. Water 2021, 13, 1369. [CrossRef]
60. Lemma, E.; Upadhyaya, S.; Ramsankaran, R.A.A.J. Investigating the Performance of Satellite and Reanalysis Rainfall Products at Monthly Timescales across Different Rainfall Regimes of Ethiopia. Int. J. Remote Sens. 2019, 40, 4019–4042. [CrossRef]
61. Yu, Z.; Wu, J.; Chen, X. An Approach to Revising the Climate Forecast System Reanalysis Rainfall Data in a Sparsely-Gauged Mountain Basin. Atmos. Res. 2019, 220, 194–205. [CrossRef]
62. Chawla, I.; Mujumdar, P.P. Evaluating Rainfall Datasets to Reconstruct Floods in Data-Sparse Himalayan Region. J. Hydrol. 2020, 588, 125090. [CrossRef]
63. Wang, N.; Liu, W.; Sun, F.; Yao, Z.; Wang, H.; Liu, W. Evaluating Satellite-Based and Reanalysis Precipitation Datasets with Gauge-Observed Data and Hydrological Modeling in the Xihe River Basin, China. Atmos. Res. 2020, 234, 104746. [CrossRef]
64. Springer, A.; Eicker, A.; Bettge, A.; Kusche, J.; Hense, A.; Mahto, S.S.; Pandey, A.C.; Huang, B.; Cubasch, U.; Li, Y.; et al. Evaluation of the Water Cycle in the European COSMO-REA6 Reanalysis Using GRACE. Water 2017, 9, 289. [CrossRef]
65. Mehrjerdi, H. Modeling and Optimization of an Island Water-Energy Nexus Powered by a Hybrid Solar-Wind Renewable System. Energy 2020, 197, 117217. [CrossRef]
66. Canales, F.A.; Beluco, A.; Mendes, C.A.B. Modelling a Hydropower Plant with Reservoir with the Micropower Optimisation Model (HOMER). Int. J. Sustain. Energy 2017, 36, 654–667. [CrossRef]
67. Movahediyan, Z.; Askarzadeh, A. Multi-Objective Optimization Framework of a Photovoltaic-Diesel Generator Hybrid Energy System Considering Operating Reserve. Sustain. Cities Soc. 2018, 41, 1–12. [CrossRef]
68. HOMER Energy Suggested Lifetime Throughput. Available online: https://www.homerenergy.com/products/pro/docs/latest/ suggested_lifetime_throughput.html (accessed on 3 March 2022).
69. Pinilla, A.; Rodriguez, L.; Trujillo, R. Performance Evaluation of Jepirachi Wind Park. Renew. Energy 2009, 34, 48–52. [CrossRef]
70. Barrientos Marín, J.; Villada, F. Regionalized Discount Rate to Evaluate Renewable Energy Projects in Colombia. Int. J. Energy Econ. Policy 2020, 10, 332–336. [CrossRef]
71. Bitar, S.; Chamas, F. Estudio de Factibilidad Para La Implementacion de Sistemas Fotovoltaicos Como Fuente de Energía En El Sector Industrial de Colombia. Master’s, Thesis, Colegio de Estudios Superiores de Administración (CESA), Bogotá, Colombia, 2017.
72. Baek, S.; Park, E.; Kim, M.-G.; Kwon, S.J.; Kim, K.J.; Ohm, J.Y.; del Pobil, A.P. Optimal Renewable Power Generation Systems for Busan Metropolitan City in South Korea. Renew. Energy 2016, 88, 517–525. [CrossRef]
73. Lacal Arantegui, R.; Jaeger-Waldau, A.; Vellei, M.; Sigfusson, B.; Magagna, D.; Jakubcionis, M.; Del Mar Perez Fortes, M.; Moles, C.; Lazarou, S.; Giuntoli, J.; et al. ETRI 2014—Energy Technology Reference Indicator Projections for 2010–2050; Publications Office of the European Union: Petten, The Netherlands, 2014; ISBN 9789279444036.
74. Guezgouz, M.; Jurasz, J.; Bekkouche, B.; Ma, T.; Javed, M.S.; Kies, A. Optimal Hybrid Pumped Hydro-Battery Storage Scheme for off-Grid Renewable Energy Systems. Energy Convers. Manag 2019, 199, 112046. [CrossRef]
75. California Energy Comission PV Modules. Available online: http://www.gosolarcalifornia.ca.gov/equipment/pv_modules.php (accessed on 12 December 2017).
76. Kim, I.; James, J.A.; Crittenden, J. The Case Study of Combined Cooling Heat and Power and Photovoltaic Systems for Building Customers Using HOMER Software. Electr. Power Syst. Res. 2017, 143, 490–502. [CrossRef]
77. Nordex N60/1300 KW Specifications. Available online: http://www.nordex-online.com/fileadmin/MEDIA/Produktinfos/EN/ Nordex_N60_EN.pdf (accessed on 10 October 2021).
78. Canales, F.A.; Jurasz, J.K.; Guezgouz, M.; Beluco, A. Cost-Reliability Analysis of Hybrid Pumped-Battery Storage for Solar and Wind Energy Integration in an Island Community. Sustain. Energy Technol. Assess. 2021, 44, 101062. [CrossRef]
79. Ramli, M.A.M.; Hiendro, A.; Sedraoui, K.; Twaha, S. Optimal Sizing of Grid-Connected Photovoltaic Energy System in Saudi Arabia. Renew. Energy 2015, 75, 489–495. [CrossRef]
80. Akoglu, H. User’s Guide to Correlation Coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [CrossRef]
81. Carvalho, D. An Assessment of NASA’s GMAO MERRA-2 Reanalysis Surface Winds. J. Clim. 2019, 32, 8261–8281. [CrossRef]
82. Canales, F.A.; Beluco, A.; Mendes, C.A.B. A Matter of Cost. Int. Water Power Dam Constr. 2008, 60, 43–45.
83. Karimi, L.; Abkar, L.; Aghajani, M.; Ghassemi, A. Technical Feasibility Comparison of Off-Grid PV-EDR and PV-RO Desalination Systems via Their Energy Consumption. Sep. Purif. Technol. 2015, 151, 82–94. [CrossRef]
84. Goss-Sampson, M.A. Statistical Analysis in JASP: A Guide for Students, 2nd ed.; University of Amsterdam: Amsterdam, The Netherlands, 2019.
85. Cano, L.M.; Carmona, M.A.; Martínez, J.A.; Arias, P.A. Estimación y Pronóstico de Radiación Solar En El Valle de Aburrá— Colombia. Rev. Acad. Colomb. Cienc. Exactas Fis. Nat. 2022, 46, 529–549. [CrossRef]
86. Khatibi, A.; Krauter, S. Validation and Performance of Satellite Meteorological Dataset Merra-2 for Solar and Wind Applications. Energies 2021, 14, 882. [CrossRef]
87. Zhang, H.; Cao, Y.; Zhang, Y.; Terzija, V. Quantitative Synergy Assessment of Regional Wind-Solar Energy Resources Based on MERRA Reanalysis Data. Appl. Energy 2018, 216, 172–182. [CrossRef]
88. Kapica, J.; Canales, F.A.; Jurasz, J. Global Atlas of Solar and Wind Resources Temporal Complementarity. Energy Convers. Manag. 2021, 246, 114692. [CrossRef]
89. Anastasiades, G.; McSharry, P.E. Extreme Value Analysis for Estimating 50 Year Return Wind Speeds from Reanalysis Data. Wind Energy 2014, 17, 1231–1245. [CrossRef]
90. Cannon, D.J.; Brayshaw, D.J.; Methven, J.; Coker, P.J.; Lenaghan, D. Using Reanalysis Data to Quantify Extreme Wind Power Generation Statistics: A 33 Year Case Study in Great Britain. Renew. Energy 2015, 75, 767–778. [CrossRef]
91. Ramirez Camargo, L.; Gruber, K.; Nitsch, F. Assessing Variables of Regional Reanalysis Data Sets Relevant for Modelling Small-Scale Renewable Energy Systems. Renew. Energy 2019, 133, 1468–1478. [CrossRef]
92. Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [CrossRef]
93. Villada, F.; Saldarriaga-Loaiza, J.D.; López-Lezama, J.M. Incentives for Renewable Energies in Colombia. Renew. Energy Power Qual. J. 2021, 19, 24–26. [CrossRef]
94. Castillo-Ramirez, A.; Mejia-Giraldo, D.; Giraldo-Ocampo, J.D. Geospatial Levelized Cost of Energy in Colombia: GeoLCOE. In Proceedings of the 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM), Montevideo, Uruguay, 5–7 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 298–303.
95. Bhojwani, S.; Topolski, K.; Mukherjee, R.; Sengupta, D.; El-Halwagi, M.M. Technology Review and Data Analysis for Cost Assessment of Water Treatment Systems. Sci. Total Environ. 2019, 651, 2749–2761. [CrossRef] [PubMed]
96. Saleh, L.; Mezher, T. Techno-Economic Analysis of Sustainability and Externality Costs of Water Desalination Production. Renew. Sustain. Energy Rev. 2021, 150, 111465. [CrossRef]
97. Fernández, D.; Saravia Matus, S.; Gil, M. Políticas Regulatorias y Tarifarias En El Sector de Agua Potable y Saneamiento En América Latina y El Caribe; Comisión Económica para América Latina y el Caribe (CEPAL): Santiago, Chile, 2021; Volume 205.
98. Párraga Meneses, M.; Fajardo Jaimes, A.; Vuelvas Quintana, J. An Optimized Management Model of the Resources Embedded on an Isolated Water-Energy Microgrid for a Ranchería. In Proceedings of the 2021 IEEE 5th Colombian Conference on Automatic Control (CCAC), Ibague, Colombia, 19–22 October 2021; IEEE: Ibagué, Colombia, 2021; pp. 98–103.
99. Ong, S.; Campbell, C.; Denholm, P.; Margolis, R.; Heath, G. Land-Use Requirements for Solar Power Plants in the United States; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2013.
dc.relation.citationendpage.spa.fl_str_mv 21
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationissue.spa.fl_str_mv 11
dc.relation.citationvolume.spa.fl_str_mv 16
dc.rights.license.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 21 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.publisher.place.spa.fl_str_mv Switzerland
dc.source.spa.fl_str_mv https://www.mdpi.com/2071-1050/16/11/4862
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/31df28f2-4a17-43c7-b558-8d5bfe24ef7e/download
https://repositorio.cuc.edu.co/bitstreams/49448299-5197-4564-84f8-5e121a11cf41/download
https://repositorio.cuc.edu.co/bitstreams/85877c55-89ef-4ddf-b480-eb6cc46a7f98/download
https://repositorio.cuc.edu.co/bitstreams/3eda8a65-4edc-4155-8cf5-dbce22d3eb70/download
bitstream.checksum.fl_str_mv 8660c2ef6184761be623523657a1352c
2f9959eaf5b71fae44bbf9ec84150c7a
7e48bac859a99c79de0cb64879dd52e2
692fb6d2b778f0ad3a961aa6fdad699f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760818282299392
spelling Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vargas-Brochero, JoséHurtado-Castillo, SebastiánAltamiranda, JesúsM. de Menezes Filho, Frederico CarlosBeluco, AlexandreCanales, Fausto2024-06-26T13:09:46Z2024-06-26T13:09:46Z2024-06-06Vargas-Brochero, J.; Hurtado-Castillo, S.; Altamiranda, J.; de Menezes Filho, F.C.M.; Beluco, A.; Canales, F.A. Optimizing Renewable Energy Systems for Water Security: A Comparative Study of Reanalysis Models. Sustainability 2024, 16, 4862. https://doi.org/10.3390/su16114862https://hdl.handle.net/11323/1307810.3390/su161148622071-1050Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The current global scenario of unequal access to water and electricity motivates the search for solutions based on available resources, such as renewable energies and desalination. Additionally, adequate sizing of renewables requires extensive and reliable time series, which are usually unavailable. Reanalysis models are an option to consider, but only after evaluating their local accuracy, generally through performance metrics. This study evaluated the performance of the solar radiation, temperature, and wind speed products from MERRA2 and ERA5-Land in comparison to ground data, as well as their influence on the optimal initial configuration of a renewable energy system for desalination in La Guajira, Colombia. HOMER Pro was the software tool employed to establish the best arrangements for the resulting renewable power systems, and the study included a sensitivity analysis considering different annual capacity shortages, operating hours, and energy needs for desalting. ERA5-Land performed better than MERRA2 in matching the time series from the local station. The relative error of the cost of electricity of systems dimensioned from reanalysis was less than 3% compared to systems from ground measurements, with a renewable fraction above 98%. For the study area, ERA5-Land reanalysis represents a reliable alternative to address the scarcity of solar resource records, but both reanalyses failed to reproduce the wind speed regime.21 páginasapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)Switzerlandhttps://www.mdpi.com/2071-1050/16/11/4862Optimizing renewable energy systems for water security: a comparative study of reanalysis modelsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Sustainability1. Wang, S.; Tarroja, B.; Schell, L.S.; Shaffer, B.; Samuelsen, S. Prioritizing among the End Uses of Excess Renewable Energy for Cost-Effective Greenhouse Gas Emission Reductions. Appl. Energy 2019, 235, 284–298. [CrossRef]2. Arribas, L.; Lechón, Y.; Perula, A.; Domínguez, J.; Ferres, M.; Navarro, J.; Zarzalejo, L.F.; Barquero, C.G.; Cruz, I. Review of Data and Data Sources for the Assessment of the Potential of Utility-Scale Hybrid Wind–Solar Pv Power Plants Deployment, under a Microgrid Scope. Energies 2021, 14, 7434. [CrossRef]3. Mendoza-Fandiño, J.M.; Rhenals-Julio, J.D.; Ávila-Gómez, A.E.; Martínez-Guarín, A.R.; De la Vega González, T.D.; DurangoPadilla, E.R. Heat Absorption Cooling with Renewable Energies: A Case Study with Photovoltaic Solar Energy and Biogas in Cordoba, Colombia. Inge. Cuc. 2021, 17, 21–30.4. Canales, F.A.; Jurasz, J.; Kies, A.; Beluco, A.; Arrieta-Castro, M.; Peralta-Cayón, A. Spatial Representation of Temporal Complementarity between Three Variable Energy Sources Using Correlation Coefficients and Compromise Programming. MethodsX 2020, 7, 100871. [CrossRef] [PubMed]5. Wang, Y.-H.; Walter, R.K.; White, C.; Farr, H.; Ruttenberg, B.I. Assessment of Surface Wind Datasets for Estimating Offshore Wind Energy along the Central California Coast. Renew. Energy 2019, 133, 343–353. [CrossRef]6. Polo, J.; Wilbert, S.; Ruiz-Arias, J.A.; Meyer, R.; Gueymard, C.; Súri, M.; Martín, L.; Mieslinger, T.; Blanc, P.; Grant, I.; et al. Preliminary Survey on Site-Adaptation Techniques for Satellite-Derived and Reanalysis Solar Radiation Datasets. Sol. Energy 2016, 132, 25–37. [CrossRef]7. Gualtieri, G. Analysing the Uncertainties of Reanalysis Data Used for Wind Resource Assessment: A Critical Review National Centers for Environmental Prediction. Renew. Sustain. Energy Rev. 2022, 167, 112741. [CrossRef]8. Chadee, X.T.; Clarke, R.M. Large-Scale Wind Energy Potential of the Caribbean Region Using near-Surface Reanalysis Data. Renew. Sustain. Energy Rev. 2014, 30, 45–58. [CrossRef]9. Vega-Durán, J.; Escalante-Castro, B.; Canales, F.A.; Acuña, G.J.; Ka´zmierczak, B. Evaluation of Areal Monthly Average Precipitation Estimates from MERRA2 and ERA5 Reanalysis in a Colombian Caribbean Basin. Atmosphere 2021, 12, 1430. [CrossRef]10. Boilley, A.; Wald, L. Comparison between Meteorological Re-Analyses from ERA-Interim and MERRA and Measurements of Daily Solar Irradiation at Surface. Renew. Energy 2015, 75, 135–143. [CrossRef]11. Tahir, Z.R.; Asim, M.; Azhar, M.; Moeenuddin, G.; Farooq, M. Correcting Solar Radiation from Reanalysis and Analysis Datasets with Systematic and Seasonal Variations. Case Stud. Therm. Eng. 2021, 25, 100933. [CrossRef]12. Pfenninger, S.; Staffell, I. Long-Term Patterns of European PV Output Using 30 Years of Validated Hourly Reanalysis and Satellite Data. Energy 2016, 114, 1251–1265. [CrossRef]13. Piasecki, A.; Jurasz, J.; Kies, A. Measurements and Reanalysis Data on Wind Speed and Solar Irradiation from Energy Generation Perspectives at Several Locations in Poland. SN Appl. Sci. 2019, 1, 865. [CrossRef]14. Doddy Clarke, E.; Griffin, S.; McDermott, F.; Monteiro Correia, J.; Sweeney, C. Which Reanalysis Dataset Should We Use for Renewable Energy Analysis in Ireland? Atmosphere 2021, 12, 624. [CrossRef]15. Staffell, I.; Pfenninger, S. Using Bias-Corrected Reanalysis to Simulate Current and Future Wind Power Output. Energy 2016, 114, 1224–1239. [CrossRef]16. Ahmad, M.; Zeeshan, M. Validation of Weather Reanalysis Datasets and Geospatial and Techno-Economic Viability and Potential Assessment of Concentrated Solar Power Plants. Energy Convers. Manag. 2022, 256, 115366. [CrossRef]17. Aliana, A.; Chang, M.; Østergaard, P.A.; Victoria, M.; Andersen, A.N. Performance Assessment of Using Various Solar Radiation Data in Modelling Large-Scale Solar Thermal Systems Integrated in District Heating Networks. Renew. Energy 2022, 190, 699–712. [CrossRef]18. Gruber, K.; Regner, P.; Wehrle, S.; Zeyringer, M.; Schmidt, J. Towards Global Validation of Wind Power Simulations: A MultiCountry Assessment of Wind Power Simulation from MERRA-2 and ERA-5 Reanalyses Bias-Corrected with the Global Wind Atlas. Energy 2022, 238, 121520. [CrossRef]19. Olauson, J. ERA5: The New Champion of Wind Power Modelling? Renew. Energy 2018, 126, 322–331. [CrossRef]20. Thomas, S.R.; Nicolau, S.; Martínez-Alvarado, O.; Drew, D.J.; Bloomfield, H.C. How Well Do Atmospheric Reanalyses Reproduce Observed Winds in Coastal Regions of Mexico? Meteorol. Appl. 2021, 28, e2023. [CrossRef]21. Ramirez Camargo, L.; Schmidt, J. Simulation of Multi-Annual Time Series of Solar Photovoltaic Power: Is the ERA5-Land Reanalysis the next Big Step? Sustain. Energy Technol. Assess 2020, 42, 100829. [CrossRef]22. Mora, S.; Tinjacá, F. Statistical Analysis of Wind Speed and Direction Based on the Rayleigh Distribution Model. LADEE 2021, 2, 32–39. [CrossRef]23. Carvajal-Romo, G.; Valderrama-Mendoza, M.; Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Assessment of Solar and Wind Energy Potential in La Guajira, Colombia: Current Status, and Future Prospects. Sustain. Energy Technol. Assess. 2019, 36, 100531. [CrossRef]24. Gil Ruiz, S.A.; Barriga, J.E.C.; Martínez, J.A. Wind Power Assessment in the Caribbean Region of Colombia, Using Ten-Minute Wind Observations and ERA5 Data. Renew. Energy 2021, 172, 158–176. [CrossRef]25. Gil Ruiz, S.A.; Cañón Barriga, J.E.; Martínez, J.A. Assessment and Validation of Wind Power Potential at Convection-Permitting Resolution for the Caribbean Region of Colombia. Energy 2022, 244, 123127. [CrossRef]26. Contreras, D. The Integrated Spatial Pattern of Child Mortality during the 2012-2016 Drought in La Guajira, Colombia. Sustainability 2019, 11, 7190. [CrossRef]27. Daza-Daza, A.R.; Serna-Mendoza, C.A.; Carabalí-Angola, A. El Recurso Agua En Las Comunidades Indígenas Wayuu de La Guajira Colombiana. Parte 2: Estudio Cualitativo de Las Condiciones de Higiene, Aseo y Disponibilidad de Agua. Inf. Tecnol. 2018, 29, 25–32. [CrossRef]28. HOMER Energy HOMER Pro—Microgrid Software for Designing Optimized Hybrid Microgrids. Available online: https: //www.homerenergy.com/products/pro/index.html (accessed on 11 July 2022).29. Das, B.K. Optimal Sizing of Stand-Alone and Grid-Connected Solar PV Systems in Bangladesh. Int. J. Energy A Clean Environ. 2020, 21, 107–124. [CrossRef]30. Podder, A.K.; Supti, S.A.; Islam, S.; Malvoni, M.; Jayakumar, A.; Deb, S.; Kumar, N.M. Feasibility Assessment of Hybrid Solar Photovoltaic-Biogas Generator Based Charging Station: A Case of Easy Bike and Auto Rickshaw Scenario in a Developing Nation. Sustainability 2021, 14, 166. [CrossRef]31. Johannsen, R.M.; Østergaard, P.A.; Hanlin, R. Hybrid Photovoltaic and Wind Mini-Grids in Kenya: Techno-Economic Assessment and Barriers to Diffusion. Energy Sustain. Dev. 2020, 54, 111–126. [CrossRef]32. Dawoud, S.M.; Lin, X.N.; Sun, J.W.; Okba, M.I.; Khalid, M.S.; Waqar, A. Feasibility Study of Isolated PV-Wind Hybrid System in Egypt. Adv. Mat. Res. 2015, 1092–1093, 145–151. [CrossRef]33. Veilleux, G.; Potisat, T.; Pezim, D.; Ribback, C.; Ling, J.; Krysztofi´nski, A.; Ahmed, A.; Papenheim, J.; Pineda, A.M.; Sembian, S.; et al. Techno-Economic Analysis of Microgrid Projects for Rural Electrification: A Systematic Approach to the Redesign of Koh Jik off-Grid Case Study. Energy Sustain. Dev. 2020, 54, 1–13. [CrossRef]34. Kamesh, M.R.; Girish Kumar, G.S.; Kiran, C. Sustainable Energy Solutions for Community Housing. IOP Conf. Ser. Earth Environ. Sci. 2020, 573, 012035. [CrossRef]35. Elmaadawy, K.; Kotb, K.M.; Elkadeem, M.R.; Sharshir, S.W.; Dán, A.; Moawad, A.; Liu, B. Optimal Sizing and Techno-EnviroEconomic Feasibility Assessment of Large-Scale Reverse Osmosis Desalination Powered with Hybrid Renewable Energy Sources. Energy Convers. Manag. 2020, 224, 113377. [CrossRef]36. Maisanam, A.K.S.; Podder, B.; Biswas, A.; Sharma, K.K. Site-Specific Tailoring of an Optimal Design of Renewable Energy System for Remote Water Supply Station in Silchar, India. Sustain. Energy Technol. Assess. 2019, 36, 100558. [CrossRef]37. Kotb, K.M.; Elkadeem, M.R.; Khalil, A.; Imam, S.M.; Hamada, M.A.; Sharshir, S.W.; Dán, A. A Fuzzy Decision-Making Model for Optimal Design of Solar, Wind, Diesel-Based RO Desalination Integrating Flow-Battery and Pumped-Hydro Storage: Case Study in Baltim, Egypt. Energy Convers. Manag. 2021, 235, 113962. [CrossRef]38. Orfila, A.; Urbano-Latorre, C.P.; Sayol, J.M.; Gonzalez-Montes, S.; Caceres-Euse, A.; Hernández-Carrasco, I.; Muñoz, Á.G. On the Impact of the Caribbean Counter Current in the Guajira Upwelling System. Front. Mar. Sci. 2021, 8, 128. [CrossRef]39. Duarte, L.; Revollo, J.; Betancur, D.; Lopez, G.; Isaac, I.; Cardona, H.; Ortega, S. Placement of Weather Stations in Colombia for Future Applications in Solar and Wind Energy Forecasting Models. In Proceedings of the 2019 FISE-IEEE/CIGRE Conference— Living the energy Transition (FISE/CIGRE), Medellin, Colombia, 4–6 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6.40. Gilbert, J.E.; Gilbertson, T.; Jakobsen, L. Incommensurability and Corporate Social Technologies: A Critique of Corporate Compensations in Colombia’s Coal Mining Region of La Guajira. J. Polit. Ecol. 2021, 28, 434–452. [CrossRef]41. Acosta Cubides, L.D.; Herrera Quintero, S. Metodología Para El Uso de Captadores de Rocío. Una Aproximación a Una Solución Sostenible para el Recurso Hídrico en Maicao, La Guajira. 2021. Available online: https://hdl.handle.net/20.500.11839/8594 (accessed on 11 November 2022).42. Cámara de Comercio de La Guajira. Informe Socioeconómico de La Guajira 2021; Cámara de Comercio de La Guajira: Riohacha, Colombia, 2021.43. La Realidad Del Hambre: Cada Seis Días Ha Muerto Un Niño En La Guajira En 2022. La Opinión, 22 May 2022.44. Mejía Ospino, E. Habitantes de Barrancas Denuncian Que Llevan Más de Un Mes Sin Agua. El Tiempo, 28 December 2021.45. Guerrero, S. El Agua de Camarones No Es Apta Para El Consumo Humano. El Heraldo, 15 October 2021.46. Barrios Florez, E.A. Indígenas Wayú Realizan Bloqueos En La Guajira, En Protesta Por La Falta de Agua. RCN Radio, 28 June 2022.47. La Guajira Hoy. En La Guajira, Comunidad Indígena Se Beneficia Con Planta Desalinizadora de Agua. La Guajira Hoy, 1 April 2022.48. La Guajira Hoy. En Extremo Norte de La Guajira No Hay Agua Para Consumo Humano. La Guajira Hoy, 3 May 2022.49. IDEAM Consulta y Descarga de Datos Hidrometeorológicos. Available online: http://dhime.ideam.gov.co/atencionciudadano/ (accessed on 10 October 2020).50. Quagraine, K.A.; Nkrumah, F.; Klein, C.; Klutse, N.A.B.; Quagraine, K.T. West African Summer Monsoon Precipitation Variability as Represented by Reanalysis Datasets. Climate 2020, 8, 111. [CrossRef]51. Pedreira, A.L.; Biudes, M.S.; Machado, N.G.; Vourlitis, G.L.; Geli, H.M.E.; Dos Santos, L.O.F.; Querino, C.A.S.; Ivo, I.O.; Neto, N.L. Assessment of Remote Sensing and Reanalysis Estimates of Regional Precipitation over Mato Grosso, Brazil. Water 2021, 13, 333. [CrossRef]52. Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [CrossRef] [PubMed]53. Global Modeling and Assimilation Office (GMAO). MERRA-2 Tavg1_2d_slv_Nx: 2d,1-Hourly, Time-Averaged, Single-Level, Assimilation, Single-Level Diagnostics V5.12.4. Available online: https://www.soda-pro.com/web-services/meteo-data/merra (accessed on 12 December 2021).54. Zou, J.; Lu, N.; Jiang, H.; Qin, J.; Yao, L.; Xin, Y.; Su, F. Performance of Air Temperature from ERA5-Land Reanalysis in Coastal Urban Agglomeration of Southeast China. Sci. Total Environ. 2022, 828, 154459. [CrossRef] [PubMed]55. Muñoz Sabater, J.; ERA5-Land Hourly Data from 1981 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land (accessed on 10 October 2021).56. Minvivienda. Republic of Colombia: Minvivienda. Resolución 0330 de 2017. 2017. Available online: https://www.minvivienda. gov.co/sites/default/files/documentos/0330-2017.pdf (accessed on 11 April 2022).57. Veolia Sabana, S.A.E.S.P. Veolia Colombia. Available online: https://www.veolia.com.co/sabana/ (accessed on 2 February 2022).58. Hagen, I.; Huggel, C.; Ramajo, L.; Chacón, N.; Ometto, J.P.; Postigo, J.C.; Castellanos, E.J. Climate Change-Related Risks and Adaptation Potential in Central and South America during the 21st Century. Environ. Res. Lett. 2022, 17, 033002. [CrossRef]59. Feria-Díaz, J.J.; Correa-Mahecha, F.; López-Méndez, M.C.; Rodríguez-Miranda, J.P.; Barrera-Rojas, J. Recent Desalination Technologies by Hybridization and Integration with Reverse Osmosis: A Review. Water 2021, 13, 1369. [CrossRef]60. Lemma, E.; Upadhyaya, S.; Ramsankaran, R.A.A.J. Investigating the Performance of Satellite and Reanalysis Rainfall Products at Monthly Timescales across Different Rainfall Regimes of Ethiopia. Int. J. Remote Sens. 2019, 40, 4019–4042. [CrossRef]61. Yu, Z.; Wu, J.; Chen, X. An Approach to Revising the Climate Forecast System Reanalysis Rainfall Data in a Sparsely-Gauged Mountain Basin. Atmos. Res. 2019, 220, 194–205. [CrossRef]62. Chawla, I.; Mujumdar, P.P. Evaluating Rainfall Datasets to Reconstruct Floods in Data-Sparse Himalayan Region. J. Hydrol. 