Prediction of electric consumption using multiple linear regression methods
In the new global and local scenario, the advent of intelligent distribution networks, or Smart Grids, allows the collection of data about the operational state of the electric network in real time. Based on this data availability, the consumption prediction becomes feasible and convenient in the sh...
- Autores:
-
Viloria, Amelec
Hernandez-P, Hugo
Pineda, Omar
Vargas, Jesús
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7782
- Acceso en línea:
- https://hdl.handle.net/11323/7782
https://doi.org/10.1007/978-981-15-3125-5_45
https://repositorio.cuc.edu.co/
- Palabra clave:
- Energy consumption
Short term load forecasting
Variable selection
Linear regression
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_d8db0fa76023dba59bc5e99d5252ad38 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7782 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Prediction of electric consumption using multiple linear regression methods |
title |
Prediction of electric consumption using multiple linear regression methods |
spellingShingle |
Prediction of electric consumption using multiple linear regression methods Energy consumption Short term load forecasting Variable selection Linear regression |
title_short |
Prediction of electric consumption using multiple linear regression methods |
title_full |
Prediction of electric consumption using multiple linear regression methods |
title_fullStr |
Prediction of electric consumption using multiple linear regression methods |
title_full_unstemmed |
Prediction of electric consumption using multiple linear regression methods |
title_sort |
Prediction of electric consumption using multiple linear regression methods |
dc.creator.fl_str_mv |
Viloria, Amelec Hernandez-P, Hugo Pineda, Omar Vargas, Jesús |
dc.contributor.author.spa.fl_str_mv |
Viloria, Amelec Hernandez-P, Hugo Pineda, Omar Vargas, Jesús |
dc.subject.spa.fl_str_mv |
Energy consumption Short term load forecasting Variable selection Linear regression |
topic |
Energy consumption Short term load forecasting Variable selection Linear regression |
description |
In the new global and local scenario, the advent of intelligent distribution networks, or Smart Grids, allows the collection of data about the operational state of the electric network in real time. Based on this data availability, the consumption prediction becomes feasible and convenient in the short term, from a few hours to a week (temporary variables). The research proposes that the method used to present the temporary variables for a system to predict electrical consumption affects the results. To verify this hypothesis, different methods for representing these variables are considered, applied to the problem of predicting daily values of electricity consumption in the city of Bogota, Colombia. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-01-28T12:56:37Z |
dc.date.available.none.fl_str_mv |
2021-01-28T12:56:37Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7782 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1007/978-981-15-3125-5_45 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/7782 https://doi.org/10.1007/978-981-15-3125-5_45 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Perez R et al (2018) Fault diagnosis on electrical distribution systems based on fuzzy logic. In: Tan Y, Shi Y, Tang Q (eds) Advances in swarm intelligence. ICSI 2018. Lecture notes in computer science, vol 10942. Springer, Cham 2. Silva V, Jesús A (2013) Indicators systems for evaluating the efficiency of political awareness of rational use of electricity. In: Advanced materials research, vol 601. Trans Tech Publications, Switzerland, pp 618–625 3. Perez R, Inga E, Aguila A, Vásquez C, Lima L, Viloria A, Henry MA (2018) Fault diagnosis on electrical distribution systems based on fuzzy logic. In: International conference on sensing and imaging, June. Springer, Cham, pp 174–185 4. Perez R, Vásquez C, Viloria A (2019) An intelligent strategy for faults location in distribution networks with distributed generation. J Intell Fuzzy Syst 36:1627–1637 (Preprint) 5. Xue Y, Lai Y (2016) The integration of great energy thinking and big datas thinking: big data and electricity big data. Power Syst Autom 40(1):1–8 6. Wang Y, Chen Q, Kang C et al (2017) Clustering of electricity consumption behaviour dynamics toward big data applications. IEEE Trans Smart Grid 7(5):2437–2447 7. Liu R, Ding W (2011) Statistical analysis and application of SAS. China Machine Press, China 8. Ozger M, Cetinkaya O, Akan OB (2017) Energy harvesting cognitive radio networking for IoT-enabled smart grid. Mob Netw Appl 23(4):956–966 9. Isasi P, Galván I (2004) Redes de Neuronas Artificiales. Un enfoque Práctico. Pearson, London. ISBN: 8420540250 10. Mangasarian O (1997) Arbitrary-norm separating plane. Technical report 97-07, Computer Science Dept., Univ. Wisconsin Madison 11. Andersson M (2009) A comparison of nine PLS1 algorithms. J Chemometr 23:518–529 12. Xu Q-S, Liang Y-Z (2001) Monte Carlo cross validation. Chemometr Intell Lab 56:1–11 13. Li H-D, Xu Q-S, Liang Y-Z (2017) A phase diagram for gene selection and disease classification. Chemometr Intell Lab 167:208–213 14. Cao DS, Liang YZ, Xu QS, Li HD, Chen X (2010) A new strategy of outlier detection for QSAR/QSPR. J Comput Chem 31:592–602 15. Tian W (2017) The research into methods of map building and path planning on mobile robots. In: IEEE 2nd information technology, networking, electronic and automation control conference (ITNEC 2017), pp 1087–1090 16. Dugas M et al (2014) Missing semantic annotation in databases. Methods Inf Med 53(6):516–517 17. Silberschatz A, Korth HF, Sudarshan S et al (1997) Database system concepts, vol 4. McGraw-Hill, New York |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Lecture Notes in Electrical Engineering |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-981-15-3125-5_45 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/f1743d67-46f4-45ae-a3e2-25ca0e38d497/download https://repositorio.cuc.edu.co/bitstreams/151f1bfa-0679-4a61-b2b1-ceec79c7b719/download https://repositorio.cuc.edu.co/bitstreams/b9c7f6e4-006f-437b-ac35-66dd79d24b9d/download https://repositorio.cuc.edu.co/bitstreams/ad066876-43f9-4f25-8f71-98704c0ace64/download https://repositorio.cuc.edu.co/bitstreams/a482b099-5a8c-4b3c-be24-2833f43cdfd5/download |
