A comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratory
This paper considers the problem of scheduling a given set of samples in a mineral laboratory, located in Barranquilla Colombia. Taking into account the natural complexity of the process and the large amount of variables involved, this problem is considered as NP-hard in strong sense. Therefore, it...
- Autores:
-
Niebles Atencio, Fabricio Andres
Bustacara Prasca, Alexander
Neira Rodado, Dionicio
Mendoza Casseres, Daniel
Rojas Santiago, Miguel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/1321
- Acceso en línea:
- https://hdl.handle.net/11323/1321
https://repositorio.cuc.edu.co/
- Palabra clave:
- Ant colony optimization
Multi-objective optimization
Scheduling
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_d8c4713ffefac267ec5b08cb09997b94 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/1321 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratory |
title |
A comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratory |
spellingShingle |
A comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratory Ant colony optimization Multi-objective optimization Scheduling |
title_short |
A comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratory |
title_full |
A comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratory |
title_fullStr |
A comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratory |
title_full_unstemmed |
A comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratory |
title_sort |
A comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratory |
dc.creator.fl_str_mv |
Niebles Atencio, Fabricio Andres Bustacara Prasca, Alexander Neira Rodado, Dionicio Mendoza Casseres, Daniel Rojas Santiago, Miguel |
dc.contributor.author.spa.fl_str_mv |
Niebles Atencio, Fabricio Andres Bustacara Prasca, Alexander Neira Rodado, Dionicio Mendoza Casseres, Daniel Rojas Santiago, Miguel |
dc.subject.eng.fl_str_mv |
Ant colony optimization Multi-objective optimization Scheduling |
topic |
Ant colony optimization Multi-objective optimization Scheduling |
description |
This paper considers the problem of scheduling a given set of samples in a mineral laboratory, located in Barranquilla Colombia. Taking into account the natural complexity of the process and the large amount of variables involved, this problem is considered as NP-hard in strong sense. Therefore, it is possible to find an optimal solution in a reasonable computational time only for small instances, which in general, does not reflect the industrial reality. For that reason, it is proposed the use of metaheuristics as an alternative approach in this problem with the aim to determine, with a low computational effort, the best assignation of the analysis in order to minimize the makespan and weighted total tardiness simultaneously. These optimization objectives will allow this labora-tory to improve their productivity and the customer service, respectively. A Ant Colony Optimization algorithm (ACO) is proposed. Computational experiments are carried out comparing the proposed approach versus exact methods. Results show the efficiency of our ACO algorithm. |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2018-11-19T20:00:20Z |
dc.date.available.none.fl_str_mv |
2018-11-19T20:00:20Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
03029743 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/1321 |
dc.identifier.doi.spa.fl_str_mv |
DOI: 10.1007/978-3-319-41000-5_41 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
03029743 DOI: 10.1007/978-3-319-41000-5_41 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/1321 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/a1ee5b82-e94d-4f18-9d8b-c4070f57049e/download https://repositorio.cuc.edu.co/bitstreams/37ead1af-2e50-4a22-ac91-05fa540c0d7a/download https://repositorio.cuc.edu.co/bitstreams/49998d1c-034c-431c-9f6a-9cd91455c83e/download https://repositorio.cuc.edu.co/bitstreams/39193e7b-0dfa-4f67-a7e4-c161808afe4a/download |
bitstream.checksum.fl_str_mv |
7f7866317b29bb4b82e2026cefb8e147 8a4605be74aa9ea9d79846c1fba20a33 c6f649cb789cc738a95198163dd83f8a 628ce68b3efeae35af21c59fa4fe89f6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166831752347648 |
spelling |
Niebles Atencio, Fabricio AndresBustacara Prasca, AlexanderNeira Rodado, DionicioMendoza Casseres, DanielRojas Santiago, Miguel2018-11-19T20:00:20Z2018-11-19T20:00:20Z201603029743https://hdl.handle.net/11323/1321DOI: 10.1007/978-3-319-41000-5_41Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper considers the problem of scheduling a given set of samples in a mineral laboratory, located in Barranquilla Colombia. Taking into account the natural complexity of the process and the large amount of variables involved, this problem is considered as NP-hard in strong sense. Therefore, it is possible to find an optimal solution in a reasonable computational time only for small instances, which in general, does not reflect the industrial reality. For that reason, it is proposed the use of metaheuristics as an alternative approach in this problem with the aim to determine, with a low computational effort, the best assignation of the analysis in order to minimize the makespan and weighted total tardiness simultaneously. These optimization objectives will allow this labora-tory to improve their productivity and the customer service, respectively. A Ant Colony Optimization algorithm (ACO) is proposed. Computational experiments are carried out comparing the proposed approach versus exact methods. Results show the efficiency of our ACO algorithm.Niebles Atencio, Fabricio Andres-3b2c3fb0-7698-4da7-82e4-0ee7fe1aa630-0Bustacara Prasca, Alexander-fef9bccd-c1a6-424d-bfa7-52decb016b50-0Neira Rodado, Dionicio-0000-0003-0837-7083-600Mendoza Casseres, Daniel-71ba3866-7a7e-4179-9a5a-6377fb21447f-0Rojas Santiago, Miguel-b4c45f23-76ff-40bb-b028-27eef7d3ca53-0engLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)Atribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ant colony optimizationMulti-objective optimizationSchedulingA comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratoryArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALA comparative approach of ant colony system.pdfA comparative approach of ant colony system.pdfapplication/pdf181063https://repositorio.cuc.edu.co/bitstreams/a1ee5b82-e94d-4f18-9d8b-c4070f57049e/download7f7866317b29bb4b82e2026cefb8e147MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/37ead1af-2e50-4a22-ac91-05fa540c0d7a/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILA comparative approach of ant colony system.pdf.jpgA comparative approach of ant colony system.pdf.jpgimage/jpeg43470https://repositorio.cuc.edu.co/bitstreams/49998d1c-034c-431c-9f6a-9cd91455c83e/downloadc6f649cb789cc738a95198163dd83f8aMD54TEXTA comparative approach of ant colony system.pdf.txtA comparative approach of ant colony system.pdf.txttext/plain1444https://repositorio.cuc.edu.co/bitstreams/39193e7b-0dfa-4f67-a7e4-c161808afe4a/download628ce68b3efeae35af21c59fa4fe89f6MD5511323/1321oai:repositorio.cuc.edu.co:11323/13212024-09-17 14:15:26.168open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |