Exploring the evolution of sentiment in spanish pandemic tweets: a data analysis based on a fine-tuned bert architecture

The COVID-19 pandemic has had a significant impact on various aspects of society, including economic, health, political, and work-related domains. The pandemic has also caused an emotional effect on individuals, reflected in their opinions and comments on social media platforms, such as Twitter. Thi...

Full description

Autores:
Henríquez Miranda, Carlos
Sanchez Torres, German
Salcedo, Dixon
Tipo de recurso:
Article of journal
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10569
Acceso en línea:
https://hdl.handle.net/11323/10569
https://repositorio.cuc.edu.co
Palabra clave:
Deep learning
Fine-tuning
Natural language processing
Evolution of feelings
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_d9f558ee286cc6f181bafa3ad3ed9fea
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10569
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Exploring the evolution of sentiment in spanish pandemic tweets: a data analysis based on a fine-tuned bert architecture
title Exploring the evolution of sentiment in spanish pandemic tweets: a data analysis based on a fine-tuned bert architecture
spellingShingle Exploring the evolution of sentiment in spanish pandemic tweets: a data analysis based on a fine-tuned bert architecture
Deep learning
Fine-tuning
Natural language processing
Evolution of feelings
title_short Exploring the evolution of sentiment in spanish pandemic tweets: a data analysis based on a fine-tuned bert architecture
title_full Exploring the evolution of sentiment in spanish pandemic tweets: a data analysis based on a fine-tuned bert architecture
title_fullStr Exploring the evolution of sentiment in spanish pandemic tweets: a data analysis based on a fine-tuned bert architecture
title_full_unstemmed Exploring the evolution of sentiment in spanish pandemic tweets: a data analysis based on a fine-tuned bert architecture
title_sort Exploring the evolution of sentiment in spanish pandemic tweets: a data analysis based on a fine-tuned bert architecture
dc.creator.fl_str_mv Henríquez Miranda, Carlos
Sanchez Torres, German
Salcedo, Dixon
dc.contributor.author.none.fl_str_mv Henríquez Miranda, Carlos
Sanchez Torres, German
Salcedo, Dixon
dc.subject.proposal.eng.fl_str_mv Deep learning
Fine-tuning
Natural language processing
Evolution of feelings
topic Deep learning
Fine-tuning
Natural language processing
Evolution of feelings
description The COVID-19 pandemic has had a significant impact on various aspects of society, including economic, health, political, and work-related domains. The pandemic has also caused an emotional effect on individuals, reflected in their opinions and comments on social media platforms, such as Twitter. This study explores the evolution of sentiment in Spanish pandemic tweets through a data analysis based on a fine-tuned BERT architecture. A total of six million tweets were collected using web scraping techniques, and pre-processing was applied to filter and clean the data. The fine-tuned BERT architecture was utilized to perform sentiment analysis, which allowed for a deeplearning approach to sentiment classification. The analysis results were graphically represented based on search criteria, such as “COVID-19” and “coronavirus”. This study reveals sentiment trends, significant concerns, relationship with announced news, public reactions, and information dissemination, among other aspects. These findings provide insight into the emotional impact of the COVID-19 pandemic on individuals and the corresponding impact on social media platforms.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-31T17:04:10Z
dc.date.available.none.fl_str_mv 2023-10-31T17:04:10Z
dc.date.issued.none.fl_str_mv 2023-05-29
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/CAP_LIB
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Miranda, C.H.; Sanchez-Torres, G.; Salcedo, D. Exploring the Evolution of Sentiment in Spanish Pandemic Tweets: A Data Analysis Based on a Fine-Tuned BERT Architecture. Data 2023, 8, 96. https://doi.org/10.3390/data8060096
dc.identifier.issn.spa.fl_str_mv 2306-5729
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10569
dc.identifier.doi.none.fl_str_mv 10.3390/data8060096
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co
identifier_str_mv Miranda, C.H.; Sanchez-Torres, G.; Salcedo, D. Exploring the Evolution of Sentiment in Spanish Pandemic Tweets: A Data Analysis Based on a Fine-Tuned BERT Architecture. Data 2023, 8, 96. https://doi.org/10.3390/data8060096
2306-5729
10.3390/data8060096
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/10569
https://repositorio.cuc.edu.co
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Data
dc.relation.references.spa.fl_str_mv 1. Smith, B.; Lim, M. How the COVID-19 Pandemic Is Focusing Attention on Loneliness and Social Isolation. Public Health Res. Pract. 2020, 30, 3022008. [CrossRef] [PubMed]
2. Hwang, T.-J.; Rabheru, K.; Peisah, C.; Reichman, W.; Ikeda, M. Loneliness and Social Isolation during the COVID-19 Pandemic. Int. Psychogeriatr. 2020, 32, 1217–1220. [CrossRef]
3. Pokharel, B.P. Twitter Sentiment Analysis During Covid-19 Outbreak in Nepal 2020. SSRN 2020. [CrossRef]
4. Henríquez, C.; Guzmán, J.; Salcedo, D. Minería de Opiniones Basado En La Adaptación al Español de ANEW Sobre Opiniones Acerca de Hoteles Opinion. Proces. Leng. Nat. 2016, 41, 25–32.
5. Henríquez Miranda, C.; Guzmán, J. Information Extraction from the Web to Identify Actions of an Automated Planning Domain Mode. Ingeniare J. 2015, 23, 439–448.
6. Pak, A.; Paroubek, P. Twitter as a Corpus for Sentiment Analysis and Opinion Mining. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10), Valletta, Malta, 19–21 May 2010; pp. 1320–1326.
7. González-Padilla, D.A.; Tortolero-Blanco, L. Social Media Influence in the COVID-19 Pandemic. Int. Braz. J. Urol. 2020, 46, 120–124. [CrossRef]
8. Henríquez, C.; Guzmán, J. A Review of Sentiment Analysis in Spanish. Tecciencia 2017, 12, 35–48. [CrossRef]
9. Hurtado, L.; Pla, F. Análisis de Sentimientos, Detección de Tópicos y Análisis de Sentimientos de Aspectos En Twitter. In Proceedings of the TASS 2014, Girona, Spain, 16–19 September 2014.
10. Hung, C.; Chen, S.-J. Word Sense Disambiguation Based Sentiment Lexicons for Sentiment Classification. Knowl.-Based Syst. 2016, 110, 224–232. [CrossRef]
11. Henriquez Miranda, C.; Sanchez, G. Aspect Extraction for Opinion Mining with a Semantic Model. Eng. Lett. 2021, 29, 61–67.
12. Henríquez, C.; Plà, F.; Hurtado, L.F.; Luna, J.A.G. Análisis de Sentimientos a Nivel de Aspecto Usando Ontologías y Aprendizaje Automático. Proces. Leng. Nat. 2017, 59, 49–56.
13. Zhang, L.; Wang, S.; Liu, B. Deep Learning for Sentiment Analysis: A Survey. WIREs Data Min. Knowl. Discov. 2018, 8, e1253. [CrossRef]
14. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. arXiv 2019, arXiv:1810.04805.
15. Jojoa, M.; Garcia-Zapirain, B.; Gonzalez, M.J.; Perez-Villa, B.; Urizar, E.; Ponce, S.; Tobar-Blandon, M.F. Analysis of the Effects of Lockdown on Staff and Students at Universities in Spain and Colombia Using Natural Language Processing Techniques. Int. J. Environ. Res. Public Health 2022, 19, 5705. [CrossRef]
16. Liu, B. Sentiment Analysis and Opinion Mining. Sentim. Anal. Opin. Min. 2012, 5, 1–167.
17. Vilares, D.; Alonso Perdo, M.Á.; Carlos, G.-R. A Syntactic Approach for Opinion Mining on Spanish Reviews. Nat. Lang. Eng. 2013, 1, 139–163.
18. Plaza-Del-Arco, F.M.; Martín-Valdivia, M.T.; María Jiménez-Zafra, S.; Molina-González, M.D.; Martínez-Cámara, E. COPOS: Corpus Of Patient Opinions in Spanish. Application of Sentiment Analysis Techniques. Proces. Leng. Nat. 2016, 57, 83–90.
19. Cadilhac, A.; Benamara, F.; Aussenac-Gilles, N. Ontolexical Resources for Feature Based Opinion Mining: A Case-Study. In Proceedings of the 6th Workshop on Ontologies and Lexical Resources, Beijing, China, 22 August 2010; pp. 77–86.
20. Steinberger, J.; Brychcín, T.; Konkol, M. Aspect-Level Sentiment Analysis in Czech. In Proceedings of the Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, Baltimore, Maryland, 27 June 2014; pp. 24–30.
21. Pang, B.; Lee, L. Opinion Mining and Sentiment Analysis. Found. Trends Inf. Retr. 2008, 2, 1–135. [CrossRef]
22. De Freitas, L.A.; Vieira, R. Ontology-Based Feature Level Opinion Mining for Portuguese Reviews. In Proceedings of the Proceedings of the 22nd International Conference on World Wide Web; ACM: New York, NY, USA, 2013; pp. 367–370.
23. Manek, A.S.; Shenoy, P.D.; Mohan, M.C. Aspect Term Extraction for Sentiment Analysis in Large Movie Reviews Using Gini Index Feature Selection Method and SVM Classifier. World Wide Web 2016, 20, 135–154. [CrossRef]
24. Agüero-Torales, M.M.; Abreu Salas, J.I.; López-Herrera, A.G. Deep Learning and Multilingual Sentiment Analysis on Social Media Data: An Overview. Appl. Soft Comput. 2021, 107, 107373. [CrossRef]
25. Kaur, H.; Ahsaan, S.U.; Alankar, B.; Chang, V. A Proposed Sentiment Analysis Deep Learning Algorithm for Analyzing COVID-19 Tweets. Inf. Syst. Front. 2021, 23, 1417–1429. [CrossRef]
26. Jing, N.; Wu, Z.; Wang, H. A Hybrid Model Integrating Deep Learning with Investor Sentiment Analysis for Stock Price Prediction. Expert Syst. Appl. 2021, 178, 115019. [CrossRef]
27. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A Survey on Deep Learning in Medical Image Analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef] [PubMed]
28. Bonifazi, G.; Cauteruccio, F.; Corradini, E.; Marchetti, M.; Sciarretta, L.; Ursino, D.; Virgili, L. A Space-Time Framework for Sentiment Scope Analysis in Social Media. Big Data Cogn. Comput. 2022, 6, 130. [CrossRef]
29. Bonifazi, G.; Corradini, E.; Ursino, D.; Virgili, L. New Approaches to Extract Information From Posts on COVID-19 Published on Reddit. Int. J. Info. Tech. Dec. Mak. 2022, 21, 1385–1431. [CrossRef]
30. Manguri, K.H.; Ramadhan, R.N.; Amin, P.R.M. Twitter Sentiment Analysis on Worldwide COVID-19 Outbreaks. Kurd. J. Appl. Res. 2020, 5, 54–65. [CrossRef]
31. Dubey, A.D. Twitter Sentiment Analysis during COVID-19 Outbreak. SSRN 2020. preprint. [CrossRef]
32. Boon-Itt, S.; Skunkan, Y. Public Perception of the COVID-19 Pandemic on Twitter: Sentiment Analysis and Topic Modeling Study. JMIR Public Health Surveill. 2020, 6, e21978. [CrossRef]
33. Garcia, K.; Berton, L. Topic Detection and Sentiment Analysis in Twitter Content Related to COVID-19 from Brazil and the USA. Appl. Soft Comput. 2021, 101, 107057. [CrossRef]
34. Kruspe, A.; Häberle, M.; Kuhn, I.; Zhu, X. Cross-Language Sentiment Analysis of European Twitter Messages during the COVID-19 Pandemic. In Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020, Online, 9–10 July 2020.
35. Marcec, R.; Likic, R. Using Twitter for Sentiment Analysis towards AstraZeneca/Oxford, Pfizer/BioNTech and Moderna COVID-19 Vaccines. Postgrad. Med. J. 2022, 98, 544–550. [CrossRef]
36. Villavicencio, C.; Macrohon, J.J.; Inbaraj, X.A.; Jeng, J.-H.; Hsieh, J.-G. Twitter Sentiment Analysis towards COVID-19 Vaccines in the Philippines Using Naïve Bayes. Information 2021, 12, 204. [CrossRef]
37. Valle-Cruz, D.; Fernandez, V.; Lopez-Chau, A.; Sandoval Almazan, R. Does Twitter Affect Stock Market Decisions?Financial Sentiment Analysis in Pandemic Seasons: A Comparative Study of H1N1 and COVID-19. Cogn. Comput. 2020. preprint. [CrossRef]
38. Sanders, A.; White, R.; Severson, L.S.; Ma, R.; McQueen, R.; Paulo, H.C.A.; Zhang, Y.; Erickson, J.S.; Bennett, K.P. Unmasking the Conversation on Masks: Natural Language Processing for Topical Sentiment Analysis of COVID-19 Twitter Discourse. medRxiv 2020. [CrossRef]
39. Khan, R.; Shrivastava, P.; Kapoor, A.; Tiwari, A.; Mittal, A. Social Media Analysis with AI: Sentiment Analysis Techniques for the Analysis of Twitter COVID-19 Data. J. Crit. Rev. 2020, 7, 2020.
40. Rodríguez-Orejuela, A.; Montes-Mora, C.L.; Osorio-Andrade, C.F. Sentimientos hacia la vacunación contra la COVID-19: Panorama colombiano en Twitter. Palabra Clave 2022, 25, e2514. [CrossRef]
41. Aislamiento Social Obligatorio: Un Análisis de Sentimientos Mediante Machine Learning. Available online: http://www.scielo. org.co/scielo.php?script=sci_arttext&pid=S2215-910X2021000100001 (accessed on 4 August 2022).
42. Ahmad, W.; Wang, B.; Martin, P.; Xu, M.; Xu, H. Enhanced Sentiment Analysis Regarding COVID-19 News from Global Channels. J. Comput. Soc. Sci. 2023, 6, 19–57. [CrossRef]
43. Kumari, S.; Pushphavathi, T.P. Intelligent Lead-Based Bidirectional Long Short Term Memory for COVID-19 Sentiment Analysis. Soc. Netw. Anal. Min. 2022, 13, 1. [CrossRef] [PubMed]
44. Cañete, J.; Chaperon, G.; Fuentes, R.; Ho, J.-H.; Kang, H.; Pérez, J. Spanish Pre-Trained BERT Model and Evaluation Data. In Proceedings of the PML4DC at ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020.
45. de Arriba Serra, A.; Oriol Hilari, M.; Franch Gutiérrez, J. Applying Sentiment Analysis on Spanish Tweets Using BETO. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2021): Co-located with the Conference of the Spanish Society for Natural Language Processing (SEPLN 2021), XXXVII International Conference of the Spanish Society for Natural Language Processing, Málaga, Spain, 24 September 2021; pp. 1–8.
46. Pijal, W.; Armijos, A.; Llumiquinga, J.; Lalvay, S.; Allauca, S.; Cuenca, E. Spanish Pre-Trained CaTrBETO Model for Sentiment Classification in Twitter. In Proceedings of the 2022 Third International Conference on Information Systems and Software Technologies (ICI2ST), Quito, Ecuador, 8–10 November 2022; pp. 93–98.
47. Vernikou, S.; Lyras, A.; Kanavos, A. Multiclass Sentiment Analysis on COVID-19-Related Tweets Using Deep Learning Models. Neural. Comput. Appl. 2022, 34, 19615–19627. [CrossRef]
48. Jojoa, M.; Eftekhar, P.; Nowrouzi-Kia, B.; Garcia-Zapirain, B. Natural Language Processing Analysis Applied to COVID-19 Open-Text Opinions Using a DistilBERT Model for Sentiment Categorization. AI Soc. 2022, 2022, 1–8. [CrossRef]
49. Madani, Y.; Erritali, M.; Bouikhalene, B. A New Sentiment Analysis Method to Detect and Analyse Sentiments of COVID-19 Moroccan Tweets Using a Recommender Approach. Multimed. Tools Appl. 2023, 1–20. [CrossRef]
50. Natural Language Processing: State of the Art, Current Trends and Challenges | SpringerLink. Available online: https://link. springer.com/article/10.1007/s11042-022-13428-4 (accessed on 21 February 2023).
51. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762.
52. Shi, Y.; Wang, J.; Ren, P.; ValizadehAslani, T.; Zhang, Y.; Hu, M.; Liang, H. Fine-Tuning BERT for Automatic ADME Semantic Labeling in FDA Drug Labeling to Enhance Product-Specific Guidance Assessment. J. Biomed. Inform. 2023, 138, 104285. [CrossRef] [PubMed]
53. Kong, J.; Wang, J.; Zhang, X. Hierarchical BERT with an Adaptive Fine-Tuning Strategy for Document Classification. Knowl.-Based Syst. 2022, 238, 107872. [CrossRef]
54. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach. Learn. Res. 2020, 21, 5485–5551.
55. Bert-Base-Uncased. Hugging Face. Available online: https://huggingface.co/bert-base-uncased (accessed on 2 December 2022).
56. Pérez, J.M.; Furman, D.A.; Alonso Alemany, L.; Luque, F.M. RoBERTuito: A Pre-Trained Language Model for Social Media Text in Spanish. In Proceedings of the Thirteenth Language Resources and Evaluation Conference; European Language Resources Association, Marseille, France, 20–25 June 2022; pp. 7235–7243.
57. Felbo, B.; Mislove, A.; Søgaard, A.; Rahwan, I.; Lehmann, S. Using Millions of Emoji Occurrences to Learn Any-Domain Representations for Detecting Sentiment, Emotion and Sarcasm. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing; Association for Computational Linguistics, Copenhagen, Denmark, 9–11 September 2017; pp. 1615–1625.
58. Novak, P.K.; Smailovi´c, J.; Sluban, B.; Mozetiˇc, I. Sentiment of Emojis. PLoS ONE 2015, 10, e0144296. [CrossRef]
59. Amrullah, M.S.; Budi, I.; Santoso, A.B.; Putra, P.K. The Effect of Using Emoji and Hashtag in Sentiment Analysis on Twitter Case Study: Indonesian Online Travel Agent. AIP Conf. Proc. 2023, 2654, 020013. [CrossRef]
60. Ayvaz, S.; Shiha, M.O. The Effects of Emoji in Sentiment Analysis. Int. J. Comput. Electr. Eng. 2017, 9, 360–369. [CrossRef]
61. Kejriwal, M.; Wang, Q.; Li, H.; Wang, L. An Empirical Study of Emoji Usage on Twitter in Linguistic and National Contexts. Online Soc. Netw. Media 2021, 24, 100149. [CrossRef]
62. Miller, H.; Thebault-Spieker, J.; Chang, S.; Johnson, I.; Terveen, L.; Hecht, B. “blissfully Happy” or “Ready to Fight”: Varying Interpretations of Emoji. In Proceedings of the 10th International Conference on Web and Social Media, ICWSM 2016, Cologne, Germany, 17–20 May 2016; AAAI Press: Washington, DC, USA, 2016; pp. 259–268.
63. Barbieri, F.; Espinosa-Anke, L.; Saggion, H. Revealing Patterns of Twitter Emoji Usage in Barcelona and Madrid. Artif. Intell. Res. Dev. 2016, 288, 239–244. [CrossRef]
64. Wijeratne, S.; Balasuriya, L.; Sheth, A.; Doran, D. EmojiNet: Building a Machine Readable Sense Inventory for Emoji. In Proceedings of the Social Informatics, Bellevue, WA, USA, 11–14 November 2016; Spiro, E., Ahn, Y.-Y., Eds.; Springer International Publishing: Cham, Swizterland, 2016; pp. 527–541.
dc.relation.citationendpage.spa.fl_str_mv 18
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationissue.spa.fl_str_mv 6
dc.relation.citationvolume.spa.fl_str_mv 8
dc.rights.eng.fl_str_mv Copyright: © 2023 by the authors.
dc.rights.license.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
Copyright: © 2023 by the authors.
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 18 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI AG
dc.publisher.place.spa.fl_str_mv Suiza
dc.source.spa.fl_str_mv https://www.mdpi.com/2306-5729/8/6/96
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/f9ac9c11-c604-4d6f-a3e8-196948cf0a45/download
https://repositorio.cuc.edu.co/bitstreams/c8ea17af-0a20-41cf-8b5a-9af5f2bb846d/download
https://repositorio.cuc.edu.co/bitstreams/6a4d7469-000e-4cba-807f-3746965b9372/download
https://repositorio.cuc.edu.co/bitstreams/cab2d00f-cf13-40cd-8a1f-02f9711e5708/download
bitstream.checksum.fl_str_mv 33c76149674a8dd7e6d4b2f9fd087ee3
2f9959eaf5b71fae44bbf9ec84150c7a
501becceaa323782e264f338fee05de1
ce05dd227f3cce25f37e48322cf210d6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166594265612288
spelling Atribución 4.0 Internacional (CC BY 4.0)Copyright: © 2023 by the authors.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Henríquez Miranda, CarlosSanchez Torres, GermanSalcedo, Dixon2023-10-31T17:04:10Z2023-10-31T17:04:10Z2023-05-29Miranda, C.H.; Sanchez-Torres, G.; Salcedo, D. Exploring the Evolution of Sentiment in Spanish Pandemic Tweets: A Data Analysis Based on a Fine-Tuned BERT Architecture. Data 2023, 8, 96. https://doi.org/10.3390/data80600962306-5729https://hdl.handle.net/11323/1056910.3390/data8060096Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.coThe COVID-19 pandemic has had a significant impact on various aspects of society, including economic, health, political, and work-related domains. The pandemic has also caused an emotional effect on individuals, reflected in their opinions and comments on social media platforms, such as Twitter. This study explores the evolution of sentiment in Spanish pandemic tweets through a data analysis based on a fine-tuned BERT architecture. A total of six million tweets were collected using web scraping techniques, and pre-processing was applied to filter and clean the data. The fine-tuned BERT architecture was utilized to perform sentiment analysis, which allowed for a deeplearning approach to sentiment classification. The analysis results were graphically represented based on search criteria, such as “COVID-19” and “coronavirus”. This study reveals sentiment trends, significant concerns, relationship with announced news, public reactions, and information dissemination, among other aspects. These findings provide insight into the emotional impact of the COVID-19 pandemic on individuals and the corresponding impact on social media platforms.18 páginasapplication/pdfengMDPI AGSuizahttps://www.mdpi.com/2306-5729/8/6/96Exploring the evolution of sentiment in spanish pandemic tweets: a data analysis based on a fine-tuned bert architectureArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/CAP_LIBinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Data1. Smith, B.; Lim, M. How the COVID-19 Pandemic Is Focusing Attention on Loneliness and Social Isolation. Public Health Res. Pract. 2020, 30, 3022008. [CrossRef] [PubMed]2. Hwang, T.-J.; Rabheru, K.; Peisah, C.; Reichman, W.; Ikeda, M. Loneliness and Social Isolation during the COVID-19 Pandemic. Int. Psychogeriatr. 2020, 32, 1217–1220. [CrossRef]3. Pokharel, B.P. Twitter Sentiment Analysis During Covid-19 Outbreak in Nepal 2020. SSRN 2020. [CrossRef]4. Henríquez, C.; Guzmán, J.; Salcedo, D. Minería de Opiniones Basado En La Adaptación al Español de ANEW Sobre Opiniones Acerca de Hoteles Opinion. Proces. Leng. Nat. 2016, 41, 25–32.5. Henríquez Miranda, C.; Guzmán, J. Information Extraction from the Web to Identify Actions of an Automated Planning Domain Mode. Ingeniare J. 2015, 23, 439–448.6. Pak, A.; Paroubek, P. Twitter as a Corpus for Sentiment Analysis and Opinion Mining. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10), Valletta, Malta, 19–21 May 2010; pp. 1320–1326.7. González-Padilla, D.A.; Tortolero-Blanco, L. Social Media Influence in the COVID-19 Pandemic. Int. Braz. J. Urol. 2020, 46, 120–124. [CrossRef]8. Henríquez, C.; Guzmán, J. A Review of Sentiment Analysis in Spanish. Tecciencia 2017, 12, 35–48. [CrossRef]9. Hurtado, L.; Pla, F. Análisis de Sentimientos, Detección de Tópicos y Análisis de Sentimientos de Aspectos En Twitter. In Proceedings of the TASS 2014, Girona, Spain, 16–19 September 2014.10. Hung, C.; Chen, S.-J. Word Sense Disambiguation Based Sentiment Lexicons for Sentiment Classification. Knowl.-Based Syst. 2016, 110, 224–232. [CrossRef]11. Henriquez Miranda, C.; Sanchez, G. Aspect Extraction for Opinion Mining with a Semantic Model. Eng. Lett. 2021, 29, 61–67.12. Henríquez, C.; Plà, F.; Hurtado, L.F.; Luna, J.A.G. Análisis de Sentimientos a Nivel de Aspecto Usando Ontologías y Aprendizaje Automático. Proces. Leng. Nat. 2017, 59, 49–56.13. Zhang, L.; Wang, S.; Liu, B. Deep Learning for Sentiment Analysis: A Survey. WIREs Data Min. Knowl. Discov. 2018, 8, e1253. [CrossRef]14. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. arXiv 2019, arXiv:1810.04805.15. Jojoa, M.; Garcia-Zapirain, B.; Gonzalez, M.J.; Perez-Villa, B.; Urizar, E.; Ponce, S.; Tobar-Blandon, M.F. Analysis of the Effects of Lockdown on Staff and Students at Universities in Spain and Colombia Using Natural Language Processing Techniques. Int. J. Environ. Res. Public Health 2022, 19, 5705. [CrossRef]16. Liu, B. Sentiment Analysis and Opinion Mining. Sentim. Anal. Opin. Min. 2012, 5, 1–167.17. Vilares, D.; Alonso Perdo, M.Á.; Carlos, G.-R. A Syntactic Approach for Opinion Mining on Spanish Reviews. Nat. Lang. Eng. 2013, 1, 139–163.18. Plaza-Del-Arco, F.M.; Martín-Valdivia, M.T.; María Jiménez-Zafra, S.; Molina-González, M.D.; Martínez-Cámara, E. COPOS: Corpus Of Patient Opinions in Spanish. Application of Sentiment Analysis Techniques. Proces. Leng. Nat. 2016, 57, 83–90.19. Cadilhac, A.; Benamara, F.; Aussenac-Gilles, N. Ontolexical Resources for Feature Based Opinion Mining: A Case-Study. In Proceedings of the 6th Workshop on Ontologies and Lexical Resources, Beijing, China, 22 August 2010; pp. 77–86.20. Steinberger, J.; Brychcín, T.; Konkol, M. Aspect-Level Sentiment Analysis in Czech. In Proceedings of the Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, Baltimore, Maryland, 27 June 2014; pp. 24–30.21. Pang, B.; Lee, L. Opinion Mining and Sentiment Analysis. Found. Trends Inf. Retr. 2008, 2, 1–135. [CrossRef]22. De Freitas, L.A.; Vieira, R. Ontology-Based Feature Level Opinion Mining for Portuguese Reviews. In Proceedings of the Proceedings of the 22nd International Conference on World Wide Web; ACM: New York, NY, USA, 2013; pp. 367–370.23. Manek, A.S.; Shenoy, P.D.; Mohan, M.C. Aspect Term Extraction for Sentiment Analysis in Large Movie Reviews Using Gini Index Feature Selection Method and SVM Classifier. World Wide Web 2016, 20, 135–154. [CrossRef]24. Agüero-Torales, M.M.; Abreu Salas, J.I.; López-Herrera, A.G. Deep Learning and Multilingual Sentiment Analysis on Social Media Data: An Overview. Appl. Soft Comput. 2021, 107, 107373. [CrossRef]25. Kaur, H.; Ahsaan, S.U.; Alankar, B.; Chang, V. A Proposed Sentiment Analysis Deep Learning Algorithm for Analyzing COVID-19 Tweets. Inf. Syst. Front. 2021, 23, 1417–1429. [CrossRef]26. Jing, N.; Wu, Z.; Wang, H. A Hybrid Model Integrating Deep Learning with Investor Sentiment Analysis for Stock Price Prediction. Expert Syst. Appl. 2021, 178, 115019. [CrossRef]27. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A Survey on Deep Learning in Medical Image Analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef] [PubMed]28. Bonifazi, G.; Cauteruccio, F.; Corradini, E.; Marchetti, M.; Sciarretta, L.; Ursino, D.; Virgili, L. A Space-Time Framework for Sentiment Scope Analysis in Social Media. Big Data Cogn. Comput. 2022, 6, 130. [CrossRef]29. Bonifazi, G.; Corradini, E.; Ursino, D.; Virgili, L. New Approaches to Extract Information From Posts on COVID-19 Published on Reddit. Int. J. Info. Tech. Dec. Mak. 2022, 21, 1385–1431. [CrossRef]30. Manguri, K.H.; Ramadhan, R.N.; Amin, P.R.M. Twitter Sentiment Analysis on Worldwide COVID-19 Outbreaks. Kurd. J. Appl. Res. 2020, 5, 54–65. [CrossRef]31. Dubey, A.D. Twitter Sentiment Analysis during COVID-19 Outbreak. SSRN 2020. preprint. [CrossRef]32. Boon-Itt, S.; Skunkan, Y. Public Perception of the COVID-19 Pandemic on Twitter: Sentiment Analysis and Topic Modeling Study. JMIR Public Health Surveill. 2020, 6, e21978. [CrossRef]33. Garcia, K.; Berton, L. Topic Detection and Sentiment Analysis in Twitter Content Related to COVID-19 from Brazil and the USA. Appl. Soft Comput. 