bitstream.checksum.fl_str_mv |
0051e7652eec06285d6d12509404a280 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad 802550180264e29bad412d973e066bde d03af3c76b711e1e75e85e461219c703 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760686681817088 |
spelling |
Viloria, AmelecHernandez-P, HugoPineda, OmarVargas, Jesús2021-01-28T12:56:37Z2021-01-28T12:56:37Z2020https://hdl.handle.net/11323/7782https://doi.org/10.1007/978-981-15-3125-5_45Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In the new global and local scenario, the advent of intelligent distribution networks, or Smart Grids, allows the collection of data about the operational state of the electric network in real time. Based on this data availability, the consumption prediction becomes feasible and convenient in the short term, from a few hours to a week (temporary variables). The research proposes that the method used to present the temporary variables for a system to predict electrical consumption affects the results. To verify this hypothesis, different methods for representing these variables are considered, applied to the problem of predicting daily values of electricity consumption in the city of Bogota, Colombia.Viloria, AmelecHernandez-P, HugoPineda, Omar-will be generated-orcid-0000-0002-8239-3906-600Vargas, Jesúsapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lecture Notes in Electrical Engineeringhttps://link.springer.com/chapter/10.1007/978-981-15-3125-5_45Energy consumptionShort term load forecastingVariable selectionLinear regressionPrediction of electric consumption using multiple linear regression methodsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Perez R et al (2018) Fault diagnosis on electrical distribution systems based on fuzzy logic. In: Tan Y, Shi Y, Tang Q (eds) Advances in swarm intelligence. ICSI 2018. Lecture notes in computer science, vol 10942. Springer, Cham2. Silva V, Jesús A (2013) Indicators systems for evaluating the efficiency of political awareness of rational use of electricity. In: Advanced materials research, vol 601. Trans Tech Publications, Switzerland, pp 618–6253. Perez R, Inga E, Aguila A, Vásquez C, Lima L, Viloria A, Henry MA (2018) Fault diagnosis on electrical distribution systems based on fuzzy logic. In: International conference on sensing and imaging, June. Springer, Cham, pp 174–1854. Perez R, Vásquez C, Viloria A (2019) An intelligent strategy for faults location in distribution networks with distributed generation. J Intell Fuzzy Syst 36:1627–1637 (Preprint)5. Xue Y, Lai Y (2016) The integration of great energy thinking and big datas thinking: big data and electricity big data. Power Syst Autom 40(1):1–86. Wang Y, Chen Q, Kang C et al (2017) Clustering of electricity consumption behaviour dynamics toward big data applications. IEEE Trans Smart Grid 7(5):2437–24477. Liu R, Ding W (2011) Statistical analysis and application of SAS. China Machine Press, China8. Ozger M, Cetinkaya O, Akan OB (2017) Energy harvesting cognitive radio networking for IoT-enabled smart grid. Mob Netw Appl 23(4):956–9669. Isasi P, Galván I (2004) Redes de Neuronas Artificiales. Un enfoque Práctico. Pearson, London. ISBN: 842054025010. Mangasarian O (1997) Arbitrary-norm separating plane. Technical report 97-07, Computer Science Dept., Univ. Wisconsin Madison11. Andersson M (2009) A comparison of nine PLS1 algorithms. J Chemometr 23:518–52912. Xu Q-S, Liang Y-Z (2001) Monte Carlo cross validation. Chemometr Intell Lab 56:1–1113. Li H-D, Xu Q-S, Liang Y-Z (2017) A phase diagram for gene selection and disease classification. Chemometr Intell Lab 167:208–21314. Cao DS, Liang YZ, Xu QS, Li HD, Chen X (2010) A new strategy of outlier detection for QSAR/QSPR. J Comput Chem 31:592–60215. Tian W (2017) The research into methods of map building and path planning on mobile robots. In: IEEE 2nd information technology, networking, electronic and automation control conference (ITNEC 2017), pp 1087–109016. Dugas M et al (2014) Missing semantic annotation in databases. Methods Inf Med 53(6):516–51717. Silberschatz A, Korth HF, Sudarshan S et al (1997) Database system concepts, vol 4. McGraw-Hill, New YorkPublicationORIGINALPrediction of electric consumption using multiple linear regression methods.pdfPrediction of electric consumption using multiple linear regression methods.pdfapplication/pdf93717https://repositorio.cuc.edu.co/bitstreams/f1743d67-46f4-45ae-a3e2-25ca0e38d497/download0051e7652eec06285d6d12509404a280MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/151f1bfa-0679-4a61-b2b1-ceec79c7b719/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/b9c7f6e4-006f-437b-ac35-66dd79d24b9d/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILPrediction of electric consumption using multiple linear regression methods.pdf.jpgPrediction of electric consumption using multiple linear regression methods.pdf.jpgimage/jpeg29813https://repositorio.cuc.edu.co/bitstreams/ad066876-43f9-4f25-8f71-98704c0ace64/download802550180264e29bad412d973e066bdeMD54TEXTPrediction of electric consumption using multiple linear regression methods.pdf.txtPrediction of electric consumption using multiple linear regression methods.pdf.txttext/plain1004https://repositorio.cuc.edu.co/bitstreams/a482b099-5a8c-4b3c-be24-2833f43cdfd5/downloadd03af3c76b711e1e75e85e461219c703MD5511323/7782oai:repositorio.cuc.edu.co:11323/77822024-09-16 16:49:16.002http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |