Design and development of a custom system of technology surveillance and competitive intelligence in SMEs
Making strategic decisions is a complex process that requires reliable and up-to-date information. It is therefore necessary to have tools that facilitate the information management. Technology Surveillance (TS) and Competitive Intelligence (CI) are two disciplines that seek to obtain accurate and u...
- Autores:
-
Silva, Jesus
Vidal Pacheco, Lucelys del Carmen
Parra Negrete, Kevin
Combita Niño, Johana Patricia
Pineda Lezama, Omar Bonerge
Izquierdo Varela, Noel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/4838
- Acceso en línea:
- https://hdl.handle.net/11323/4838
https://repositorio.cuc.edu.co/
- Palabra clave:
- Web mining
technology surveillance and competitive intelligence
decision making
advanced cluster vector page ranking
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_d996b7706e338130129a167c399ae9ee |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/4838 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Design and development of a custom system of technology surveillance and competitive intelligence in SMEs |
title |
Design and development of a custom system of technology surveillance and competitive intelligence in SMEs |
spellingShingle |
Design and development of a custom system of technology surveillance and competitive intelligence in SMEs Web mining technology surveillance and competitive intelligence decision making advanced cluster vector page ranking |
title_short |
Design and development of a custom system of technology surveillance and competitive intelligence in SMEs |
title_full |
Design and development of a custom system of technology surveillance and competitive intelligence in SMEs |
title_fullStr |
Design and development of a custom system of technology surveillance and competitive intelligence in SMEs |
title_full_unstemmed |
Design and development of a custom system of technology surveillance and competitive intelligence in SMEs |
title_sort |
Design and development of a custom system of technology surveillance and competitive intelligence in SMEs |
dc.creator.fl_str_mv |
Silva, Jesus Vidal Pacheco, Lucelys del Carmen Parra Negrete, Kevin Combita Niño, Johana Patricia Pineda Lezama, Omar Bonerge Izquierdo Varela, Noel |
dc.contributor.author.spa.fl_str_mv |
Silva, Jesus Vidal Pacheco, Lucelys del Carmen Parra Negrete, Kevin Combita Niño, Johana Patricia Pineda Lezama, Omar Bonerge Izquierdo Varela, Noel |
dc.subject.spa.fl_str_mv |
Web mining technology surveillance and competitive intelligence decision making advanced cluster vector page ranking |
topic |
Web mining technology surveillance and competitive intelligence decision making advanced cluster vector page ranking |
description |
Making strategic decisions is a complex process that requires reliable and up-to-date information. It is therefore necessary to have tools that facilitate the information management. Technology Surveillance (TS) and Competitive Intelligence (CI) are two disciplines that seek to obtain accurate and up-to-date information. Clearly, the web is the largest and most important source of information, but their destructuring and disorganization requires tools that help to manage it. This work presents a model for TS and CI using Web Mining techniques such as ranking algorithm of web pages based on machine learning, i.e. the Advanced Cluster Vector Page Ranking (ACVPR) algorithm. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-06-10T13:54:33Z |
dc.date.available.none.fl_str_mv |
2019-06-10T13:54:33Z |
dc.date.issued.none.fl_str_mv |
2019 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
0000-2010 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/4838 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
0000-2010 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/4838 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] T. Hiltbrand; "Learning Competitive Intelligence From a Bunch of Screwballs", Business Intelligence Journal, vol: 15, no: 4, 2010. [2] Gaitán-Angulo M. Amelec Viloria, Jenny-Paola Lis-Gutiérrez, Dionicio Neira, Enrrique López, Ernesto Joaquín Steffens Sanabria, Claudia Patricia Fernández Castro. (2018) Influence of the Management of the Innovation in the Business Performance of the Family Business: Application to the Printing Sector in Colombia. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham. [3] A. Firat, W. Woon, and S. Madnick, “Technological Forecasting – A Review,” presented at the Working Paper CISL# 2008-15, Cambridge, 2008. [4] S. Madnick and W.L. Woon; Technology Forecasting Using Data Mining and Semantics, MIT/MIST Collaborative Research, 2009. [5] Adamopoulos, P., 2014. On discovering non-obvious recommendations: Using unexpectedness and neighborhood selection methods in collaborative filtering systems. Proceedings of the 7th ACM international conference on Web search and data mining, ACM, 655- 660. [6] Ahmad, M. W., Doja, M. N., & Ahmad, T., 2017. Enumerative feature subset based ranking system for learning to rank in presence of implicit user feedback. Journal of King Saud University-Computer and Information Sciences. Elsevier [7] R. Barainka; “Modelos de Vigilancia Tecnológica e Inteligencia Competitiva”. Servico Zaintek de BAI. 2006. [8] Xiang, B., Jiang, D., Pei, J., Sun, X., Chen, E., & Li, H., 2010. Context-aware ranking in web search. In Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval, ACM, 451-458. [9] Yang, Y. F., Hwang, S. L., & Schenkman, B.,2012. An improved Web search engine for visually impaired users. Universal Access in the Information Society, 11(2), 113-124. [10] Zhu, H., Ou, C. X., Van den Heuvel, W. J. A. M., & Liu, H.,2017. Privacy calculus and its utility for personalization services in e- commerce: An analysis of consumer decision-making. Information & Management, Elsevier, 54(4), 427-437. [11] Zhou, D., Zhao, W., Wu, X., Lawless, S., & Liu, J., 2018. An iterative method for personalized results adaptation in cross-language search. Information Sciences, Elsevier, 430, 200-215. [12] Alam, M. and Sadaf, K., 2015. Labeling of Web Search Result Clusters using Heuristic Search and Frequent Itemset. Procedia Computer Science, Elsevier,216-222. [13] Ferretti, S., Mirri, S., Prandi, C., & Salomoni, P., 2016. Automatic web content personalization through reinforcement learning. Journal of Systems and Software, Elsevier, 121, 157-169. [14] I. Popa Anica and G. Cucui, "A Framework for Enhancing Competitive Intelligence Capabilities using Decision Support System based on Web Mining Techniques", Int. J. of Computers, Communications & Control, vol. 4, no. 4, pp. 326-334, 2009. [15] Malhotra, D., Malhotra, M. and Rishi, O.P., 2017.An Innovative Approach of Web Page Ranking Using Hadoop- and Map Reduce- Based Cloud Framework. Proceedings of Advances in Intelligent Systems and Computing, Vol.654, CSI, Springer, 421-427. |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Procedia Computer Science |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/ad70ff79-6cf4-4cc3-b221-8b8f1ca760ed/download https://repositorio.cuc.edu.co/bitstreams/397b7ad0-faeb-4f58-b285-6aa5ba8743cd/download https://repositorio.cuc.edu.co/bitstreams/8e8ff312-42ac-4ddb-a639-e06ed02d7b45/download https://repositorio.cuc.edu.co/bitstreams/064a7869-603d-4b19-be4a-479d3ad58d0d/download https://repositorio.cuc.edu.co/bitstreams/5ba112ee-90bd-488d-8dd0-9cd7a86dc9a4/download |
bitstream.checksum.fl_str_mv |
d13cbb6dc1094936a3adc58c670064aa 4460e5956bc1d1639be9ae6146a50347 8a4605be74aa9ea9d79846c1fba20a33 12e0d83c203b4b4000d62e687b75a160 3476c4dc3749ab82d07e9a6294d6de48 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760852845461504 |
spelling |
Silva, JesusVidal Pacheco, Lucelys del CarmenParra Negrete, KevinCombita Niño, Johana PatriciaPineda Lezama, Omar BonergeIzquierdo Varela, Noel2019-06-10T13:54:33Z2019-06-10T13:54:33Z20190000-2010https://hdl.handle.net/11323/4838Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Making strategic decisions is a complex process that requires reliable and up-to-date information. It is therefore necessary to have tools that facilitate the information management. Technology Surveillance (TS) and Competitive Intelligence (CI) are two disciplines that seek to obtain accurate and up-to-date information. Clearly, the web is the largest and most important source of information, but their destructuring and disorganization requires tools that help to manage it. This work presents a model for TS and CI using Web Mining techniques such as ranking algorithm of web pages based on machine learning, i.e. the Advanced Cluster Vector Page Ranking (ACVPR) algorithm.Silva, Jesus-60750872-819f-4163-bbb8-c33aee0e2cf1-0Vidal Pacheco, Lucelys del Carmen-0000-0002-8083-7251-600Parra Negrete, Kevin-0000-0003-0276-3215-600Combita Niño, Johana Patricia-0000-0003-4677-9489-600Pineda Lezama, Omar Bonerge-365a03a0-145e-4df5-9abe-f5ccf9d96612-0Izquierdo Varela, Noel-0000-0001-7036-4414-600engProcedia Computer ScienceAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Web miningtechnology surveillance and competitive intelligencedecision makingadvanced cluster vector page rankingDesign and development of a custom system of technology surveillance and competitive intelligence in SMEsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] T. Hiltbrand; "Learning Competitive Intelligence From a Bunch of Screwballs", Business Intelligence Journal, vol: 15, no: 4, 2010. [2] Gaitán-Angulo M. Amelec Viloria, Jenny-Paola Lis-Gutiérrez, Dionicio Neira, Enrrique López, Ernesto Joaquín Steffens Sanabria, Claudia Patricia Fernández Castro. (2018) Influence of the Management of the Innovation in the Business Performance of the Family Business: Application to the Printing Sector in Colombia. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham. [3] A. Firat, W. Woon, and S. Madnick, “Technological Forecasting – A Review,” presented at the Working Paper CISL# 2008-15, Cambridge, 2008. [4] S. Madnick and W.L. Woon; Technology Forecasting Using Data Mining and Semantics, MIT/MIST Collaborative Research, 2009. [5] Adamopoulos, P., 2014. On discovering non-obvious recommendations: Using unexpectedness and neighborhood selection methods in collaborative filtering systems. Proceedings of the 7th ACM international conference on Web search and data mining, ACM, 655- 660. [6] Ahmad, M. W., Doja, M. N., & Ahmad, T., 2017. Enumerative feature subset based ranking system for learning to rank in presence of implicit user feedback. Journal of King Saud University-Computer and Information Sciences. Elsevier [7] R. Barainka; “Modelos de Vigilancia Tecnológica e Inteligencia Competitiva”. Servico Zaintek de BAI. 2006. [8] Xiang, B., Jiang, D., Pei, J., Sun, X., Chen, E., & Li, H., 2010. Context-aware ranking in web search. In Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval, ACM, 451-458. [9] Yang, Y. F., Hwang, S. L., & Schenkman, B.,2012. An improved Web search engine for visually impaired users. Universal Access in the Information Society, 11(2), 113-124. [10] Zhu, H., Ou, C. X., Van den Heuvel, W. J. A. M., & Liu, H.,2017. Privacy calculus and its utility for personalization services in e- commerce: An analysis of consumer decision-making. Information & Management, Elsevier, 54(4), 427-437. [11] Zhou, D., Zhao, W., Wu, X., Lawless, S., & Liu, J., 2018. An iterative method for personalized results adaptation in cross-language search. Information Sciences, Elsevier, 430, 200-215. [12] Alam, M. and Sadaf, K., 2015. Labeling of Web Search Result Clusters using Heuristic Search and Frequent Itemset. Procedia Computer Science, Elsevier,216-222. [13] Ferretti, S., Mirri, S., Prandi, C., & Salomoni, P., 2016. Automatic web content personalization through reinforcement learning. Journal of Systems and Software, Elsevier, 121, 157-169. [14] I. Popa Anica and G. Cucui, "A Framework for Enhancing Competitive Intelligence Capabilities using Decision Support System based on Web Mining Techniques", Int. J. of Computers, Communications & Control, vol. 4, no. 4, pp. 326-334, 2009. [15] Malhotra, D., Malhotra, M. and Rishi, O.P., 2017.An Innovative Approach of Web Page Ranking Using Hadoop- and Map Reduce- Based Cloud Framework. Proceedings of Advances in Intelligent Systems and Computing, Vol.654, CSI, Springer, 421-427.PublicationORIGINALDesign and Development of a Custom System of Technology Surveillance and Competitive Intelligence in SMEs.pdfDesign and Development of a Custom System of Technology Surveillance and Competitive Intelligence in SMEs.pdfapplication/pdf671209https://repositorio.cuc.edu.co/bitstreams/ad70ff79-6cf4-4cc3-b221-8b8f1ca760ed/downloadd13cbb6dc1094936a3adc58c670064aaMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/397b7ad0-faeb-4f58-b285-6aa5ba8743cd/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/8e8ff312-42ac-4ddb-a639-e06ed02d7b45/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILDesign and Development of a Custom System of Technology Surveillance and Competitive Intelligence in SMEs.pdf.jpgDesign and Development of a Custom System of Technology Surveillance and Competitive Intelligence in SMEs.pdf.jpgimage/jpeg46224https://repositorio.cuc.edu.co/bitstreams/064a7869-603d-4b19-be4a-479d3ad58d0d/download12e0d83c203b4b4000d62e687b75a160MD55TEXTDesign and Development of a Custom System of Technology Surveillance and Competitive Intelligence in SMEs.pdf.txtDesign and Development of a Custom System of Technology Surveillance and Competitive Intelligence in SMEs.pdf.txttext/plain23139https://repositorio.cuc.edu.co/bitstreams/5ba112ee-90bd-488d-8dd0-9cd7a86dc9a4/download3476c4dc3749ab82d07e9a6294d6de48MD5611323/4838oai:repositorio.cuc.edu.co:11323/48382024-09-17 14:11:27.522http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |