A comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratory

This paper considers the problem of scheduling a given set of samples in a mineral laboratory, located in Barranquilla Colombia. Taking into account the natural complexity of the process and the large amount of variables involved, this problem is considered as NP-hard in strong sense. Therefore, it...

Full description

Autores:
Niebles Atencio, Fabricio Andres
Bustacara Prasca, Alexander
Neira Rodado, Dionicio
Mendoza Casseres, Daniel
Rojas Santiago, Miguel
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/1321
Acceso en línea:
https://hdl.handle.net/11323/1321
https://repositorio.cuc.edu.co/
Palabra clave:
Ant colony optimization
Multi-objective optimization
Scheduling
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_d8c4713ffefac267ec5b08cb09997b94
oai_identifier_str oai:repositorio.cuc.edu.co:11323/1321
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv A comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratory
title A comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratory
spellingShingle A comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratory
Ant colony optimization
Multi-objective optimization
Scheduling
title_short A comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratory
title_full A comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratory
title_fullStr A comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratory
title_full_unstemmed A comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratory
title_sort A comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratory
dc.creator.fl_str_mv Niebles Atencio, Fabricio Andres
Bustacara Prasca, Alexander
Neira Rodado, Dionicio
Mendoza Casseres, Daniel
Rojas Santiago, Miguel
dc.contributor.author.spa.fl_str_mv Niebles Atencio, Fabricio Andres
Bustacara Prasca, Alexander
Neira Rodado, Dionicio
Mendoza Casseres, Daniel
Rojas Santiago, Miguel
dc.subject.eng.fl_str_mv Ant colony optimization
Multi-objective optimization
Scheduling
topic Ant colony optimization
Multi-objective optimization
Scheduling
description This paper considers the problem of scheduling a given set of samples in a mineral laboratory, located in Barranquilla Colombia. Taking into account the natural complexity of the process and the large amount of variables involved, this problem is considered as NP-hard in strong sense. Therefore, it is possible to find an optimal solution in a reasonable computational time only for small instances, which in general, does not reflect the industrial reality. For that reason, it is proposed the use of metaheuristics as an alternative approach in this problem with the aim to determine, with a low computational effort, the best assignation of the analysis in order to minimize the makespan and weighted total tardiness simultaneously. These optimization objectives will allow this labora-tory to improve their productivity and the customer service, respectively. A Ant Colony Optimization algorithm (ACO) is proposed. Computational experiments are carried out comparing the proposed approach versus exact methods. Results show the efficiency of our ACO algorithm.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2018-11-19T20:00:20Z
dc.date.available.none.fl_str_mv 2018-11-19T20:00:20Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 03029743
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/1321
dc.identifier.doi.spa.fl_str_mv DOI: 10.1007/978-3-319-41000-5_41
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 03029743
DOI: 10.1007/978-3-319-41000-5_41
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/1321
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/a1ee5b82-e94d-4f18-9d8b-c4070f57049e/download
https://repositorio.cuc.edu.co/bitstreams/37ead1af-2e50-4a22-ac91-05fa540c0d7a/download
https://repositorio.cuc.edu.co/bitstreams/49998d1c-034c-431c-9f6a-9cd91455c83e/download
https://repositorio.cuc.edu.co/bitstreams/39193e7b-0dfa-4f67-a7e4-c161808afe4a/download
bitstream.checksum.fl_str_mv 7f7866317b29bb4b82e2026cefb8e147
8a4605be74aa9ea9d79846c1fba20a33
c6f649cb789cc738a95198163dd83f8a
628ce68b3efeae35af21c59fa4fe89f6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166831752347648
spelling Niebles Atencio, Fabricio AndresBustacara Prasca, AlexanderNeira Rodado, DionicioMendoza Casseres, DanielRojas Santiago, Miguel2018-11-19T20:00:20Z2018-11-19T20:00:20Z201603029743https://hdl.handle.net/11323/1321DOI: 10.1007/978-3-319-41000-5_41Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper considers the problem of scheduling a given set of samples in a mineral laboratory, located in Barranquilla Colombia. Taking into account the natural complexity of the process and the large amount of variables involved, this problem is considered as NP-hard in strong sense. Therefore, it is possible to find an optimal solution in a reasonable computational time only for small instances, which in general, does not reflect the industrial reality. For that reason, it is proposed the use of metaheuristics as an alternative approach in this problem with the aim to determine, with a low computational effort, the best assignation of the analysis in order to minimize the makespan and weighted total tardiness simultaneously. These optimization objectives will allow this labora-tory to improve their productivity and the customer service, respectively. A Ant Colony Optimization algorithm (ACO) is proposed. Computational experiments are carried out comparing the proposed approach versus exact methods. Results show the efficiency of our ACO algorithm.Niebles Atencio, Fabricio Andres-3b2c3fb0-7698-4da7-82e4-0ee7fe1aa630-0Bustacara Prasca, Alexander-fef9bccd-c1a6-424d-bfa7-52decb016b50-0Neira Rodado, Dionicio-0000-0003-0837-7083-600Mendoza Casseres, Daniel-71ba3866-7a7e-4179-9a5a-6377fb21447f-0Rojas Santiago, Miguel-b4c45f23-76ff-40bb-b028-27eef7d3ca53-0engLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)Atribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ant colony optimizationMulti-objective optimizationSchedulingA comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratoryArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALA comparative approach of ant colony system.pdfA comparative approach of ant colony system.pdfapplication/pdf181063https://repositorio.cuc.edu.co/bitstreams/a1ee5b82-e94d-4f18-9d8b-c4070f57049e/download7f7866317b29bb4b82e2026cefb8e147MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/37ead1af-2e50-4a22-ac91-05fa540c0d7a/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILA comparative approach of ant colony system.pdf.jpgA comparative approach of ant colony system.pdf.jpgimage/jpeg43470https://repositorio.cuc.edu.co/bitstreams/49998d1c-034c-431c-9f6a-9cd91455c83e/downloadc6f649cb789cc738a95198163dd83f8aMD54TEXTA comparative approach of ant colony system.pdf.txtA comparative approach of ant colony system.pdf.txttext/plain1444https://repositorio.cuc.edu.co/bitstreams/39193e7b-0dfa-4f67-a7e4-c161808afe4a/download628ce68b3efeae35af21c59fa4fe89f6MD5511323/1321oai:repositorio.cuc.edu.co:11323/13212024-09-17 14:15:26.168open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=