2021, 101, 107057. [CrossRef]34. Kruspe, A.; Häberle, M.; Kuhn, I.; Zhu, X. Cross-Language Sentiment Analysis of European Twitter Messages during the COVID-19 Pandemic. In Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020, Online, 9–10 July 2020.35. Marcec, R.; Likic, R. Using Twitter for Sentiment Analysis towards AstraZeneca/Oxford, Pfizer/BioNTech and Moderna COVID-19 Vaccines. Postgrad. Med. J. 2022, 98, 544–550. [CrossRef]36. Villavicencio, C.; Macrohon, J.J.; Inbaraj, X.A.; Jeng, J.-H.; Hsieh, J.-G. Twitter Sentiment Analysis towards COVID-19 Vaccines in the Philippines Using Naïve Bayes. Information 2021, 12, 204. [CrossRef]37. Valle-Cruz, D.; Fernandez, V.; Lopez-Chau, A.; Sandoval Almazan, R. Does Twitter Affect Stock Market Decisions?Financial Sentiment Analysis in Pandemic Seasons: A Comparative Study of H1N1 and COVID-19. Cogn. Comput. 2020. preprint. [CrossRef]38. Sanders, A.; White, R.; Severson, L.S.; Ma, R.; McQueen, R.; Paulo, H.C.A.; Zhang, Y.; Erickson, J.S.; Bennett, K.P. Unmasking the Conversation on Masks: Natural Language Processing for Topical Sentiment Analysis of COVID-19 Twitter Discourse. medRxiv 2020. [CrossRef]39. Khan, R.; Shrivastava, P.; Kapoor, A.; Tiwari, A.; Mittal, A. Social Media Analysis with AI: Sentiment Analysis Techniques for the Analysis of Twitter COVID-19 Data. J. Crit. Rev. 2020, 7, 2020.40. Rodríguez-Orejuela, A.; Montes-Mora, C.L.; Osorio-Andrade, C.F. Sentimientos hacia la vacunación contra la COVID-19: Panorama colombiano en Twitter. Palabra Clave 2022, 25, e2514. [CrossRef]41. Aislamiento Social Obligatorio: Un Análisis de Sentimientos Mediante Machine Learning. Available online: http://www.scielo. org.co/scielo.php?script=sci_arttext&pid=S2215-910X2021000100001 (accessed on 4 August 2022).42. Ahmad, W.; Wang, B.; Martin, P.; Xu, M.; Xu, H. Enhanced Sentiment Analysis Regarding COVID-19 News from Global Channels. J. Comput. Soc. Sci. 2023, 6, 19–57. [CrossRef]43. Kumari, S.; Pushphavathi, T.P. Intelligent Lead-Based Bidirectional Long Short Term Memory for COVID-19 Sentiment Analysis. Soc. Netw. Anal. Min. 2022, 13, 1. [CrossRef] [PubMed]44. Cañete, J.; Chaperon, G.; Fuentes, R.; Ho, J.-H.; Kang, H.; Pérez, J. Spanish Pre-Trained BERT Model and Evaluation Data. In Proceedings of the PML4DC at ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020.45. de Arriba Serra, A.; Oriol Hilari, M.; Franch Gutiérrez, J. Applying Sentiment Analysis on Spanish Tweets Using BETO. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2021): Co-located with the Conference of the Spanish Society for Natural Language Processing (SEPLN 2021), XXXVII International Conference of the Spanish Society for Natural Language Processing, Málaga, Spain, 24 September 2021; pp. 1–8.46. Pijal, W.; Armijos, A.; Llumiquinga, J.; Lalvay, S.; Allauca, S.; Cuenca, E. Spanish Pre-Trained CaTrBETO Model for Sentiment Classification in Twitter. In Proceedings of the 2022 Third International Conference on Information Systems and Software Technologies (ICI2ST), Quito, Ecuador, 8–10 November 2022; pp. 93–98.47. Vernikou, S.; Lyras, A.; Kanavos, A. Multiclass Sentiment Analysis on COVID-19-Related Tweets Using Deep Learning Models. Neural. Comput. Appl. 2022, 34, 19615–19627. [CrossRef]48. Jojoa, M.; Eftekhar, P.; Nowrouzi-Kia, B.; Garcia-Zapirain, B. Natural Language Processing Analysis Applied to COVID-19 Open-Text Opinions Using a DistilBERT Model for Sentiment Categorization. AI Soc. 2022, 2022, 1–8. [CrossRef]49. Madani, Y.; Erritali, M.; Bouikhalene, B. A New Sentiment Analysis Method to Detect and Analyse Sentiments of COVID-19 Moroccan Tweets Using a Recommender Approach. Multimed. Tools Appl. 2023, 1–20. [CrossRef]50. Natural Language Processing: State of the Art, Current Trends and Challenges | SpringerLink. Available online: https://link. springer.com/article/10.1007/s11042-022-13428-4 (accessed on 21 February 2023).51. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762.52. Shi, Y.; Wang, J.; Ren, P.; ValizadehAslani, T.; Zhang, Y.; Hu, M.; Liang, H. Fine-Tuning BERT for Automatic ADME Semantic Labeling in FDA Drug Labeling to Enhance Product-Specific Guidance Assessment. J. Biomed. Inform. 2023, 138, 104285. [CrossRef] [PubMed]53. Kong, J.; Wang, J.; Zhang, X. Hierarchical BERT with an Adaptive Fine-Tuning Strategy for Document Classification. Knowl.-Based Syst. 2022, 238, 107872. [CrossRef]54. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach. Learn. Res. 2020, 21, 5485–5551.55. Bert-Base-Uncased. Hugging Face. Available online: https://huggingface.co/bert-base-uncased (accessed on 2 December 2022).56. Pérez, J.M.; Furman, D.A.; Alonso Alemany, L.; Luque, F.M. RoBERTuito: A Pre-Trained Language Model for Social Media Text in Spanish. In Proceedings of the Thirteenth Language Resources and Evaluation Conference; European Language Resources Association, Marseille, France, 20–25 June 2022; pp. 7235–7243.57. Felbo, B.; Mislove, A.; Søgaard, A.; Rahwan, I.; Lehmann, S. Using Millions of Emoji Occurrences to Learn Any-Domain Representations for Detecting Sentiment, Emotion and Sarcasm. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing; Association for Computational Linguistics, Copenhagen, Denmark, 9–11 September 2017; pp. 1615–1625.58. Novak, P.K.; Smailovi´c, J.; Sluban, B.; Mozetiˇc, I. Sentiment of Emojis. PLoS ONE 2015, 10, e0144296. [CrossRef]59. Amrullah, M.S.; Budi, I.; Santoso, A.B.; Putra, P.K. The Effect of Using Emoji and Hashtag in Sentiment Analysis on Twitter Case Study: Indonesian Online Travel Agent. AIP Conf. Proc. 2023, 2654, 020013. [CrossRef]60. Ayvaz, S.; Shiha, M.O. The Effects of Emoji in Sentiment Analysis. Int. J. Comput. Electr. Eng. 2017, 9, 360–369. [CrossRef]61. Kejriwal, M.; Wang, Q.; Li, H.; Wang, L. An Empirical Study of Emoji Usage on Twitter in Linguistic and National Contexts. Online Soc. Netw. Media 2021, 24, 100149. [CrossRef]62. Miller, H.; Thebault-Spieker, J.; Chang, S.; Johnson, I.; Terveen, L.; Hecht, B. “blissfully Happy” or “Ready to Fight”: Varying Interpretations of Emoji. In Proceedings of the 10th International Conference on Web and Social Media, ICWSM 2016, Cologne, Germany, 17–20 May 2016; AAAI Press: Washington, DC, USA, 2016; pp. 259–268.63. Barbieri, F.; Espinosa-Anke, L.; Saggion, H. Revealing Patterns of Twitter Emoji Usage in Barcelona and Madrid. Artif. Intell. Res. Dev. 2016, 288, 239–244. [CrossRef]64. Wijeratne, S.; Balasuriya, L.; Sheth, A.; Doran, D. EmojiNet: Building a Machine Readable Sense Inventory for Emoji. In Proceedings of the Social Informatics, Bellevue, WA, USA, 11–14 November 2016; Spiro, E., Ahn, Y.-Y., Eds.; Springer International Publishing: Cham, Swizterland, 2016; pp. 527–541.18168Deep learningFine-tuningNatural language processingEvolution of feelingsPublicationORIGINALExploring the Evolution of Sentiment in Spanish Pandemic Tweets A Data Analysis Based on a Fine-Tuned BERT Architecture.pdfExploring the Evolution of Sentiment in Spanish Pandemic Tweets A Data Analysis Based on a Fine-Tuned BERT Architecture.pdfArtículoapplication/pdf11038333https://repositorio.cuc.edu.co/bitstreams/f9ac9c11-c604-4d6f-a3e8-196948cf0a45/download33c76149674a8dd7e6d4b2f9fd087ee3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/c8ea17af-0a20-41cf-8b5a-9af5f2bb846d/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTExploring the Evolution of Sentiment in Spanish Pandemic Tweets A Data Analysis Based on a Fine-Tuned BERT Architecture.pdf.txtExploring the Evolution of Sentiment in Spanish Pandemic Tweets A Data Analysis Based on a Fine-Tuned BERT Architecture.pdf.txtExtracted texttext/plain160331https://repositorio.cuc.edu.co/bitstreams/6a4d7469-000e-4cba-807f-3746965b9372/download501becceaa323782e264f338fee05de1MD53THUMBNAILExploring the Evolution of Sentiment in Spanish Pandemic Tweets A Data Analysis Based on a Fine-Tuned BERT Architecture.pdf.jpgExploring the Evolution of Sentiment in Spanish Pandemic Tweets A Data Analysis Based on a Fine-Tuned BERT Architecture.pdf.jpgGenerated Thumbnailimage/jpeg15966https://repositorio.cuc.edu.co/bitstreams/cab2d00f-cf13-40cd-8a1f-02f9711e5708/downloadce05dd227f3cce25f37e48322cf210d6MD5411323/10569oai:repositorio.cuc.edu.co:11323/105692024-09-17 10:44:18.803https://creativecommons.org/licenses/by/4.0/Copyright: © 2023 by the authors.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=