2020, 588, 125090. [CrossRef]63. Wang, N.; Liu, W.; Sun, F.; Yao, Z.; Wang, H.; Liu, W. Evaluating Satellite-Based and Reanalysis Precipitation Datasets with Gauge-Observed Data and Hydrological Modeling in the Xihe River Basin, China. Atmos. Res. 2020, 234, 104746. [CrossRef]64. Springer, A.; Eicker, A.; Bettge, A.; Kusche, J.; Hense, A.; Mahto, S.S.; Pandey, A.C.; Huang, B.; Cubasch, U.; Li, Y.; et al. Evaluation of the Water Cycle in the European COSMO-REA6 Reanalysis Using GRACE. Water 2017, 9, 289. [CrossRef]65. Mehrjerdi, H. Modeling and Optimization of an Island Water-Energy Nexus Powered by a Hybrid Solar-Wind Renewable System. Energy 2020, 197, 117217. [CrossRef]66. Canales, F.A.; Beluco, A.; Mendes, C.A.B. Modelling a Hydropower Plant with Reservoir with the Micropower Optimisation Model (HOMER). Int. J. Sustain. Energy 2017, 36, 654–667. [CrossRef]67. Movahediyan, Z.; Askarzadeh, A. Multi-Objective Optimization Framework of a Photovoltaic-Diesel Generator Hybrid Energy System Considering Operating Reserve. Sustain. Cities Soc. 2018, 41, 1–12. [CrossRef]68. HOMER Energy Suggested Lifetime Throughput. Available online: https://www.homerenergy.com/products/pro/docs/latest/ suggested_lifetime_throughput.html (accessed on 3 March 2022).69. Pinilla, A.; Rodriguez, L.; Trujillo, R. Performance Evaluation of Jepirachi Wind Park. Renew. Energy 2009, 34, 48–52. [CrossRef]70. Barrientos Marín, J.; Villada, F. Regionalized Discount Rate to Evaluate Renewable Energy Projects in Colombia. Int. J. Energy Econ. Policy 2020, 10, 332–336. [CrossRef]71. Bitar, S.; Chamas, F. Estudio de Factibilidad Para La Implementacion de Sistemas Fotovoltaicos Como Fuente de Energía En El Sector Industrial de Colombia. Master’s, Thesis, Colegio de Estudios Superiores de Administración (CESA), Bogotá, Colombia, 2017.72. Baek, S.; Park, E.; Kim, M.-G.; Kwon, S.J.; Kim, K.J.; Ohm, J.Y.; del Pobil, A.P. Optimal Renewable Power Generation Systems for Busan Metropolitan City in South Korea. Renew. Energy 2016, 88, 517–525. [CrossRef]73. Lacal Arantegui, R.; Jaeger-Waldau, A.; Vellei, M.; Sigfusson, B.; Magagna, D.; Jakubcionis, M.; Del Mar Perez Fortes, M.; Moles, C.; Lazarou, S.; Giuntoli, J.; et al. ETRI 2014—Energy Technology Reference Indicator Projections for 2010–2050; Publications Office of the European Union: Petten, The Netherlands, 2014; ISBN 9789279444036.74. Guezgouz, M.; Jurasz, J.; Bekkouche, B.; Ma, T.; Javed, M.S.; Kies, A. Optimal Hybrid Pumped Hydro-Battery Storage Scheme for off-Grid Renewable Energy Systems. Energy Convers. Manag 2019, 199, 112046. [CrossRef]75. California Energy Comission PV Modules. Available online: http://www.gosolarcalifornia.ca.gov/equipment/pv_modules.php (accessed on 12 December 2017).76. Kim, I.; James, J.A.; Crittenden, J. The Case Study of Combined Cooling Heat and Power and Photovoltaic Systems for Building Customers Using HOMER Software. Electr. Power Syst. Res. 2017, 143, 490–502. [CrossRef]77. Nordex N60/1300 KW Specifications. Available online: http://www.nordex-online.com/fileadmin/MEDIA/Produktinfos/EN/ Nordex_N60_EN.pdf (accessed on 10 October 2021).78. Canales, F.A.; Jurasz, J.K.; Guezgouz, M.; Beluco, A. Cost-Reliability Analysis of Hybrid Pumped-Battery Storage for Solar and Wind Energy Integration in an Island Community. Sustain. Energy Technol. Assess. 2021, 44, 101062. [CrossRef]79. Ramli, M.A.M.; Hiendro, A.; Sedraoui, K.; Twaha, S. Optimal Sizing of Grid-Connected Photovoltaic Energy System in Saudi Arabia. Renew. Energy 2015, 75, 489–495. [CrossRef]80. Akoglu, H. User’s Guide to Correlation Coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [CrossRef]81. Carvalho, D. An Assessment of NASA’s GMAO MERRA-2 Reanalysis Surface Winds. J. Clim. 2019, 32, 8261–8281. [CrossRef]82. Canales, F.A.; Beluco, A.; Mendes, C.A.B. A Matter of Cost. Int. Water Power Dam Constr. 2008, 60, 43–45.83. Karimi, L.; Abkar, L.; Aghajani, M.; Ghassemi, A. Technical Feasibility Comparison of Off-Grid PV-EDR and PV-RO Desalination Systems via Their Energy Consumption. Sep. Purif. Technol. 2015, 151, 82–94. [CrossRef]84. Goss-Sampson, M.A. Statistical Analysis in JASP: A Guide for Students, 2nd ed.; University of Amsterdam: Amsterdam, The Netherlands, 2019.85. Cano, L.M.; Carmona, M.A.; Martínez, J.A.; Arias, P.A. Estimación y Pronóstico de Radiación Solar En El Valle de Aburrá— Colombia. Rev. Acad. Colomb. Cienc. Exactas Fis. Nat. 2022, 46, 529–549. [CrossRef]86. Khatibi, A.; Krauter, S. Validation and Performance of Satellite Meteorological Dataset Merra-2 for Solar and Wind Applications. Energies 2021, 14, 882. [CrossRef]87. Zhang, H.; Cao, Y.; Zhang, Y.; Terzija, V. Quantitative Synergy Assessment of Regional Wind-Solar Energy Resources Based on MERRA Reanalysis Data. Appl. Energy 2018, 216, 172–182. [CrossRef]88. Kapica, J.; Canales, F.A.; Jurasz, J. Global Atlas of Solar and Wind Resources Temporal Complementarity. Energy Convers. Manag. 2021, 246, 114692. [CrossRef]89. Anastasiades, G.; McSharry, P.E. Extreme Value Analysis for Estimating 50 Year Return Wind Speeds from Reanalysis Data. Wind Energy 2014, 17, 1231–1245. [CrossRef]90. Cannon, D.J.; Brayshaw, D.J.; Methven, J.; Coker, P.J.; Lenaghan, D. Using Reanalysis Data to Quantify Extreme Wind Power Generation Statistics: A 33 Year Case Study in Great Britain. Renew. Energy 2015, 75, 767–778. [CrossRef]91. Ramirez Camargo, L.; Gruber, K.; Nitsch, F. Assessing Variables of Regional Reanalysis Data Sets Relevant for Modelling Small-Scale Renewable Energy Systems. Renew. Energy 2019, 133, 1468–1478. [CrossRef]92. Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [CrossRef]93. Villada, F.; Saldarriaga-Loaiza, J.D.; López-Lezama, J.M. Incentives for Renewable Energies in Colombia. Renew. Energy Power Qual. J. 2021, 19, 24–26. [CrossRef]94. Castillo-Ramirez, A.; Mejia-Giraldo, D.; Giraldo-Ocampo, J.D. Geospatial Levelized Cost of Energy in Colombia: GeoLCOE. In Proceedings of the 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM), Montevideo, Uruguay, 5–7 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 298–303.95. Bhojwani, S.; Topolski, K.; Mukherjee, R.; Sengupta, D.; El-Halwagi, M.M. Technology Review and Data Analysis for Cost Assessment of Water Treatment Systems. Sci. Total Environ. 2019, 651, 2749–2761. [CrossRef] [PubMed]96. Saleh, L.; Mezher, T. Techno-Economic Analysis of Sustainability and Externality Costs of Water Desalination Production. Renew. Sustain. Energy Rev. 2021, 150, 111465. [CrossRef]97. Fernández, D.; Saravia Matus, S.; Gil, M. Políticas Regulatorias y Tarifarias En El Sector de Agua Potable y Saneamiento En América Latina y El Caribe; Comisión Económica para América Latina y el Caribe (CEPAL): Santiago, Chile, 2021; Volume 205.98. Párraga Meneses, M.; Fajardo Jaimes, A.; Vuelvas Quintana, J. An Optimized Management Model of the Resources Embedded on an Isolated Water-Energy Microgrid for a Ranchería. In Proceedings of the 2021 IEEE 5th Colombian Conference on Automatic Control (CCAC), Ibague, Colombia, 19–22 October 2021; IEEE: Ibagué, Colombia, 2021; pp. 98–103.99. Ong, S.; Campbell, C.; Denholm, P.; Margolis, R.; Heath, G. Land-Use Requirements for Solar Power Plants in the United States; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2013.2111116ReanalysisPerformance metricsHOMER EnergyDesaltingSolar PVPublicationORIGINALOptimizing renewable energy systems for water security. a comparative study of reanalysis models.pdfOptimizing renewable energy systems for water security. a comparative study of reanalysis models.pdfArtículoapplication/pdf2976997https://repositorio.cuc.edu.co/bitstreams/31df28f2-4a17-43c7-b558-8d5bfe24ef7e/download8660c2ef6184761be623523657a1352cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/49448299-5197-4564-84f8-5e121a11cf41/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTOptimizing renewable energy systems for water security. a comparative study of reanalysis models.pdf.txtOptimizing renewable energy systems for water security. a comparative study of reanalysis models.pdf.txtExtracted texttext/plain80447https://repositorio.cuc.edu.co/bitstreams/85877c55-89ef-4ddf-b480-eb6cc46a7f98/download7e48bac859a99c79de0cb64879dd52e2MD53THUMBNAILOptimizing renewable energy systems for water security. a comparative study of reanalysis models.pdf.jpgOptimizing renewable energy systems for water security. a comparative study of reanalysis models.pdf.jpgGenerated Thumbnailimage/jpeg15930https://repositorio.cuc.edu.co/bitstreams/3eda8a65-4edc-4155-8cf5-dbce22d3eb70/download692fb6d2b778f0ad3a961aa6fdad699fMD5411323/13078oai:repositorio.cuc.edu.co:11323/130782024-09-17 12:49:55.246https://creativecommons.org/licenses/by/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=